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Regularized total least squres problems

Total Least Squares Problem

The ordinary Least Squares (LS) method assumes that the system matrix A of
a linear model is error free, and all errors are confined to the right hand side b.

Given A ∈ Rm×n, b ∈ Rm, m ≥ n

Find x ∈ Rn and ∆b ∈ Rm such that

‖∆b‖ = min! subject to Ax = b + ∆b.

Obviously equivalent to: Find x ∈ Rn such that

‖Ax − b‖ = min!
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Regularized total least squres problems

Total Least Squares

In practical applications it may happen that all data are contaminated by
noise, for instance because the matrix A is also obtained from measurements.

If the true values of the observed variables satisfy linear relations, and if the
errors in the observations are independent random variables with zero mean
and equal variance, then the total least squares (TLS) approach often gives
better estimates than LS.

Given A ∈ Rm×n, b ∈ Rm, m ≥ n

Find ∆A ∈ Rm×n, ∆b ∈ Rm and x ∈ Rn such that

‖[∆A,∆b]‖2
F = min! subject to (A + ∆A)x = b + ∆b, (1)

where ‖ · ‖F denotes the Frobenius norm.

In statistics this approach is called errors-in-variables problem or orthogonal
regression, in image deblurring blind deconvolution
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Regularized total least squres problems

Regularized Total Least Squares Problem

If A and [A, b] are ill-conditioned, regularization is necessary.

Let L ∈ Rk×n, k ≤ n and δ > 0. Then the quadratically constrained formulation
of the Regularized Total Least Squares (RTLS) problem reads:
Find ∆A ∈ Rm×n, ∆b ∈ Rm and x ∈ Rn such that

‖[∆A,∆b]‖2
F = min! subject to (A + ∆A)x = b + ∆b, ‖Lx‖2δ2.

Using the orthogonal distance this problems can be rewritten as
(cf. Golub, Van Loan 1980)
Find x ∈ Rn such that

f (x) :=
‖Ax − b‖2

1 + ‖x‖2 = min! subject to ‖Lx‖2 = δ2.
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Regularized total least squres problems

Regularized Total Least Squares Problem ct.

Theorem 1: Let N (L) be the null space of L. If

f ∗ = inf{f (x) : ‖Lx‖2 = δ2} < min
x∈N (L), x 6=0

‖Ax‖2

‖x‖2 (1)

then

f (x) :=
‖Ax − b‖2

1 + ‖x‖2 = min! subject to ‖Lx‖2 = δ2. (2)

admits a global minimum.

Conversely, if problem (2) admits a global minimum, then

f ∗ ≤ min
x∈N (L), x 6=0

‖Ax‖2

‖x‖2
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Regularized total least squres problems

Regularized Total Least Squares Problem ct.
Under the condition (1) problem (2) is equivalent to the quadratic optimization
problem

‖Ax − b‖2 − f ∗(1 + ‖x‖2) = min! subject to ‖Lx‖2 = δ2, (3)

i.e. x∗ is a global minimizer of problem (2) if and only if it is a global minimizer
of (3).

For fixed y ∈ Rn find x ∈ Rn such that

g(x ; y) := ‖Ax − b‖2 − f (y)(1 + ‖x‖2) = min!

subject to ‖Lx‖2 = δ2. (Py )

Lemma 1 (Sima, Van Huffel, Golub 2004)
Problem (Py ) admits a global minimizer if and only if

f (y) ≤ min
x∈N (L),x 6=0

xT AT Ax
xT x

.
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Regularized total least squres problems

RTLSQEP Method (Sima, Van Huffel, Golub 2004)
Lemma 2
Assume that y satisfies conditions of Lemma 1 and ‖Ly‖ = δ, and let z be a
global minimizer of problem (Py ). Then it holds that

f (z) ≤ f (y).

Proof

(1 + ‖z‖)2(f (z)− f (y)) = g(z; y) ≤ g(y ; y) = (1 + ‖y‖2)(f (y)− f (y)) = 0.

Require: x0 satisfying conditions of Lemma 1 and ‖Lx0‖ = δ.
for m = 0, 1, 2, . . . until convergence do

Determine global minimizer xm+1 of

g(x ; xm) = min! subject to ‖Lx‖2 = δ2.

end for
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Regularized total least squres problems

RTLS Method

Obviously,
0 ≤ f (xm+1) ≤ f (xm)

The (Pxm) can be solved via the first order necessary optimality conditions

(AT A− f (xm)I)x + λLT Lx = AT b, ‖Lx‖2 = δ2.

Although g(·; xm) in general is not convex these conditions are even sufficient
if the Lagrange parameter is chosen maximal.
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Regularized total least squres problems

RTLS Method

Theorem 2
Assume that (λ̂, x̂) solves the first order conditions.

(AT A− f (y)I)x + λLT Lx = AT b, ‖Lx‖2 = δ2. (∗)

If ‖Ly‖ = δ and λ̂ is the maximal Lagrange multiplier then x̂ is a global
minimizer of problem (Py ).

Proof
The statement follows immediately from the following equation which can be
shown similarly as in W. Gander (1981):
If (λj , z j), j = 1, 2, are solutions of (∗) then it holds that

g(z2; y)− g(z1; y) =
1
2

(λ1 − λ2)‖L(z1 − z2)‖2.
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A quadratic eigenproblem

A quadratic eigenproblem

(AT A− f (y)I)x + λLT Lx = AT b, ‖Lx‖2 = δ2 (∗)

If L is square and nonsingular: Let z := Lx . Then

Wz + λz := L−T (AT A− f (y)I)L−1z + λz = L−T AT b =: h, zT z = δ2.

u := (W + λI)−2h ⇒ hT u = zT z = δ2 ⇒ h = δ−2hhT u

(W + λI)2u − δ−2hhT u = 0.

If λ̂ is the right-most real eigenvalue, and the corresponding eigenvector is
scaled such that hT u = δ2 then the solution of problem (∗) is recovered as
x = L−1(W + λ̂I)u.
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A quadratic eigenproblem

A quadratic eigenproblem ct.

If L ∈ Rk×n with linearly independent rows and k < n, the first order conditions
can be reduced to a quadratic eigenproblem

(W + λI)2u − δ−2hhT u = 0.

where

Wm =
(

C − f (xm)D − S(T − f (xm)In−k )−1ST
)

hm = g − D(T − f (xm)In−k )−1c

with C, D ∈ Rk×k , S ∈ Rk×n−k , T ∈ Rn−k×n−k , g ∈ Rk , c ∈ Rn−k , and C, D, T
are symmetric matrices.
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Nonlinear maxmin characterization

Nonlinear maxmin characterization
Let T (λ) ∈ Cn×n, T (λ) = T (λ)H , λ ∈ J ⊂ R an open interval (maybe
unbounded).

For every fixed x ∈ Cn, x 6= 0 assume that the real function

f (·; x) : J → R, f (λ; x) := xHT (λ)x

is continuous, and that the real equation

f (λ, x) = 0

has at most one solution λ =: p(x) in J.

Then equation f (λ, x) = 0 implicitly defines a functional p on some subset D
of Cn which we call the Rayleigh functional.

Assume that

(λ− p(x))f (λ, x) > 0 for every x ∈ D, λ 6= p(x).
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Nonlinear maxmin characterization

maxmin characterization (V., Werner 1982)
Let supv∈D p(v) ∈ J and assume that there exists a subspace V ⊂ Cn of
dimension ` such that

V ∩ D 6= ∅ and inf
v∈V∩D

p(v) ∈ J.

Then T (λ)x = 0 has at least ` eigenvalues in J, and for j = 1, . . . , ` the
j-largest eigenvalue λj can be characterized by

λj = max
dim V=j,
V∩D 6=∅

inf
v∈V∩D

p(v). (1)

For j = 1, . . . , ` every j dimensional subspace Ṽ ⊂ Cn with

Ṽ ∩ D 6= ∅ and λj = inf
v∈Ṽ∩D

p(v)

is contained in D ∪ {0}, and the maxmin characterization of λj can be
replaced by

λj = max
dim V=j,

V\{0}⊂D

min
v∈V\{0}

p(v).
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v∈Ṽ∩D

p(v)

is contained in D ∪ {0}, and the maxmin characterization of λj can be
replaced by

λj = max
dim V=j,

V\{0}⊂D

min
v∈V\{0}

p(v).

TUHH Heinrich Voss Total Least Squares Harrachov, August 2007 13 / 42



Nonlinear maxmin characterization

maxmin characterization (V., Werner 1982)
Let supv∈D p(v) ∈ J and assume that there exists a subspace V ⊂ Cn of
dimension ` such that

V ∩ D 6= ∅ and inf
v∈V∩D

p(v) ∈ J.

Then T (λ)x = 0 has at least ` eigenvalues in J, and for j = 1, . . . , ` the
j-largest eigenvalue λj can be characterized by

λj = max
dim V=j,
V∩D 6=∅

inf
v∈V∩D

p(v). (1)

For j = 1, . . . , ` every j dimensional subspace Ṽ ⊂ Cn with
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Nonlinear maxmin characterization

Back to

T (λ)x :=
(
(W + λI)2 − δ−2hhT )

x = 0 (QEP)

f (λ, x) = xHT (λ)x = λ2‖x‖2 + 2λxHWx + ‖Wx‖2 − |xHh|2/δ2, x 6= 0

is a parabola which attains its minimum at

λ = −xHWx
xHx

.

Let J = (−λmin,∞) where λmin is the minimum eigenvalue of W . Then
f (λ, x) = 0 has at most one solution p(x) ∈ J for every x 6= 0. Hence, the
Rayleigh functional p of (QEP) corresponding to J is defined, and the general
conditions are satisfied.
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Nonlinear maxmin characterization

Characterization of maximal real eigenvalue
Let Vmin be the eigenspace of W corresponding to λmin. Then for every
xmin ∈ Vmin

f (−λmin, xmin) = xH
min(W − λmin)

2xmin − |xH
minh|2/δ2 = −|xH

minh|2/δ2 ≤ 0

Hence, if xH
minh 6= 0 for some xmin ∈ Vmin, then xmin ∈ D.

If h ⊥ Vmin, and if the minimum eigenvalue µmin of T (−λmin) is negative, then
for the corresponding eigenvector ymin it holds

f (−λmin, ymin) = yH
minT (−λmin)ymin = µmin‖ymin‖2 < 0,

and ymin ∈ D.

If h ⊥ Vmin, and T (−λmin) is positive semi-definite, then

f (−λmin, x) = xHT (−λmin)x ≥ 0 for every x 6= 0,

and D = ∅.
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Nonlinear maxmin characterization

Characterization of maximal real eigenvalue ct.

Assume that D 6= ∅. For xHh = 0 it holds that

f (λ, x) = ‖(W + λI)x‖2 > 0 for every λ ∈ J,

i.e. x 6∈ D.

Hence, D does not contain a two-dimensional subspace of Rn, and therefore
J contains at most one eigenvalue of (QEP).

If λ ∈ C is a non-real eigenvalue of (QEP) and x a corresponding eigenvector,
then

xHT (λ)x = λ2‖x‖2 + 2λxHWx + ‖Wx‖2 − |xHh|2/δ2 = 0.

Hence, the real part of λ satisfies

real(λ) = −xHWx
xHx

≤ −λmin.
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Nonlinear maxmin characterization

Theorem 3

Let λmin be the minimal eigenvalue of W , and Vmin be the corresponding
eigenspace.

If h ⊥ Vmin and T (−λmin) is positive semi-definite, then λ̂ := −λmin is the
maximal real eigenvalue of (QEP).

Otherwise, the maximal real eigenvalue is the unique eigenvalue λ̂ of
(QEP) in J = (−λmin,∞), and it holds

λ̂ = max
x∈D

p(x).

λ̂ is the right most eigenvalue of (QEP), i.e.

real(λ) ≤ −λmin ≤ λ̂ for every eigenvalue λ 6= λ̂ of (QEP).
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Nonlinear maxmin characterization

Example
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Nonlinear maxmin characterization

Example: close up
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Nonlinear maxmin characterization

Positivity of λ̂

Sima et al. claimed that the right-most eigenvalue problem is always positive.

Simplest counter–example: If W is positive definite with eigenvalue λj > 0,
then −λj are the only eigenvalues of the quadratic eigenproblem
(W + λI)2x = 0, and if the term δ−2hhT is small enough, then the quadratic
problem will have no positive eigenvalue, but the right–most eigenvalue will be
negative.

However, in quadratic eigenproblems occurring in regularized total least
squares problems δ and h are not arbitrary, but regularization only makes
sense if δ ≤ ‖LxTLS‖ where xTLS denotes the solution of the total least squares
problem without regularization.

The following theorem characterizes the case that the right–most eigenvalue
is negative.
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Nonlinear maxmin characterization

Positivity of λ̂ ct.

Theorem 4
The maximal real eigenvalue λ̂ of the quadratic problem

(W + λI)2x − δ−2hhT x = 0

is negative if and only if W is positive definite and

‖W−1h‖ < δ.

For the quadratic eigenproblem occuring in regularized total least squares it
holds that

‖W−1h‖ = ‖L(AT A− f (x)I)−1AT b‖.

For the standard case L = I the right-most eigenvalue λ̂ is always nonnegative
if δ < ‖xTLS‖.
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Nonlinear maxmin characterization

Convergence

Theorem 5
Any limit point x∗ of the sequence {xm} constructed by RTLSQEP is a global
minimizer of

f (x) =
‖Ax − b‖2

1 + ‖x‖2 subject to ‖Lx‖2 = δ2.

Proof: Let x∗ be a limit point of {xm}, and let {xmj} be a subsequence
converging to x∗. Then xmj solves the first order conditions

(AT A− f (xmj−1)I)xmj + λmj L
T Lxmj = AT b.

From the monotonicity of f (xm) it follows that limj→∞ f (xmj−1) = f (x∗)
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Nonlinear maxmin characterization

Proof ct.

Since W (y) and h(y) depend continuously on y the sequence of right-most
eigenvalues {λmj′} converges to some λ∗, and x∗ satisfies

(AT A− f (x∗)I)x∗ − λ∗LT Lx∗ = AT b, ‖Lx∗‖2 = δ2,

where λ∗ is the maximal Lagrange multiplier.

Hence x∗ is a global minimizer of

g(x ; x∗) = min! subject to ‖Lx‖2 = δ2,

and for y ∈ Rn with ‖Ly‖2 = δ2 it follows that

0 = g(x∗; x∗) ≤ g(y ; x∗)
= ‖Ay − b‖2 − f (x∗)(1 + ‖y‖2)

= (f (y)− f (x∗))(1 + ‖y‖2), i.e. f (y) ≥ f (x∗).
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Numerical considerations

Quadratic eigenproblem

The quadratic eigenproblems

Tm(λ)z = (Wm + λI)2z − 1
δ2 hmhT

mz = 0

can be solved by
linearization
Krylov subspace method for QEP (Li & Ye 2003)
SOAR (Bai & Su 2005)
nonlinear Arnoldi method (Meerbergen 2001, V. 2004)
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Numerical considerations

Krylov subspace method: Li & Ye 2003
For A, B ∈ Rn×n such that some linear combination of A and B is a matrix of
rank q with an Arnoldi-type process a matrix Q ∈ Rn×m+q+1 with orthonormal
columns and two matrices Ha ∈ Rm+q+1×m and Hb ∈ Rm+q+1×m with lower
bandwidth q + 1 are determined such that

AQ(:, 1 : m) = Q(:, 1 : m + q + 1)Ha and BQ(:, 1 : m) = Q(:, 1 : m + q + 1)Hb.

Then approximations to eigenpairs of the quadratic eigenproblem

(λ2I − λA− B)y = 0

are obtained from its projection onto spanQ(:, 1 : m) which reads

(λ2Im − λHa(1 : m, 1 : m)− Hb(1 : m, 1 : m))z = 0.

For the quadratic eigenproblem ((W + λI)2 − δ−2hhT )x = 0 the algorithm of Li
& Ye is applied with A = −W and B = hhT from which the projected problem

(θ2I−2θHa(1 : m, 1 : m)−Ha(1 : m+2, 1 : m)T Ha(1 : m+2, m)−δ−2Hb(1 : m, 1 : m))z = 0

is easily obtained.
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Numerical considerations

SOAR: Bai & Su 2005
The Second Order Arnoldi Reduction method is based on the observation that
the Krylov space of the linearization(

A B
I O

) (
y
z

)
= λ

(
I O
O I

) (
y
z

)
of (λ2I − λA− B)y = 0 with initial vector

(
r0
0

)
has the form

Kk =

{(
r0
0

)
,

(
r1
r0

)
,

(
r2
r1

)
, . . . ,

(
rk−1
rk−2

)}
where

r1 = Ar0

rj = Arj−1 + Brj−2, for j ≥ 2.

The entire information on Kk is therefore contained in the Second Order
Krylov Space

Gk (A, B) = span{r0, r1, . . . , rk−1}.
SOAR determines an orthonormal basis of Gk (A, B).

TUHH Heinrich Voss Total Least Squares Harrachov, August 2007 26 / 42



Numerical considerations

SOAR: Bai & Su 2005
The Second Order Arnoldi Reduction method is based on the observation that
the Krylov space of the linearization(

A B
I O

) (
y
z

)
= λ

(
I O
O I

) (
y
z

)
of (λ2I − λA− B)y = 0 with initial vector

(
r0
0

)
has the form

Kk =

{(
r0
0

)
,

(
r1
r0

)
,

(
r2
r1

)
, . . . ,

(
rk−1
rk−2

)}
where

r1 = Ar0

rj = Arj−1 + Brj−2, for j ≥ 2.

The entire information on Kk is therefore contained in the Second Order
Krylov Space

Gk (A, B) = span{r0, r1, . . . , rk−1}.
SOAR determines an orthonormal basis of Gk (A, B).

TUHH Heinrich Voss Total Least Squares Harrachov, August 2007 26 / 42



Numerical considerations

Nonlinear Arnoldi Method

1: start with initial basis V , V T V = I
2: determine preconditioner M ≈ T (σ)−1, σ close to wanted eigenvalue
3: find largest eigenvalue µ of V T T (µ)Vy = 0 and corresponding eigenvector y
4: set u = Vy , r = T (µ)u
5: while ‖r‖/‖u‖ > ε do
6: v = Mr
7: v = v − VV T v
8: ṽ = v/‖v‖, V = [V , ṽ ]
9: find largest eigenvalue µ of V T T (µ)Vy = 0 and corresponding eigenvector y

10: set u = Vy , r = T (µ)u
11: end while
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Numerical considerations

Reuse of information

The convergence of Wm and hm suggests to reuse information from the
previous iterations when solving Tm(λ)z = 0.

Krylov subspace methods for Tm(λ)z = 0 can be started with the solution
zm−1 of Tm−1(λ)z = 0.

The nonlinear Arnoldi method can use thick starts, i.e. the projection method
for

Tm(λ)z = 0

can be initialized by Vm−1 where zm−1 = Vm−1uj−1, and uj−1 is an eigenvector
of V T

m−1Tm−1(λ)Vm−1u = 0.
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Numerical considerations

Thick and early updates

Wj = C − f (x j)D − S(T − f (x j)In−k )−1ST

hj = g − D(T − f (x j)In−k )−1c

with C, D ∈ Rk×k , S ∈ Rk×n−k , T ∈ Rn−k×n−k , g ∈ Rk , c ∈ Rn−k .

Hence, in order to update the projected problem

V T (Wm+1 + λI)2Vu − 1
δ2 V T hmhT

mVu = 0

one has to keep only CV , DV , ST V , and gT V .

Since it is inexpensive to obtain updates of Wm and hm we decided to
terminate the inner iteration long before convergence, namely if the residual of
the quadratic eigenvalue was reduced by at least 10−2. This reduced the
computing time further.
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Numerical considerations

Example: shaw(2000); Li & Ye

0 10 20 30 40 50 60
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

shaw(2000) − convergence history of Li & Ye method

inner iterations

re
si

du
al

 n
or

m

TUHH Heinrich Voss Total Least Squares Harrachov, August 2007 30 / 42



Numerical considerations

shaw(2000); Early updates
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Numerical considerations

Necessary Condition: Golub, Hansen, O’Leary 1999

The RTLS solution x satisfies

(AT A + λI I + λLLT L)x = AT b, ‖Lx‖2 = δ2

where

λI = −f (x)

λL = − 1
δ2 (bT (Ax − b)− λI)

Eliminating λI :

(AT A− f (x)I + λLLT L)x = AT b, ‖Lx‖2 = δ2,

iterating on f (xm), and solving via quadratic eigenproblems yields the method
of Sima, Van Huffel and Golub.
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Numerical considerations

Necessary Condition: Renaut, Guo 2002,2005

The RTLS solution x satisfies the eigenproblem

B(x)

(
x
−1

)
= −λI

(
x
−1

)
where

B(x) = [A, b]T [A, b] + λL(x)

(
LT L 0

0 −δ2

)
λI = −f (x)

λL = − 1
δ2 (bT (Ax − b)− λI)

Conversely, if
(
− λ̂,

(
x̂
−1

) )
is an eigenpair of B(x̂), and

λL(x̂) = − 1
δ2 (bT (Ax̂ − b) + f (x̂)), then x̂ satisfies the necessary conditions of

the last slide, and the eigenvalue is given by λ̂ = −f (x̂).
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Numerical considerations

Method of Renaut, Guo 2005
For θ ∈ R+ let (xT

θ ,−1)T be the eigenvector corresponding to the smallest
eigenvalue of

B(θ) := [A, b]T [A, b] + θ

(
LT L 0

0 −δ2

)
(∗)

Problem Determine θ such that g(θ) = 0 where

g(θ) :=
‖Lxθ‖2 − δ2

1 + ‖xθ‖2 .

Given θk , the eigenvalue problem (*) is solved by the Rayleigh quotient
iteration, and θk is updated according to

θk+1 = θk +
θk

δ2 g(θk ).
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Numerical considerations

Typical g
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Numerical considerations

Back tracking
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Numerical considerations

Close up
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Numerical considerations

Typical g−1
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Numerical considerations

Rational interpolation

Assumption A: Let θ1 < θ2 < θ3 such that g(θ3) < 0 < g(θ1).

Let p1 < p2 be the poles of g−1, let

h :=
α + βx + γx2

(p2 − x)(x − p1)

be the interpolation of g−1 at (g(θj), θj), j = 1, 2, 3, and set θ4 = h(0).

Drop θ1 or θ3 such that the remaining θ values satisfy assumption A, and
repeat until convergence.

To evaluate g(θ) one has to solve the eigenvalue problem B(θ)x = µx which
can be done efficiently by the nonlinear Arnoldi method starting with the entire
search space of the previous step.
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Numerical example

Numerical example

We added white noise to the data of phillips(n) and deriv2(n) with noise level
1%, and chose L to be an approximate first derivative.
The following tabel contains the average CPU time for 100 test problems of
dimensions n = 1000, n = 2000, and n = 4000 (CPU: Pentium D, 3.4 GHz).

problem n SOAR Li & Ye NL Arn. R & G
phillips 1000 0.11 0.13 0.05 0.07

2000 0.38 0.39 0.15 0.19
4000 1.30 1.30 0.66 0.70

deriv2 1000 0.12 0.09 0.06 0.05
2000 0.31 0.28 0.18 0.17
4000 1.25 1.06 0.69 0.38
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Numerical example

Numerical example ct.

We added white noise to the data of phillips(n) and deriv2(n) with noise level
10%, and chose L to be an approximate first derivative.
The following tabel contains the average CPU time for 100 test problems of
dimensions n = 1000, n = 2000, and n = 4000 (CPU: Pentium D, 3.4 GHz).

problem n SOAR Li & Ye NL Arn. R & G
phillips 1000 0.11 0.14 0.05 0.07

2000 0.45 0.44 0.16 0.23
4000 1.16 1.39 0.64 0.74

deriv2 1000 0.10 0.08 0.05 0.05
2000 0.27 0.24 0.16 0.18
4000 0.99 0.93 0.64 0.43
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Conclusions

Conclusions

Using minmax theory for nonlinear eigenproblems we proved a
localization and characterization result for the maximum real eigenvalue
of a quadratic eigenproblem occuring in TLS problems.

The right most eigenvalue is not necesarily nonnegative
The maximum eigenvalue can be determined efficiently by the nonlinear
Arnoldi method, and taking advantage of thick starts and early updates it
can be accelerated substantially.
Likewise, The approach of Renaut & Guo can be significantly improved by
rational interpolation and the nonlinear Arnoldi method with thick starts.

THANK YOU FOR YOUR ATTENTION
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