
'

&

$

%

Structured matrix methods for the computation of multiple

roots of univariate polynomials

John D. Allan and Joab R. Winkler

Department of Computer Science

The University of Sheffield, United Kingdom

'

&

$

%

Overview

• Introduction

• Structured and unstructured condition numbers

• A root finder that computes root multiplicities

• The Sylvester resultant matrix

• The method of structured total least norm

• The principle of minimum description length

• A polynomial root solver

• Conclusions

1

'

&

$

%

1. Introduction

Classical methods yield unsatisfactory results for the computation of multiple roots of

a polynomial.

Example Consider the fourth order polynomial

x4 − 4x3 + 6x2 − 4x + 1 = (x − 1)4

whose root is x = 1 with multiplicity 4. The roots function in MATLAB returns

1.0002, 1.0000 ± 0.0002i, 0.9998

which shows that roundoff errors are sufficient to cause a relative error in the solution

of 2 × 10−4. �

2

'

&

$

%

Example The roots of the polynomial (x − 1)100 were computed by the roots

function in MATLAB.

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

Real

Im
ag

Figure 1: The computed roots of (x − 1)100.

3

'

&

$

%

Example Consider the computed roots of (x − 1)n, n = 1, 6, 11, . . . , when the

constant term is perturbed by 2−10.

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: The computed roots of (x − 1)n, n = 1, 6, 11, . . . , when the constant

term is perturbed.

4

'

&

$

%

2. Structured and unstructured condition numbers

The componentwise and normwise condition numbers of a root x0 of the polynomial

f(x) =
m∑

i=0

aiφi(x)

are

κc (x0) =
1

ε
1− 1

m

c

1

|x0|

(

m!
∣
∣f (m) (x0)

∣
∣

n∑

i=0

|aiφi (x0)|

) 1

m

and

κn (x0) =
1

ε
1− 1

m

n

1

|x0|

(

m!
∣
∣f (m) (x0)

∣
∣
‖a‖2 ‖φ (x0)‖2

) 1

m

5

'

&

$

%

Compare with the structured condition number of (x − x0)
n that preserves the

multiplicity of the root, but not the value of the root

ρ(x0) =
∆x0

∆f
=

1

n |x0|

‖(x − x0)
n‖2

‖(x − x0)n−1‖2

=
1

n |x0|

(∑n

i=0

(
n
i

)2
(x0)

2i

∑n−1
i=0

(
n−1

i

)2
(x0)2i

) 1

2

where

∆f =
‖δf‖2

‖f‖2

and ∆x0 =
|δx0|

|x0|

6

'

&

$

%

Example The condition number ρ(1) of the root x0 = 1 of the polynomial (x−1)n

is

ρ(1) =
1

n

(∑n

i=0

(
n
i

)2

∑n−1
i=0

(
n−1

i

)2

) 1

2

=
1

n

√
√
√
√

(
2n
n

)

(
2(n−1)

n−1

) =
1

n

√

2(2n − 1)

n
≈

2

n

if n is large.

Compare with the componentwise and normwise condition numbers for random (un-

structured) perturbations

κc(1) ≈
|δx0|

εc

and κn(1) ≈
|δx0|

εn

�

7

'

&

$

%

Conclusion

• A multiple root of a polynomial is ill-conditioned, and the ill-conditioning increases

as its multiplicity increases

• If the multiplicity is sufficiently large, its condition numbers are proportional to the

signal-to-noise ratio

• A multiple root of a polynomial is well-conditioned with respect to perturbations

that preserve its multiplicity

8

'

&

$

%

3. A root finder that computes root multiplicities

If there is prior evidence that the theoretically exact form of the polynomial has multi-

ple roots, then it is desirable to compute these multiple roots

• Given an inexact polynomial, what is the nearest polynomial that has multiple

roots?

• How can multiple roots be computed because roundoff error is sufficient to cause

them to break up into simple roots?

9

'

&

$

%

Example Let wi(x), i = 1, . . . , mmax, be the product of all factors of degree i of

f(x)

f(x) = w1(x)w2
2(x)w3

3(x) · · ·wmmax

mmax
(x)

and thus

r0(x) = GCD
(

f(x), f (1)(x)
)

= w2(x)w2
3(x)w3

4(x) · · ·wmmax−1
mmax

(x)

Similarly

r1(x) = GCD
(

r0(x), r
(1)
0 (x)

)

= w3(x)w2
4(x)w3

5(x) · · ·wmmax−2
mmax

(x)

r2(x) = GCD
(

r1(x), r
(1)
1 (x)

)

= w4(x)w2
5(x)w3

6(x) · · ·wmmax−3
mmax

(x)

r3(x) = GCD
(

r2(x), r
(1)
2 (x)

)

= w5(x)w2
6(x) · · ·wmmax−4

mmax
(x)

...

and the sequence terminates at rmmax−1(x), which is a constant.

10

'

&

$

%

A sequence of polynomials hi(x), i = 1, . . . , mmax, is defined such that

h1(x) = f(x)
r0(x) = w1(x)w2(x)w3(x) · · ·

h2(x) = r0(x)
r1(x) = w2(x)w3(x) · · ·

h3(x) = r1(x)
r2(x) = w3(x) · · ·

...

hmmax
(x) =

rmmax−2

rmmax−1

= wmmax
(x)

and thus all the functions, w1(x), w2(x), · · · , wmmax
(x), are determined from

w1(x) =
h1(x)

h2(x)
, w2(x) =

h2(x)

h3(x)
, · · · , wmmax−1(x) =

hmmax−1(x)

hmmax
(x)

until

wmmax
(x) = hmmax

(x)

11

'

&

$

%

The equations

w1(x) = 0, w2(x) = 0, · · · , wmmax
(x) = 0

contain only simple roots: In particular

• All the roots of wi are roots of multiplicity i of f(x)

�

The algorithm requires repeated GCD and polynomial division computations:

• The GCD computations are achieved by using the Sylvester matrix and its sub-

resultant matrices

• The polynomial division computations are implemented by a deconvolution oper-

ation

12

'

&

$

%

4. The Sylvester resultant matrix

The Sylvester resultant matrix S(f, g) of the polynomials

f(x) =
m∑

i=0

aix
m−i and g(x) =

n∑

j=0

bjx
n−j

has two important properties:

• The determinant of S(f, g) is equal to zero if and only if f(x) and g(x) have a

non-constant common divisor

• The rank of S(f, g) is equal to (m + n − d), where d is the degree of the

greatest common divisor (GCD) of f(x) and g(x)

13

'

&

$

%

The matrix S(f, g) is
























a0

a1 a0

... a1
. . .

am−1

...
. . . a0

am am−1
. . . a1

am

. . .
...

. . . am−1

am

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b0

b1 b0

... b1
. . .

bn−1

...
. . . b0

bn bn−1
. . . b1

bn

. . .
...

. . . bn−1

bn
























14

'

&

$

%

The k’th Sylvester matrix, or subresultant, Sk ∈ R
(m+n−k+1)×(m+n−2k+2) is a

submatrix of S(f, g) that is formed by:

• Deleting the last (k − 1) rows of S(f, g)

• Deleting the last (k − 1) columns of the coefficients of f(x)

• Deleting the last (k − 1) columns of the coefficients of g(x)

The integer k satisfies 1 ≤ k ≤ min (m, n), and a subresultant matrix is defined

for each value of k.

• Start with k = k0 = min (m, n) and decrease by one until a solution is

obtained.

15

'

&

$

%

Each matrix Sk is partitioned into:

• A vector ck ∈ R
m+n−k+1, where ck is the first column of Sk

• A matrix Ak ∈ R
(m+n−k+1)×(m+n−2k+1), where Ak is the matrix formed

from the remaining columns of Sk

Sk =
[

ck

∣
∣
∣ Ak

]

=
[

ck

∣
∣
∣ coeffs. of f(x)

∣
∣
∣ coeffs. of g(x)

]

︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

1 n − k m − k + 1

16

'

&

$

%

Theorem 1 Consider the polynomials f(x) and g(x), and let k be a positive integer,

where 1 ≤ k ≤ min (m, n). Then

1. The dimension of the null space of Sk is greater than or equal to one if and only

if the over determined equation

Aky = ck

possesses a solution.

2. A necessary and sufficient condition for the polynomials f(x) and g(x) to have

a common divisor of degree greater than or equal to k is that the dimension of

the null space of Sk is greater than or equal to one.

17

'

&

$

%

5. The method of structured total least norm

The problem to be solved is:

For a given value of k, compute the smallest perturbations to f(x) and g(x) such

that

(Ak + Ek) y = ck + hk

has a solution, where

• Ek has the same structure as Ak

• hk has the same structure as ck

• Start with k = min (m, n) and decrease by one until a solution is obtained.

18

'

&

$

%

• zi be the perturbation of ai, i = 0, . . . , m, of f(x)

• zm+1+j be the perturbation of bj , j = 0, . . . , n, of g(x)

The perturbation of the Sylvester resultant matrix is:

[

hk

∣
∣
∣ Ek

]

=
























z0 zm+1

z1 z0 zm+2

... z1
. . .

...
. . .

zm−1

...
. . . z0 zm+n

. . . zm+1

zm zm−1
. . . z1 zm+n+1

. . . zm+2

zm

. . .
...

. . .
...

. . . zm−1
. . . zm+n

zm zm+n+1
























19

'

&

$

%

The method of STLN is used to solve the following problem:

min
z

‖Dz‖ where D =




(n − k + 1)Im+1 0

0 (m − k + 1)In+1





such that

(Ak + Ek) y = ck + hk

and

• Ek has the same structure as Ak

• hk has the same structure as ck

20

'

&

$

%

The simple polynomial root finder described earlier requires successive GCD calcu-

lations, so the algorithm above can be used repeatedly. But

• Can the value of k be chosen automatically, rather than selected by the user?

Use the principle of Minimum Description Length

21

'

&

$

%

6. The principle of Minimum Description Length (MDL)

The principle of MDL is an information theoretic criterion for the selection of a hypoth-

esis from a set of hypotheses that explains a given set of data.

Let r be the (unknown) rank of the theoretically exact form of a given inexact matrix.

• Assign a Gaussian probability distribution to the first r singular values, and a

one-sided distribution to the remaining singular values

• Use the given inexact data and the method of maximum likelihood to estimate

the parameters of these distributions

• Use the principle of MDL to derive an expression for the complexity of this model

as a function of r, and select the value of r for which the complexity is a minimum

22

'

&

$

%

• MDL measures the complexity of a model by the length of its binary representa-

tion

– Complex models require more bits for their description than do simple models

– Choose the model that requires the fewest bits for its description

The principle of MDL is in accord with Occam’s razor because it attempts to find the

simplest model that explains the data.

• Apply the principle of MDL to each of the GCD calculations in order to calculate

the degree of the GCD

• The sequence of computed values of r cannot increase

23

'

&

$

%

7. A polynomial root solver

1. Perform the sequence of GCD computations, using structured matrices and the

principle of MDL

2. Perform a sequence of polynomial divisions to obtain a set of polynomials, each

of whose roots is simple

3. Use a standard method to compute the roots of these polynomials

4. Use the method of nonlinear least squares to refine the roots, using the values in

the previous step as the initial estimates

24

'

&

$

%

Example The computed roots of the following polynomial in the absence of noise,

and with a signal-to-noise ratio of 1010, were calculated

f(x) = (x − 0.1)10(x − 0.5)8(x − 0.9)6

No noise

root multiplicity

0.1 10

0.5 8

0.9 6

S/N =1010

root multiplicity

0.10000000001 10

0.49999999990 8

0.90000000014 6

25

'

&

$

%

Example The computed roots of the following polynomial in the absence of noise,

and with a signal-to-noise ratio of 1010, were calculated

f(x) = (x − 0.1)15(x − 0.2)30

No noise

root multiplicity

0.1 15

0.2 30

S/N =1010

root multiplicity

0.10000000003 15

0.19999999998 30

26

