Intervals, Tridiagonal Matrices and the Lanczos Method

Wolfgang Wülling

August, 21th 2007

HARRACHOV 2007

Computational Methods with Applications August 19 - 25, 2007, Czech Republic harrachov@cs cas cz

- 1 Lanczos Algorithm
 - Exact Arithmetic
 - Finite Precision Arithmetic
 - The residual quantity
- 2 Clustered Ritz values
 - The Conjecture
 - Estimates for Residual Quantity
- Conclusion

Symmetric Eigenvalue Problem

Given a large, sparse and symmetric matrix $A \in \mathbb{R}^{N \times N}$, find (approximations to) eigenvalues λ and eigenvectors u, i.e.

$$Au = \lambda u$$

Lanczos Method extracts solution / approximations (θ, z) to eigenpair (λ, u) via orthogonal projection from Krylov subspace(s)

$$Az - \theta z$$
 \perp $\mathcal{K} = \operatorname{span}(q, Aq, A^2q, ..)$

- Ritz value $\theta \in \mathbb{R}$: $\theta \approx \lambda$.
- Ritz vector $z \in \mathcal{K}$, $z \neq 0$: $z \approx u$

Lanzcos Recursion, Matrix Notation

$$AQ_{k} = Q_{k}T_{k} + \beta_{k+1}q_{k+1}e_{k}^{*}$$

$$Q_{k}^{*}Q_{k} = I_{k}$$
(1)

$$Q_k^* Q_k = I_k \tag{2}$$

- $Q_k = [q_1, \dots, q_k] \in \mathbb{R}^{N \times k}$ orthogonal Lanczos vectors
- algorithm terminates with a $\beta_d = 0$, $d \le N + 1$.

Ritz approximations

Spectral decomposition of T_k

$$T_k s_{\bullet} = \theta_{\bullet} s_{\bullet}$$

$$T_k = S_k \operatorname{diag}(\theta_1, ..., \theta_k) S_k^*, \quad S_k^* S_k = S_k S_k^* = I_k$$

- Ritz values at step k are eigenvalues θ_{\bullet} of T_k
- Ritz vectors are $z_{\bullet} = Q_k s_{\bullet}$, where s_{\bullet} eigenvector of T_k .

Quality of Ritz approximations, $\delta_{k,\bullet}$

Quality of Ritz approximation to eigenvalue can be controlled by easily computable residual quantity:

$$\delta_{k,\bullet} := \beta_{k+1} |s_{k,\bullet}|$$

where
$$s_{\bullet} = \begin{pmatrix} \vdots \\ s_{k,\bullet} \end{pmatrix}$$
, $s_{k,\bullet}$ bottom element of eigenvector of T_k .

$$\min |\lambda - \theta_{\bullet}| \le \frac{||Az_{\bullet} - \theta_{\bullet}z_{\bullet}||}{||z_{\bullet}||} = ||Az_{\bullet} - \theta_{\bullet}z_{\bullet}|| = \delta_{k,\bullet}$$

Stabilized Ritz values

Theorem (C. Paige)

Persistence Theorem

$$\min_{\mu} |\theta_{\bullet} - \mu| \le \delta_{k, \bullet},$$

 μ Ritz value in subsequent step.

- **Definition:** A Ritz value θ_{\bullet} is called stabilized to within $\delta_{k,\bullet}$. If $\delta_{k,\bullet}$ is small θ_{\bullet} is called stabilized.
- Ritz value can stabilize only close to an eigenvalue

Perturbed Lanczos Recursion

Rounding errors lead to perturbed Lanczos recursion

$$AQ_k = Q_k T_k + \beta_{k+} q_{k+1} e_k^* + \text{rounding errors}$$
 (3)

$$Q_k^* Q_k = I_k + \text{rounding errors}$$
 (4)

- Lanczos vectors q_k may lose orthogonality even for small number of iterations, $k \ll N$.
- It is not guaranteed that Algorithm terminates (with $\beta_d = 0$), might run *forever*

Quality of Ritz approximations, $\delta_{k,\bullet}$

Quality of Ritz approximations in f.p.computations:

$$\delta_{k,\bullet} = \beta_{k+1} |s_{k,\bullet}|$$

controls convergence also in f.p. computations - thanks to

Theorem (C. Paige)

At any step k of the (f.p.) Lanczos algorithm the following is valid

$$\min |\lambda - \theta_{\bullet}| \leq \max \{2.5(\delta_{k,\bullet} + small \text{ in } \epsilon), small \text{ in } \epsilon\}$$
 (5)

Interim Conclusion

Residual Quantity

The residual quantity $\delta_{k,\bullet} = \beta_{k+1} |s_{k,\bullet}|$ controls convergence in exact and finite precision computations!

Tight, well separated cluster

If $\delta \ll \gamma$: tight, well separated cluster.

The Conjecture

- Rounding errors: Multiple copies of Ritz approximations to single eigenvalue are generated.
- Ritz values cluster closely to eigenvalues of A.

Conjecture (Strakoš, Greenbaum, 1992)

For any Ritz value θ_{\bullet} being part of a tight, well separated cluster, the value of $\delta_{k\bullet}$ is small, i.e $\delta_{k,\bullet}\ll 1$.

Furthermore, for any Ritz value in the cluster $\delta_{k ullet}$ is proportional to

$$\sqrt{\frac{\delta}{\gamma}} = \sqrt{\frac{\text{cluster diameter}}{\text{gap in spectrum}}}$$

Strakoš Matrix, Example 1

Example 1(Strakoš) Apply Lanczos Algorithm to diagonal matrix A with eigenvalues

$$\lambda_{\nu} = \lambda_1 + \frac{\nu - 1}{N - 1} (\lambda_N - \lambda_1) \rho^{N - \nu}, \quad \nu = 2, ..., N - 1,$$
 (6)

where $\lambda_1=0.1$, $\lambda_N=100$, $\rho=0.7$ and N=24. We look at cluster of two Ritz values close to $\lambda_{22}\approx=44.7944$.

Strakoš Matrix, Example 1

Example 1: Cluster of two Ritz values close to $\lambda_{22} \approx 44.7944$.

Counterexample

Consider diagonal matrix $A \in \mathbb{R}^{23}$ with eigenvalues

$$\lambda_1 = -100, \ \lambda_{j+1} = \lambda_j + 0.1 \ \text{for} \ j = 1, \dots, 10$$

 $\lambda_{12} = 0 \ \text{and} \ \lambda_{12+j} = -\lambda_{12-j} \ \text{for} \ j = 1, \dots, 11.$

$$\lambda_1$$
 λ_{11} $\lambda_{12}=0$ λ_{13} λ_{23}

Starting vector $q_1 = \frac{1}{\sqrt{23}}(1, 1, ..., 1)^*$:

Counterexample

k	$\delta_{m{k}, ext{first}}$	$\delta_{k, ext{second}}$	$\sqrt{rac{\delta}{\gamma}}$
9	4.6614×10^{-7}	-	-
10	7.0356×10^{1}	7.0356×10^{1}	9.7023×10^{-05}
11	2.3067×10^{-9}	-	-
12	7.0365×10^{1}	7.0347×10^{1}	6.8258×10^{-06}
13	1.0724×10^{-11}	-	-
14	6.7432×10^{1}	7.3162×10^{1}	4.6544×10^{-07}
15	5.6899×10^{-14}	-	-
16	5.3119×10^{1}	6.0079×10^{1}	3.0700×10^{-08}
17	4.1795×10^{-14}	-	-
18	3.7987×10^{-1}	3.4773×10^{-1}	1.8764×10^{-09}
19	6.5049×10^{-12}	-	-
20	1.5658×10^{-3}	4.8528×10^{-4}	2.0156×10^{-10}

- Last example: Clustered Ritz values close to eigenvalue, but $\delta_{k, \bullet} \gg \sqrt{rac{\delta}{\gamma}}$ for all Ritz value in the cluster.
- But in (Strakoš, Greenbaum, 1992), for some particular cases estimates obtained with $\delta_{k,\bullet} \leq \sqrt{\frac{\delta}{\gamma}} \mathcal{O}(||A||)$.
- Idea from (Strakoš, Greenbaum, 1992): Estimate $\delta_{k,\bullet}$ using only information about Ritz values in several consecutive steps.
- Since

$$\delta_{k,\bullet} = \underbrace{\beta_{k+1}}_{=\mathcal{O}(||A||)} \underbrace{|s_{k,\bullet}|}_{\text{eigenvector element}}$$

concentrate on bottom elements of T_k 's eigenvectors.

Constant Cluster Size: k - 1, k

Theorem

Suppose that number of Ritz values in a tight, well separated cluster is constant at steps k-1 and k. Then:

$$\sum_{\textit{cluster}} (s_{k,\bullet})^2 < 3 \frac{\delta}{\gamma - \frac{\delta}{\gamma}}.$$

Outline of the proof

Proof.

Observe, at the kth step, for any Ritz value θ (in the cluster) we have

$$\frac{\psi_k(\theta)}{\psi_{k-1}(\theta)} = 0, \quad \frac{\psi'_k(\theta)}{\psi_{k-1}(\theta)} \neq 0.$$

Outline of the proof

Proof.

Observe, at the kth step, for any Ritz value θ (in the cluster) we have

$$\frac{\psi_k(\theta)}{\psi_{k-1}(\theta)} = 0, \quad \frac{\psi'_k(\theta)}{\psi_{k-1}(\theta)} \neq 0.$$

Hence, use formula for $s_{k,\bullet}$ and apply Residue Theorem:

$$\sum_{\text{cluster}} (s_{k,\bullet})^2 = \sum_{\text{cluster}} \frac{\psi_{k-1}(\theta)}{\psi_k'(\theta)} = \frac{1}{2\pi i} \int_{\Gamma} \frac{\psi_{k-1}(z)}{\psi_k(z)} \, dz.$$

and estimate line integral.

Constant Cluster Size: k, k + 1

Theorem

Suppose that number of Ritz values in a tight, well separated cluster is constant at steps k and k+1. Then:

$$\sum_{\textit{cluster}} (s_{k,\bullet})^2 < 3 \, \frac{\mathcal{O}(||A||)}{\beta_{k+1}^2} \, \frac{\delta}{\gamma - \frac{\delta}{2}}$$

Decreasing or Increasing Cluster Size

Theorem

a) Decreasing: Suppose c Ritz values at step k-1 and c-1 Ritz values at step k form cluster, then:

$$\sum_{\textit{cluster}} (s_{k,\bullet})^2 < \frac{4}{3} \sqrt{3} \frac{\delta^2}{\left(\gamma - \frac{\delta}{2}\right)^2}.$$

b) Increasing: Let c Ritz values at step k and c+1 Ritz values at step k+1 form cluster, then:

$$\sum_{\textit{cluster}} (s_{k, \bullet})^2 < \frac{4}{3} \sqrt{3} \, \frac{\mathcal{O}(||A||)}{\beta_{k+1}^2} \, \frac{\delta^2}{\left(\gamma - \frac{\delta}{2}\right)^2}.$$

Example 1, continued

Stabilized Cluster

Corollary

For a tight well separated cluster with diameter δ and spectral gap γ we have

$$\delta_{k, \min} \leq \mathcal{O}(||A||) \left\{ \begin{array}{ll} \textit{no estimate} &, \quad c_k = c_{k-1} + 1 \\ \frac{1}{\sqrt{c_k}} & \sqrt{\frac{\delta}{\gamma - \frac{\delta}{2}}} &, \quad c_k = c_{k-1} \\ \frac{1}{\sqrt{c_k}} & \frac{\delta}{\gamma - \frac{\delta}{2}} &, \quad c_k = c_{k-1} - 1 \end{array} \right.$$

or

$$\delta_{k, \min} \leq \mathcal{O}(||A||) \left\{ \begin{array}{ll} \textit{no estimate} &, \quad c_k = c_{k+1} + 1 \\ \frac{1}{\sqrt{c_k}} & \sqrt{\frac{\delta}{\gamma - \frac{\delta}{2}}} &, \quad c_k = c_{k+1} \\ \frac{1}{\sqrt{c_k}} & \frac{\delta}{\gamma - \frac{\delta}{2}} &, \quad c_k = c_{k+1} - 1 \end{array} \right.$$

What we have seen ...

- Tight, well separated cluster must approximate an eigenvalue of A.
- At least one Ritz value will always remain close to an eigenvalue (persistence theorem).
- Any tight well separated cluster stabilized.
- in most cases: $\delta_{k,\bullet}$ small for all Ritz values in a tight, well separated cluster; only exception is an alternating number of Ritz values in the cluster.
- Intermediate cluster can comprise at most one Ritz value, see also (Knizhnerman, 1995).

... and the main ingredients of the proofs:

- Idea to express / estimate anything in terms of Ritz values taken from (Strakoš, Greenbaum (1992))
- Residue Theorem
- Interlacing of Ritz values (not on these slides, but needed for the proofs).