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Inspiration and motivation

Erich Bohl (1936–2016) and Ivo Marek (1933–2017)

1 Draw attention to a special class of nonlinear mathematical models
with conservation properties.

2 Explanation of the formulation
“How nonlinear systems become quasi-linear”.

3 How the M-matrix (negativ, singular) appears in ODEs.

4 Show the benefits of using quasi-linear formulation.

5 Bohl and Marek used the quasi-linear formulation in their papers for
theoretical purposes (existence, uniqueness of the solution, ...).

[Bohl, Marek, 2005]
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Nonlinear formulation

In the real world, there is a substantial class of special biological and
chemical processes that are described by nonlinear ordinary differential
equations. The most general form:

x′(t , p) = L(p)x(t , p) + n(t , x(t , p), p) + c(t , p)

where

derivation is according to time

matrix L(p) ∈ Rnx×nx represents a linear part

vector n(t , x(t , p), p) ∈ Rnx represents a nonlinear part

vector c(t , p) ∈ Rnx represents a constant part

vector x(t , p) ∈ Rnx are state variables (concentrations)

t is time, t ∈ [0,T ]

p ∈ Rnp represents the set of parameters occurring in the system

in addition, we can have a set of (experimental) data d ∈ Rnd

representing the values of (usually one) state variable
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Model parameters

There are two classes of model parameters p ∈ Rnp :

Known – their values can be obtained from the literature or from
direct experimental measurements.

Unknown – their values must be obtained by estimation and
subsequent fitting using experimental data d ∈ Rnd .

Parameter estimation is an integral part of the modelling process itself.

Fitting is an optimization problem (usually the sum of squares
minimization) with simple bounds:

the desired parameters should be positive and

should lie within a physically meaningful interval.

The model must be called repeatedly during the parameter estimation
process! – an example why to use a quasi-linear formulation
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Quasi-linear formulation

Many processes are special in that they can be described (reformulated)
by linear evolutions

x(k )′(t , p) = L (k )(p) x(k )(t , p), k = 1, . . . , r ,

where x(k )(t , p) ∈ Rnk are sets (subvectors) of partially overlapping state
variables x(t , p) and the extended vector

x̃(t , p) =
[

x(1)(t , p)T , . . . , x(r)(t , p)T
]T

contains all state variables x(t , p) (some components multiple times).

Matrices L (k )(p) are negative singular M-matrices, whose elements do
not depend on x(k )(t , p), but may depend on other variables occurring in
the system. Thus the matrices L (k )(p) are in fact quasi-linear.

Through this dependence the whole system is nonlinear and the matrix
of the whole system is a block diagonal negative singular M-matrix:

x̃′(t , p) = L̃(x̃(t , p), p) x̃(t , p),

where L̃(x̃(t , p), p) = diag
{

L (1)(p), . . . , L (r)(p)
}

.
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Conservation property

The theory of these subsystems (for each k ) is well developed. In
particular, the conservation property holds for all of them.

Conservation property

Models have the property that the amount of different chemicals changes
over time, but the total amount remains constant. Thus, if x(k )(t , p) ∈ Rnk ,
then

nk
∑

i=1

x(k )
i (t , p) = const . ∀t ∈ [0,T ], k = 1, . . . , r .

Negative singular M-matrix

Matrix A = (aij) ∈ R
n×n is a negative singular M-matrix, if

aij ≥ 0, i, j = 1, . . . , n, i , j; aii = −
n
∑

k=1,k,i

aki , i = 1, . . . , n.

[Fiedler, 2013].
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Advantages of the quasi-linear formulation

1 The quasi-linear form is introduced to facilitate proofs of the
existence, uniqueness and stability of the respective systems of
ODEs.

2 The fact that submatrices are negative M-matrices leads to memory
and/or computational time savings.

3 It is possible to formulate an algorithm that is less complicated and
computationally less demanding than the algorithm for general
nonlinear ODEs.

4 When solving a system of ODEs with nonlinear terms, e.g. by the
Euler method, we must additionally consider the Newton method as
an extra inner iteration cycle.

5 In cases where it is not possible to directly obtain a quasi-linear
formulation, it may be possible to introduce dummy state variables
to artificially create such a situation.
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Model

It is the simplest case of enzyme kinetics, applied to enzyme-catalysed
reactions of one substrate and one product. The model describes the
conversion of the substrate S into the product P (e.g. a metabolite) by the
enzyme E.

Biochemical process Chemical notation Parameters
Substrate dosing (external input) ∅ → Sext
Substrate enters the cell, e.g. by permeation Sext ⇋ Sint kup , kup

reversible reaction
Enzyme E associates (binds) to substrate S Sint + E ⇋ C kass , kdiss

and forms the complex C reversible reaction
Complex C falls apart in product P and E C → P + E kcat

Denote the state variables for substance concentrations as

x(t) = [x1(t), x2(t), x3(t), x4(t), x5(t)]
T

= [Sext(t), Sint(t), E(t), C(t), P(t)]T ,

for more details see [Papáček et al., 2023].
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Corresponding ODE – full system

Corresponding nonlinear (full) system of ODE has the form

x′1(t) = −kup x1(t) + kup x2(t)

x′2(t) = kup x1(t) − kup x2(t) + kdiss x4(t) − kass x2(t) x3(t)

x′3(t) = (kdiss + kcat) x4(t) − kass x2(t) x3(t)

x′4(t) = −(kdiss + kcat) x4(t) + kass x2(t) x3(t)

x′5(t) = kcat x4(t)

or
x′(t) = Lx(t) + n(t , x(t)), (1)

where

L =







































−kup kup 0 0 0
kup −kup 0 kdiss 0
0 0 0 kdiss + kcat 0
0 0 0 −kdiss − kcat 0
0 0 0 kcat 0







































, n(t , x(t)) =







































0
−kass x2(t) x3(t)
−kass x2(t) x3(t)
kass x2(t) x3(t)

0







































with initial conditions

x(0) = [S0, 0, E0, 0, 0]T .
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Conservation properties

The enzyme-substrate transport network has two subsets of substances
whose total concentration remains constant:

x′3(t) + x′4(t) = 0, (2)

x′1(t) + x′2(t) + x′4(t) + x′5(t) = 0. (3)

Hence the conservation properties are:

x3(t) + x4(t) = E0, (4)

x1(t) + x2(t) + x4(t) + x5(t) = S0. (5)
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Simplified formulation

Due to (4)-(5), system (1) can be simplified. Since

x3(t) = E0 − x4(t),

the variable x3(t) can be replaced in all equations and the corresponding
equation for x′3(t) can be omitted.

In addition, only three equations can be considered because the last
variable x5(t) can be computed as

x5(t) = S0 − x1(t) − x2(t) − x4(t).
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Corresponding ODE – simplified system

The full system (1) can be equivalently reformulated using only three
variables x̄(t) = [x1(t), x2(t), x4(t)]

T as

x′1(t) = −kup x1(t) + kup x2(t)

x′2(t) = kup x1(t) − (kup + E0 kass) x2(t) + kdiss x4(t) − kass x2(t) x4(t)

x′4(t) = E0 kass x2(t) − (kdiss + kcat) x4(t) − kass x2(t) x4(t)

or
x̄′(t) = L̄ x̄(t) + n̄(t , x̄(t)), (6)

where

L̄ =



















−kup kup 0
kup −(kup + E0 kass) kdiss
0 E0 kass −(kdiss + kcat)



















, n̄(t , x̄(t)) =



















0
kass x2(t) x4(t)
−kass x2(t) x4(t)



















with initial conditions
x̄(0) = [S0, 0, 0]T .
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Two subnetworks

The variables involved in conservation properties (4)-(5) define two
conservative subnetworks and two sets of partially overlapping state
variables (i.e., r = 2)

x(1)(t) = [x3(t), x4(t)]
T
,

x(2)(t) = [x1(t), x2(t), x4(t), x5(t)]
T
,

We can formulate a quasi-linear system for the extended state vector

x̃(t) =
[

x(1)(t)T
, x(2)(t)T

]T

= [x3(t), x4(t), x1(t), x2(t), x4(t), x5(t)]
T
.

The overlapping state variable is x4(t) = x̃2(t) = x̃5(t):

For x4(t) we can take x4(t) = x̃2(t) or x4(t) = x̃5(t) or average.

We will also be interested in the difference between x̃2(t) and x̃5(t),
expecting that

x̃2(t) � x̃5(t) ∀t .
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Corresponding ODE – quasi-linear formulation
The quasi-linear formulation has the form

x ′3(t) = −kass x2(t) x3(t) + (kdiss + kcat) x4(t)

x ′4(t) = kass x2(t) x3(t) − (kdiss + kcat) x4(t)

x ′1(t) = −kup x1(t) + kup x2(t)

x ′2(t) = kup x1(t) − (kup + kass x3(t)) x2(t) + kdiss x4(t)

x ′4(t) = kass x3(t) x2(t) − (kdiss + kcat) x4(t)

x ′5(t) = kcat x4(t)

or
x̃′(t) = L̃ x̃(t), (7)

where

L̃ =

















































−kass x2(t) kdiss + kcat 0 0 0 0
kass x2(t) −kdiss − kcat 0 0 0 0

0 0 −kup kup 0 0
0 0 kup −kup − kass x3(t) kdiss 0
0 0 0 kass x3(t) −kdiss − kcat 0
0 0 0 0 kcat 0

















































with initial conditions

x̃(0) = [E0, 0, S0, 0, 0, 0]T .
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Three models and parameters

Numerical comparison of three models:

1 Full nonlinear system (1) – 5 equations . At least one inner Newton
iteration must be performed.

2 Simplified nonlinear system (6) – 3 equations for x1, x2, x4;
remaining variables x3, x5 are computed using conservation
properties (4)-(5). At least one inner Newton iteration must be
performed.

3 Quasi-linear system (7) – 6 equations . No inner Newton iteration is
performed.

Parameters (corresponding to a practical situation):

kup = 10−1
, kass = 106

, kdiss = 10−4
, kcat = 10−1

,

S0 = 5 · 10−7, E0 = 2 · 10−7.

The Euler method:

t ∈ [0,T ], T = 120, step τ = 10−3, M = T/τ.
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Comparison of models using the Euler method

Model NWT Time Speedup
(NS) Nonlinear system (1) 0 28.09 1.00
(SS) Simplified system (6) 0 18.96 0.68

(QS) Quasi-linear system (7) - 5.82 0.21

Model Choice of x4 ‖x̃2 − x̃5‖ Error
(SS) Simplified system (6) - - 6.27E-5

(QS) Quasi-linear system (7) x̃2 1.60E-14 6.49E-5
(QS) Quasi-linear system (7) x̃5 1.60E-14 3.42E-5
(QS) Quasi-linear system (7) (x̃2 + x̃5)/2 1.60E-14 4.39E-5

‖x̃2 − x̃5‖ =
1
M

√

√

√ M
∑

j=0

[x̃2(tj) − x̃5(tj)]
2
,

Error =
1
n

n
∑

i=1

√

√

√

1
M

M
∑

j=0













xNS
i (tj) − xmodel

i (tj)

xNS
i (tj)













2

, model ∈ {SS ,QS}
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Data for fitting

Now assume that kass and kcat are unknown parameters. Using their
exact values we compute the values x5(tj) for some time instants tj which
will serve as data dj for fitting.
Note that x5(t) corresponds to a concentration that can be measured
experimentally in practice (product P).

j tj dj

1 5 0.106644E-07
2 10 0.465241E-07
3 15 0.942874E-07
4 20 0.144851E-06

There is usually very little experimental data available in practice, thus
here j = 4.
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Minimization

The goal:

Choose initial values k init
ass and k init

cat .

Set appropriate lower bounds k LB
ass and k LB

cat .

Find a solution k ∗ass and k ∗cat for which the computed values x5(tj) fit
the data dj as best as possible (the smallest deviation).

This leads to the minimization of the function

F(k) =
md
∑

j=1

[

x5(tj) − dj

dj

]2

→ min
k
,

where k = [kass , kcat ]
T ∈ R2 and md = 4.

Optimization software used: UFO [Lukšan et al., 2017];
Optimization methods used:

trust region method (TR)

variable metric method (VM)



24

Comparison of the methods

TR / Model NS (1) SS (6) QS (7)
k ∗ass 4.68E+5 4.68E+5 4.68E+5
k ∗cat 2.06E-1 2.06E-1 2.06E-1

F(k ∗) 1.69E-4 1.69E-4 1.69E-4
NIT 505 542 508
NFV 4 075 4 373 4 110
time 108.46 120.75 24.25

VM / Model NS (1) SS (6) QS (7)
k ∗ass 1.62E+5 1.62E+5 1.62E+5
k ∗cat 1.98E+6 1.98E+6 1.98E+6

F(k ∗) 2.61E-1 2.61E-1 2.61E-1
NIT 2 160 2 161 2 162
NFV 8 634 8 642 8 636
time 221.45 228.81 51.09
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Graphs
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10-7 Concentrations for exact k

x
1
 = S

ext

x
2
 = S

int

x
3
 = E

x
4
 = C

x
5
 = P

CP1
CP2

0 20 40 60 80 100 120
0

1

2

3

4

5

10-7 Product P = x
5
 for different k

kexact

kinit

k*(TR)

k*(VM)

data

Left: Concentrations x1(t), . . . , x5(t) for exact kass = 106 and kcat = 10−1;

CP1 = x3 + x4, CP2 = x1 + x2 + x4 + x5;

Right: Concentration of product x5(t) for different kass and kcat :
exact, initial for fitting, computed using TR and VM methods.
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Summary

To cope with nonlinearities arising in real processes, we have
described a special reformulation of the original nonlinear system
into an apparently linear but in fact quasi-linear system.

The solution of the original “large” nonlinear system is using a
quasi-linear formulation split into the solution of several “small”
linear systems.

Nonlinear formulation and quasi-linear formulation are
mathematically equivalent.

On a simple example which simulates a biological situation with a
given choice of parameters it is shown a significant speedup of
numerical computations without loosing accuracy.

If it is necessary to do parameter estimation through curve fitting,
the models must be called repeatedly in iteration process and the
computational speedup is yet more significant.

For more details see [Duintjer Tebbens et al., 2024].
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