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Not so necessary background / 7 Keywords

(Complex) biochemical reaction networks

(Special) class of mathematical models:
Dynamic systems with mass conservation

ODEs with time delay→ delayed ODEs (DDE)

Slow-fast decomposition

SPM (Singular Perturbation Method)

QSSA (quasi-steady-state approximation/assumption)

Enzyme-substrate reaction system→ Michaelis-Menten
kinetics (with the substrate transport)



Motivation for this study / 2 References

Model reduction techniques for complex biochemical
networks are wanted.

T.J. Snowden, P.H. van der Graaf, M.J. Tindall (2017)
Methods of Model Reduction for Large-Scale Biological
Systems: A Survey of Current Methods and Trends.
Bull Math Biol 79, pp. 1449-1486.

To test and eventually modify (enhance) the Delayed-QSSA
technique proposed by T. Vejchodský et al. (2014).

T. Vejchodský, R. Erban, P. K. Maini (2014)
Reduction of chemical systems by delayed quasi-steady
state assumptions.
arXiv:1406.4424
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Example – Governing equations (I)
Enzyme kinetics example – Reaction scheme, I.C., ODEs (next slide)

Transport & Reactions Rate constants
− − − − −− − − − − −− − − − − − − − − − − − − − −−

T1 (R1) : Xext ⇌ Xin k0

R2,3 : Xin + E ⇌ C k1(kassoc), k−1(kdis)
R4 : C → P + E k2

− − − − −− − − − − −− − − − − − − − − − − − − − −−

Initial conditions: x(t0) =
(

s0 0 e0 0 0
)T
.

Xint means a substrate in the inner compartment, E an enzyme, C a complex
(ES), P is a product; x ∈ R5

+ is the state vector of species concentrations.



Formulation of governing equations (II)
5 ODEs (Fick’s law & Law of mass action)

For the state vector

x(t) =
(

Xext Xin E C P
)T
≡
(

x1 x2 x3 x4 x5
)T

it holds

ẋ1(t) = −k0 [x1(t) − x2(t)]

ẋ2(t) = k0 [x1(t) − x2(t)] − k1 x2(t) x3(t) + k−1 x4(t)

ẋ3(t) = −k1 x2(t) x3(t) + k−1 x4(t) + k2 x4(t)

ẋ4(t) = k1 x2(t) x3(t) − (k−1 + k2) x4(t)

ẋ5(t) = k2 x4(t)

Initial value problem (IVP) in (usual) matrix notation

dx(t)
dt

= Ax(t) + b(t), x(t0) = x0, (1)

where A is the constant matrix representing the linear part of the system, and the
vector b(t) represents the nonlinear (bilinear) parts.



Figure 1: Time profiles of state variables x1 and x2
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Figure: IVP (1), x1(0) = s0 = 10, x3(0) = e0 = 1, k2 = 0.01, ki = 10.
The full black (always decreasing) line corresponds to the solution of fast
variable x1, and the red dashed (increasing until t ≈ 0.5) corresponds to
the solution of x2 for the non-reduced system (1). From ẋ1 = 0, the eq.
for the slow manifold (x1 − x2 = 0) is derived.
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Simplification & Order reduction
2 Different problem formulations

Simplification is possible due to (two) conservation
properties:

x3(t) + x4(t) = e0, x1(t) + x2(t) + x4(t) + x5(t) = s0.

Order reduction using QSSA for the species C (complex
ES), i.e., ẋ4 = 0 (x4 reaches (more or less fast) its equilibrium)

xqss
4 (t) =

e0 k1 x2(t)
k−1 + k2 + k1 x2(t)

. (2)

The following reduced ODEs for two variables x1(t), x2(t):

ẋ1(t) = −k0 (x1(t) − x2(t)),

ẋ2(t) = k0 (x1(t) − x2(t)) −
e0 k1 k2 x2(t)

k−1 + k2 + k1 x2(t)
.



Figure 2: Parametric plot in the space of states x2, x4
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Full black line: Solution of the non-reduced model.
Dashed red line: QSSA approximations (derived from ẋ4 = 0).



Figure 3: Michaelis-Menten kinetics: ν0 =
νlim[S]

KM+[S]

Reaction rate vs. Substrate concentration (similar to x4 vs. x2),
cf. subsection 5.2 Singular perturbation and speed expression in:

E. Bohl, I. Marek: Input-output systems in biology and
chemistry and a class of mathematical models describing
them. Appl. Math. 50 (2005), pp. 219–245.
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Quasi-steady-state approximation (QSSA)

Definition

D1: Assuming a timescale separation for the rates of species
evolution in a chemical network (1), let the state vector x(t) be
partitioned into the fast and slow parts, i.e.,

x(t) =
(

xF(t)T xS(t)T
)T
, where xF(t) is a vector composed

from nF fast variables and xS(t) is a vector composed from nS slow
variables. Let the ODE system have the form

ẋF(t) = f(xS(t)) − g(t)xF(t),
ẋS(t) = h(xF(t), xS(t)).

(3)

Then the reduced system via standard QSSA is

xF(t) =
f(xS(t))

g(t) ,

ẋS(t) = h(xF(t), xS(t)).
(4)
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Introducing the delay τ(t): Delayed-QSSA technique

Definition

D2: Let the state vector x(t) be partitioned into the fast and slow

parts, i.e., x(t) =
(

xF(t)T xS(t)T
)T

. Let the non-reduced ODE
system have the form

ẋF(t) = f(xS(t)) − g(t)xF(t),
ẋS(t) = h(xF(t), xS(t)).

(5)

Then its reduction via delayed QSSA is

xdqss
F (t) =

f(xS(t−τ))
g(t−τ) ,

ẋS(t) = h(xdqss
F (t), xS(t)),

(6)

where τ(t) = 1
g(t) (time variable delay proposed in Vejchodský et

al. (2014) to make the QSSA more precise . . . ).



Figure 4: Parametric plot in the space of states x1, x2
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Motivation example, IC: x1(0) = 10, x2(0) = 0, i.e., it starts at RHS lower corner.
Full black line: non-reduced model (’exact solution’). Dashed/dotted lines:

Approximations via D-QSSA for 3 (constant) delays: 0.02, 0.05, 0.1 (from up to
down). After a short time, the slow manifold (x1 = x2) is reached.
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Looking for an optimal constant delay of D-QSSA
technique

Theorem

Consider ordinary differential equation ẋ(t) = f(t) − g(t)x(t) with
g(t) > 0 and its D-QSSA approximation xdqss(t) = f(t−τ)

g(t−τ) with a
delay τ(t). Then there exists an optimal constant τ∗ giving the best
possible approximation xdqss(t) = f(t−τ∗)

g(t−τ∗) of the exact solution.

For the proof, see

C. Matonoha, S. Papacek, V. Lynnyk:
On an optimal setting of constant delays for the D-QSSA
model reduction method applied to a class of chemical
reaction networks.
Applications of Mathematics, Vol. 67, No. 6, p. 831-857,
2022.
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Model parameters (more realistic than previous ...)

The values and descriptions of 4 model parameters and 2 initial
conditions are:

Parameter Value Description
k0 1.0E-01 permeability constant
k1 1.0E+06 association rate

(forward rate constant)
k−1 1.0E-04 dissociation rate

(reverse rate constant)
k2 1.0E-01 association catalytic rate
s0 5.0E-07 initial substrate concentration
e0 2.0E-07 initial enzyme concentration

This choice of parameters represents the situation where cell
membrane transport and complex formation are near immediate,
whereas enzyme reactions are several orders of magnitude slower.

Further defined ODE systems are solved for t ∈ [0, 120], using the
backward Euler method with the time step ∆t = 10−3.



The models and fast variables

Three models are considered:

QSSA – quasi steady-state approximation

D-QSSA – delayed quasi steady-state approximation with the
time dependent delay τ(t) = 1/g(t)

OD-QSSA – delayed quasi stead-state approximation with the
optimal constant delay τ computed by minimization of the
error metric δ (see below)

Fast variables: x1 and x4 can be considered as fast variables.
Thus, for each model three possibilities are considered:

x1 is fast

x4 is fast

both x1, x4 are fast



Schematic description of studied models end error metric

model description
non-reduced full system (1)
QSSA1 x1 is fast variable
QSSA4 x4 is fast variable
QSSA14 both x1 & x4 are fast
D-QSSA1 x1 is fast variable, τ = 1/g(t)
D-QSSA4 x4 is fast variable, τ = 1/g(t)
D-QSSA14 both x1 & x4 are fast, τ = 1/g(t)
OD-QSSA1 x1 is fast variable, τ = const .
OD-QSSA4 x4 is fast variable, τ = const .
OD-QSSA14 both x1 & x4 are fast, τ = const .

For each of the five state variables, we use the error metric

δi =

√√√√
4
M

M∑
j=1

 xi(tj) − xA
i (tj)

xi(tj) + xA
i (tj)

2, δ = 1
n

n∑
i=1

δi . (7)



Parameter tQ (time shift for the error metric evaluation)

We introduce a parameter tQ to avoid e.g. the conflict between
different initial conditions.

For example, when x1 is fast, then xqss
1 (t) = x2(t) which cannot

hold for t = 0 since

0 < s0 = x1(0) , x2(0) = 0.

Then, the QSSA, D-QSSA and OD-QSSA will be considered only
for t > tQ .



Computed and used optimal values tQ and delays τ

Model tQ delay τ
QSSA1 used optimal -
QSSA4 - -
QSSA14 used optimal -
D-QSSA1 used optimal 1/k0 = 10
D-QSSA4 - 1/(k−1 + k2 + k1x1(t))
D-QSSA14 used optimal τ1 = 1/k0 = 10,

τ4(t) = 1/(k−1 + k2 + k1x1(t))
OD-QSSA1 10.770 12.753
OD-QSSA4 - 4.897
OD-QSSA14 12.541 τ1 = 12.417, τ4 = 11.426

These values compute time profiles of concentrations
x1(t), . . . , x5(t).



Comparison of approximate solutions xA(t) with a
solution of the original non-reduced model

Computed total errors δ for each model, computational times
(1000x), and the speedup as the ratio of the individual model to the
non-reduced model:

model total δ time speedup
non-reduced - 21.94 1.00
QSSA1 0.1041E+01 18.18 0.83
QSSA4 0.2736E+00 18.28 0.83
QSSA14 0.1152E+01 5.78 0.26
D-QSSA1 0.2960E+00 21.58 0.98
D-QSSA4 0.1896E+00 20.34 0.93
D-QSSA14 0.3237E+00 9.27 0.42
OD-QSSA1 0.1634E+00 21.58 0.98
OD-QSSA4 0.1952E+00 17.44 0.79
OD-QSSA14 0.1563E+00 6.03 0.28



Figure 5: Comparison of different models
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Figure 6: Comparison of D-QSSA vs. OD-QSSA models
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Summary - Future prospects

The modification of D-QSSA has been introduced, and the
existence of an optimal constant delay for a general
slow/fast dynamic system has been proven.

On a simple chemical reaction network (3 or 2 or 1 ODE) the
comparison of QSSA, delayed-QSSA, and OD-QSSA has
been performed (cf. Figs. 5–6).

While the accuracy of both methods is comparable, the issue
of an computational speedup w.r.t. both non-reduced and
D-QSSA systems due to the model order reduction is being
tested for an inverse problem of parameter estimation . . .

Simultaneously, we work on an application of the optimal
constant delay (OD-QSSA) technique for more general
systems of nonlinear ODEs arising in pharmacology
(Matonoha et al., in preparation).
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