Main Index Mathematical Analysis Infinite series and products Sequences
  Subject Index
comment on the page

Convergence of means

The following result due to Cauchy  [1]  , p. 59, started a series of important results in the convergence theory:

Theorem: If

x _ 1, x _ 2, x _ 3, ...(1)

is a sequence that converges to typeset structure, then also the sequence of arithmetic means

y _ n = (x _ 1 + x _ 2 + ... + x _ n)/n(2)

converges to 0.

The result can be easily extended [2] to the form:

Theorem: If typeset structure, then also

lim _ (n -> ∞) (x _ 1 + x _ 2 + ... + x _ n)/n = ξ .

More generally Stolz [3] proved

Theorem: If typeset structure and typeset structure is a sequence of positive real numbers such that  

Underoverscript[∑, k = 1, arg3] a _ k -> ∞ ,

then

lim _ (n -> ∞) (a _ 1 x _ 1 + a _ 2 x _ 2 + ... + a _ n x _ n)/(a _ 1 + a _ 2 + ... + a _ n) = ξ .

Finally Toeplitz [4]  proved the following generalization:

Theorem: Let typeset structure, and let the numbers typeset structure from the triangular scheme

a  11                                                                                          ...         :                          ···   :                          ·.(3)

satisfy the conditions

Then

a _ (n 1) x _ 1 + a _ (n 2) x _ 2 + ... + a _ (n n) x _ n -> 0       for    n -> ∞ .

Theorem:  Let the numbers typeset structure from the triangular scheme (3) satisfy the conditions

If typeset structure, then also

a _ (n 1) x _ 1 + a _ (n 2) x _ 2 + ... + a _ (n n) x _ n -> ξ       for    n -> ∞ .

Theorem:  Let the numbers typeset structure from the triangular scheme (3) satisfy the conditions

If typeset structure and  typeset structure,then

a _ (n 1) x _ 1 y _ n + a _ (n 2) x _ 2 y _ (n - 1) + ... + a _ (n n) x _ n y _ 1 -> ξ η      for    n -> ∞ .

For geometric means we have [5] :

Theorem: If typeset structure and typeset structure for all typeset structure, then for the sequence of geometric means we have

(x _ 1 x _ 2 ...x _ n)^(1/n) -> ξ .

References

[1]  Cauchy, A. L. (1821). Cours d'Analyse de l'École Royale Polytechnique: Première Partie: Analyse Algébrique . Paris: Chez Debure frères.

[2]  Jensen, J.L. W. V. (1884). Om en Sätning af Cauchy. (Danish). Tidskrift for Mathematik (3), II, 81-84.

[3]  Stolz, O. (1889). Ueber Verallgemeinerung eines Satzes von Cauchy. Math. Ann., 33, 237-245.

[4]  Toeplitz, O. (1913). Über allgemeine lineare Mittelbildungen. (Polish). Prace mat.-fiz., 22, 113-119.

[5]  Knopp, K. (1947). Theorie und Anwendung der unendlichen Reihen. 4. Aufl. (German). Berlin-Göttingen-Heidelberg : Springer-Verlag. .

Cite this web-page as:

Štefan Porubský: Convergence of means.

Page created  .