Main Index
Mathematical Analysis
Infinite series and products
Sequences
Subject Index
comment on the page
The following result due to Cauchy [1] , p. 59, started a series of important results in the convergence theory:
Theorem: If
(1) |
is a sequence that converges to , then also the sequence of arithmetic means
(2) |
converges to 0.
The result can be easily extended [2] to the form:
Theorem: If , then also
More generally Stolz [3] proved
Theorem: If and is a sequence of positive real numbers such that
then
Finally Toeplitz [4] proved the following generalization:
Theorem: Let , and let the numbers from the triangular scheme
(3) |
satisfy the conditions
Then
Theorem: Let the numbers from the triangular scheme (3) satisfy the conditions
If , then also
Theorem: Let the numbers from the triangular scheme (3) satisfy the conditions
If and ,then
For geometric means we have [5] :
Theorem: If and for all , then for the sequence of geometric means we have
[1] | Cauchy, A. L. (1821). Cours d'Analyse de l'École Royale Polytechnique: Première Partie: Analyse Algébrique . Paris: Chez Debure frères. |
[2] | Jensen, J.L. W. V. (1884). Om en Sätning af Cauchy. (Danish). Tidskrift for Mathematik (3), II, 81-84. |
[3] | Stolz, O. (1889). Ueber Verallgemeinerung eines Satzes von Cauchy. Math. Ann., 33, 237-245. |
[4] | Toeplitz, O. (1913). Über allgemeine lineare Mittelbildungen. (Polish). Prace mat.-fiz., 22, 113-119. |
[5] | Knopp, K. (1947). Theorie und Anwendung der unendlichen Reihen. 4. Aufl. (German). Berlin-Göttingen-Heidelberg : Springer-Verlag. . |
Cite this web-page as:
Štefan Porubský: Convergence of means.