
Conceptual Modeling for XML: A Survey

Martin Necasky

Charles University, Faculty of Mathematics and Physics,

Malostranske nam. 25, 118 00 Praha 1, Czech Republic

martin.necasky@mff.cuni.cz

Abstract

Recently XML is the standard format used for the exchange of data

between information systems and is also frequently applied as a logical

database model. If we use XML as a logical database model we need

a conceptual model for the description of its semantics. However, XML

as a logical database model has some special characteristics which makes

existing conceptual models as E-R or UML unsuitable. In this paper, the

current approaches to the conceptual modeling of XML data are described

in an uniform style. A list of requirements for XML conceptual models

is presented and described approaches are compared on the base of the

requirements.

Keywords: conceptual modeling, XML, XML Schema

1 Introduction

Today XML is used for the exchange of data between information systems and
it is frequently used as a logical database model for storing data into databases.
If we use XML as a logical database model we need a conceptual model for
modeling XML data. There is the Entity-Relationship (E-R) [25] model for the
conceptual modeling of relational data. However, XML as a logical database
model has some special differences which makes the E-R model unsuitable for
the conceptual modeling of XML data. The main differences are the following:

• hierarchical structure

• irregular structure

• ordering on siblings

• mixed content

These features can not be properly modeled in the E-R model. There are
some approaches, for example Extended E-R [1], EReX [16], EER [18], XER
[23], ERX [22], and C-XML [9], trying to extend the E-R model to be suitable
for the conceptual modeling of XML data. It is possible to extend the E-R
model to model ordering, mixed content, and irregular structure of XML data.
However, there is a problem with the modeling of a hierarchical structure of
XML data.

1



1 INTRODUCTION 2

Suppose an E-R diagram with a relationship type Enroll between two entity
types Student and Course representing courses enrolled by students. Each stu-
dent may enroll zero or more courses and each course may be enrolled by zero
or more students. The diagram is shown in Figure 1.1(a).

Figure 1.1: Representation of E-R relationship type in a hierarchical structure

Figures 1.1(b), (c), and (d) show possible representations of the relationship
type in a hierarchical structure. Oriented arrows denote a nesting. There is not
the best nesting of the concepts. The nesting of courses into students illustrated
by Figure 1.1(b) is suitable when we need to see students and the courses they
enrolled. The nesting of students into courses illustrated by Figure 1.1(c) is
suitable when we need to see courses and the students enrolled in them.

The previous example shows another difference between the conceptual level
of XML and the E-R model. This difference is not in the structure but it is
in the usage of XML. It is shown that there may be many ways of how to use
entity types connected together by a relationship type. If we represent data in
the form of XML, each of these ways may require another hierarchical ordering
of the entities. However, this feature can not be effectively modeled by the E-R
model.

Another possibility of how to model XML data is to start from a hierarchical
structure. This approach may be called the hierarchical approach. There are
conceptual models based on the hierarchical approach, for example X-Entity
[15], ORA-SS [7], and Semantic Networks for XML [11]. The base of a schema
in the hierarchical approach is a tree, whose nodes are entity types and edges
are relationship types between the entity types. Figures 1.1(b), (c), and (d)
show examples of a basic hierarchical schemata.

The hierarchical approach is able to solve the mentioned problem with dif-
ferent views of the same data. For each of the views there is a separate tree.
However, a problem with the modeling of attributes of relationship types or with
the modeling of n-ary relationship types, effectivelly solved in the E-R model,
arises. Another problem arises when deciding which of hierarchical organiza-
tions of the same data is the best to select as the basic organization used for
the data storage.

The goal of this paper is to describe the existing conceptual models for XML
based on the E-R model and on the hierarchical approach. There are approaches
based on the UML (Unified Modeling Language) [21] and ORM (Object Role



2 REQUIREMENTS FOR CONCEPTUAL MODELS FOR XML 3

Modeling) [13] models, too. However, we do not describe them in this paper.
We propose a list of requirements for conceptual models for XML and compare
the described models against the requirements. The main contributions of this
paper are the unified descriptions of the conceptual models and the comparison
of the models against the list of requirements.

Section 2 introduces the list of requirements for conceptual models for XML.
Section 3 describes languages for describing XML schemata on the logical level.
Section 4 formally describes the well-known E-R model and conceptual models
for XML based on the well-known E-R model. Section 5 describes hierarchi-
cal conceptual models for XML. Section 6 compares the described conceptual
models against the requirements introduced in Section 2.

2 Requirements for Conceptual Models for XML

In this section, we summarize requirements for conceptual models for XML.
There are two groups of the requirements described. The first group consists
of general requirements covering general goals of the XML conceptual model-
ing. The second group consists of modeling constructs requirements covering
requirements on what kinds of modeling constructs should XML conceptual
models support.

2.1 General Requirements

Independence on XML schema languages The conceptual model should
be independent on a certain XML schema language (XML Schema [12],
DTD, . . .). The constraints given by a certain XML schema language
should not be propagated to the conceptual level. It should be a concep-
tual model for XML data, not a conceptual model for the structures of a
certain XML schema language.

Formal foundations The modeling constructs of the conceptual model should
be described formally, which allows to compare the model with other con-
ceptual models or to describe the operations on the model structures and
modeled data (for example, data transformation between two conceptual
schemata or their integration).

Graphical notation A user-friendly graphical notation for the formal model-
ing constructs should be offered by the conceptual model.

Logical level mapping There should be algorithms for mapping of the con-
ceptual modeling constructs to the XML logical level. The logical schema
should implement as many integrity constraints arised from the concep-
tual schema as possible. It may require the usage of more than one
XML schema language for the logical level description (XML Schema and
Schematron [14], for example). The hierarchical structure of the XML
data should be utilized as much as possible on the logical level.

Different structures on the logical level The XML logical level is hierar-
chical. However, there are different users with different requirements ac-
cessing the modeled data on the logical level. Hence, there can be different
hierarchical views of the same data. Each of the views suits to different



2 REQUIREMENTS FOR CONCEPTUAL MODELS FOR XML 4

requirements. It should be possible to model the different hierarchical
views on the conceptual level and translate them to the corresponding
views on the logical level. Moreover, there should be algorithms allowing
automatic translation of data from one logical view to another logical view
(using XSLT [5], for example).

Semantic web mapping With the increasing usage of the semantic web tech-
nologies the problem of publishing data in the form of RDF [19] triples
described by RDF Schema [19] or OWL [24] arises. One possible solution
is to have the data internally represented in the form of XML and trans-
late them to the RDF triples represented in the form of RDF/XML [19]
utilizing XSLT. The conceptual model for XML should consider this prob-
lem. It would be useful to have algorithms for the translation from the
conceptual level to the semantic web level where the structures from the
conceptual level are described using OWL. It would allow companies to
publish their internally represented data on the semantic web and, back-
wards, to obtain data from the semantic web and integrate them to the
internal representation automatically.

2.2 Modeling Constructs Requirements

Hierarchical structure Although it can be useful to keep a document de-
signer out of the hierarchical structure of XML data on the conceptual
level, the conceptual model should offer modeling constructs for model-
ing nesting explicitly. For example, aggregation relationship types can be
used. However, non-hierarchical relationship types (for example, associa-
tion relationship types or references) should be offered too. The conceptual
model should introduce contructs for modeling a recursive structure.

Cardinality for all participants The hierarchical structure of XML data re-
stricts the specification of cardinality constraints only to the nested partic-
ipants of the relationship type. However, it should be possible to specify
cardinality constraints for the all participants on the conceptual level.

N-ary relationship types For the same reason, the modeling of n-ary rela-
tionship types and their translation to the XML logical level is problem-
atic. However, it should be possible to model n-ary relationship types on
the conceptual level.

Attributes of relationship types For the same reason again, the modeling
of attributes of relationship types is problematic. Nor the nesting nor the
concept of referential integrity on the XML logical level do not allow to
directly express attributes of relationship types. However, the conceptual
model should allow to model attributes of relationship types.

Ordering XML is ordered and this property should be propagated to the con-
ceptual level. It should be possible to express the ordering on values of
attributes, the ordering on concepts connected with another concept (for
example, a book has a title page first, followed by an abstract, chapters,
appendixes and a bibliography in this order), and the ordering on a par-
ticipant of a relationship type (for example, the list of authors of a book
or the list of chapters of a book are ordered).



3 SCHEMA LANGUAGES FOR XML 5

Irregular and heterogeneous structure XML data may have irregular and
heterogeneous structure. The conceptual model should introduce con-
structs for modeling such a structure. For example, variant-valued con-
structors for constructing attributes or disjunctive relationship types should
be introduced.

Document-centric data The difference between the conceptual models for
XML and the other conceptual models is that the conceptual models for
XML must allow to model document-centric data. It means that not only
the real-world objects with attributes and relationships but also the certain
parts of documents are modeled on the conceptual level. Hence, there
should be corresponding modeling constructs offered by the conceptual
model. It means to allow attributes and relationships of a given concept to
be mixed with a text when represented in a document content. However,
the mixed content should not be restricted as it is restricted by XML
Schema. Some form of generalized mixed content should be introduced
allowing to specify where the text values may appear exactly (as it is
possible in Relax NG [6] schemata, for example).

Reuse of content The reuse of content should be supported by the conceptual
model. For example, the concept inheritance (modeled by IS-A relation-
ship types in E-R, for example) supports the reuse of content. However,
the conceptual model may be inspired in the XML Schema language and
may support named types and named groups of concepts on the conceptual
level.

Integration of conceptual schemata XML data are often used for the data
integration. However, it can not be done effectivelly and automatically
without the support on the conceptual level. A conceptual model for XML
should offer modeling constructs to support an integration of schemata on
the conceptual level and it should allow to merge different conceptual
schemata to an overall conceptual schema. Further, it would be useful
to generate XSLT transformation scripts to translate data corresponding
to one conceptual schema to data corresponding to another conceptual
schema.

3 Schema Languages for XML

In this section, we describe schema languages for the description of XML data.
Two groups of the schema languages are distinguished. The first group is called
tree grammar based XML schema languages and the second group is called tree
pattern based XML schema languages. The common XML schema languages as
DTD or XML Schema are members of the first group. A member of the second
group is Schematron, for example. The XSLT language can be comprehended
as a member of the second group too.

3.1 Tree Grammar Based XML Schema Languages

In this section, we describe the common XML schema languages based on the
tree grammars as restrictions of a more general tree grammar called XGrammar.



3 SCHEMA LANGUAGES FOR XML 6

This notation was proposed by Mani et al. in [18]. XGrammar formalizes the
most important features of existing XML schema languages as XML Schema,
DTD, and RELAX. From RELAX, the authors borrow the notion of tree and
hedge types: the values of a tree type are trees and the values of a hedge type
are hegdes - sequences of trees.

The authors use G to denote a schema in XGrammar and L(G) to denote the

language that G generates. The existence of a set N̂ of non-terminal symbols,
a set T̂ of terminal names and a set τ̂ of atomic data types (such as string,
integer, etc) including ID and IDREF (S) is assumed.

Definition 3.1 (XGrammar) :
A XGrammar is denoted by a 7-tuple G = (NT , NH , T, S, E, H, A) where:

• NT is a set of non-terminal symbols that are tree types, where NT ⊆ N̂ ,

• NH is a set of non-terminal symbols that are hedge types, where NH ⊆ N̂ ,
N = NT ∪ NH , NT ∩ NH = ∅,

• T is a set of terminal symbols, where T ⊆ T̂ ,

• S is a set of start symbols, where S ⊆ N ,

• E is a set of element production rules of the form X → a RE, where
X ∈ NT , a ∈ T , and RE is:

RE ::= ǫ | τ |n | (RE) | (RE|RE) | (RE + RE) | (RE, RE) | (RE)? |
(RE)∗ | (RE)+,

where τ ∈ τ̂ and n ∈ N . Note that RE is actually a hedge type, but it
might not have a name associated with it. In other words, we can have
anonymous hedge types not captured by NH .

• H is a set of hedge production rules of the form X → RE, where X ∈ NH ,
and RE is the same as the one for E,

• A is a set of attribute production rules of the form X → a RE, where
X ∈ N, a ∈ T , and RE is:

RE ::= ǫ |α | (RE) | (RE, RE),

where α is an attribute definition defined as:

α ::=






”@” a [”?”] ” ::” τ if τ 6∈ {IDREF, IDREFS}
”@” a [”?”] ” ::” τ ” ” RE1 if τ = IDREF

”@” a [”?”] ” ::” τ ” ” RE2 if τ = IDREFS

where τ ∈ τ̂ and

RE1 ::= nt | (RE1) |RE1 + RE1, where nt ∈ NT

RE2 ::= ǫ |n | (RE2) | (RE2|RE2) | (RE2 + RE2) | (RE2, RE2) | (RE2)
?|

(RE2)
∗ | (RE2)

+, where n ∈ N



3 SCHEMA LANGUAGES FOR XML 7

Assume the following example XML document. It describes an university
department. It has one or more study fields and one or more professors. Each
study field offers one or more courses. Each course consists of lessons and
practices. Each professor leads zero or more courses and garants zero or one
study fields.

01 <department name="dep1">

02 <studyfield name="sf1">

03 <course code="c1" name="Course 1">

04 <lesson time="WS05-c1-1"/>

05 <practice time="WS05-c1-2"/>

06 <practice time="WS05-c1-3"/>

07 </course>

08 <course code="c2" name="Course 2">

09 <lesson time="LS06-c2-1"/>

10 </course>

11 <course code="c3" name="Course 2">

12 <practice time="LS06-c3-1"/>

13 <practice time="LS06-c3-2"/>

14 <practice time="LS06-c3-3"/>

15 </course>

16 </studyfield>

17 <professor persnum="p1" office="o1">

18 <leads courses="c1 c3"/>

19 </professor>

20 <professor persnum="p2" office="o2" />

21 <professor persnum="p3" office="o2">

22 <leads courses="c2"/>

23 <garant studyfield="sf1"/>

24 </professor>

25 </department>

The XML document is described by the following XGrammar
G = (NT , ∅, T, S, E, ∅, A):

NT = {Department, StudyF ield, Course, Lesson, Practice, Professor, Leads,

Garant}
T = {department, studyfield, course, lesson, practice, professor, leads,

garant, name, code, time, office, since, persnum}
S = {Department}



3 SCHEMA LANGUAGES FOR XML 8

E = {Department → department(StudyF ield+, P rofessor+),

StudyF ield → studyfield(Course+),

Course → course(Lesson∗, P ractice∗),

Lesson → lesson(ǫ),

P ractice → practice(ǫ),

P rofessor → professor(Leads∗, Garant?),

Leads → leads(ǫ),

Garant → garant(ǫ)}
A = {Department → department(@name :: ID),

StudyF ield → studyfield(@name :: ID),

Course → course(@code :: ID, name),

Lesson → lesson(@time),

P ractice → practice(@time),

P rofessor → professor(@persnum :: ID, @office),

Leads → leads(@courses :: IDREFS  Course∗),

Garant → garant(@studyfield :: IDREF  StudyF ield, @since)}
In [17] Mani proposes a more general form of a tree grammar called regular

tree grammar and two restrictions of this grammar called local tree grammar
and single type tree grammar. These restrictions can be specialized for the
XGrammar. First, a competition of non-terminals that are tree types is defined.

Definition 3.2 (Competition of non-terminals) :
Let G be a schema in XGrammar and A and B be two different non-terminals
which are tree types. A and B are said to be competing with each other if:

• one element production rule has A in the left-hand side,

• another element production rule has B in the left-hand side, and

• these two production rules share the same terminal in the right-hand side.

Definition 3.3 (Local XGrammar) :
A local XGrammar schema is a XGrammar schema without competing non-
terminals.

Definition 3.4 (Single-type XGrammar) :
A single-type XGrammar schema is a XGrammar schema such that:

• for each element production rule, non-terminals in its content model do
not compete with each other, and

• start symbols do not compete with each other.

Mani in [17] describes common XML schema languages as regular tree gram-
mars. DTD is a local XGrammar. This is enforced by not distinguishing between
terminals and non-terminals. There is one and only one element production rule
E → e RE for each non-terminal symbol E ∈ NT in a DTD schema and for any
other element production rule F → f RE in the DTD schema e 6= f is valid.



3 SCHEMA LANGUAGES FOR XML 9

The expressiveness of XML Schema is mostly within single-type and that
was the intention of the specification. However, in some cases it fails to be in
single-type. Mani in [17] describes how the main features of XML Schema can
be described as single-type grammar. In the case of RELAX NG, Mani states
that any regular tree grammar can be expressed in RELAX NG.

3.2 Tree Pattern Based XML Schema Languages

Using a tree grammar based XML schema language a document engineer cre-
ates a whole grammar according to top-down production rules in a specified
formalism. He or she describes the required structure of documents and can
add some data types, key, and referential integrity constraints.

However, not all the required constraints which should be satisfied by a
document can be expressed in a tree grammar based language. For example,
there are functional dependencies and structural constraints which are hard or
impossible to express in a tree grammar based XML schema language. These
constraints can be a result of the conceptual modeling of XML data. However,
they can not be expressed in this kind of languages.

The following functional dependencies and structural constraints are prob-
lematic when describing XML data only by tree grammar based languages.

a) All the elements described by the path /projects/project/professor hav-
ing the same value of their subelement profid have the same value of their
subelements name and email. This constraint is a functional dependency.
There are subelements paper representing the papers written by the pro-
fessor during his work in a project. These sublements are not constrained
in this way, because a professor can work in more projects and in each of
the projects he wrotes different papers.

b) Each of the elements described by the path /projects/project must have
the subelement controlled if it has the subelement sponsored. This con-
straint is a structural constraint. If a project has a sponsor, it must be
controlled by someone. If a project does not have any sponsor, it does not
have to be controlled.

As the answer to this problems, another family of XML schema languages
called the tree pattern based XML schema languages was developed. These
languages are based on the idea of specifying rules for documents. They are
built as an XML envelope of the XSLT language which can be conceived as a
tree pattern based language too. The navigation through documents is realized
by the XPath language.

There are two representatives of the tree pattern based XML schema lan-
guages. The first is called SchemaPath introduced by Marinelli et al. in [20]
and the second is called Schematron specified in [14]. The both languages are
XML based languages.

SchemaPath extends the XML Schema language with just one new construct
and one new build-in type. Schematron is a new language which has nothing to
do with XML Schema. It can be easily transformed into an equivalent XSLT
document. Hence, an XSLT processor can be used as a validator for Schema-
tron schemata. The languages are not further described in this paper. As the
demonstration of the power of tree pattern based XML schema languages we



4 E-R BASED CONCEPTUAL MODELS FOR XML 10

introduce the descriptions of the functional dependency from a) and the struc-
tural constraint from b). The structural constraint can be easilly described
using Schematron as follows:

1 <rule context="/projects/project">

2 <assert test="not(sponsored) or

(sponsored and controlled)">

3 Structural constraint violated.

4 </assert>

5 </rule>

The functional dependency can not be described by one XPath predicate in
the test attribute. However, it can be described using XSLT.

1 <xsl:template match="/projects/project/professor">

2 <xsl:variable name="prof">

3 <xsl:value-of select=".">

4 </xsl:variable>

5 <xsl:for-each select=

"/projects/project/professor[profid=$prof/profid]">

6 <xsl:if test="not(name=$professor/name and

email=$professor/email)">

7 Functional dependency violated.

8 </xsl:if>

9 </xsl:for-each>

10 </xsl:template>

4 E-R Based Conceptual Models for XML

In this section, we describe several conceptual models for XML based on the
E-R model. First, we introduce the well-known E-R model. The rest of the
section describes current models for modeling XML data based on the E-R
model. These models are: Extended E-R [1], EReX [16], EER [18], XER [23],
ERX [22], and C-XML [9].

4.1 E-R Model

In this section, we formally describe the well-known E-R model. The formalism
used here was proposed by Thalheim in [25]. First, data schemata and tuple
functions are defined.

Each E-R schema has its data schema. The data schema contains a set
of simple attributes used for composing entity and relationship types, a set of
domains containing possible values of attributes and a domain function assigning
a domain to each attribute in the data schema. Data schemata are formally
defined by the following definition.

Definition 4.1 (Data schema) :
A data schema DD = (U, D, dom) is given by a finite set U of simple attributes
{A1, A2, . . .}, by a set D = {D1, D2, . . .} of domains, and by a domain function
dom : U → D which associates every attribute with its domain.



4 E-R BASED CONCEPTUAL MODELS FOR XML 11

Tuple functions are used as a formalization of instances of the entity types
modeled in an E-R schema. They are defined as follows.

Definition 4.2 (Tuple function) :
Let DD = (U, D, dom) be a data schema. Let DDD =

⋃
A∈U dom(A). A tuple

on X ⊆ U and on DD is a function

t : X → DDD

with t(A) ∈ dom(A) for A ∈ X , where t(A) is called the value of the attribute
A. If the set X is linear ordered, i.e. X = {A1, . . . , Am} with A1 ≤ · · · ≤ Am,
then the tuple t is denoted by

(t(A1), . . . , t(Am))

Entity types Entity types represent real world objects modeled in an E-R
schema. Each entity type has its extension containing entities. Each entity
represents one real world object. There are strong entity types and weak entity
types. The strong entity types are defined by the following definition.

Definition 4.3 (Strong entity type) :
A strong entity type has the form

E = (attr(E), id(E))

where E is the name of the entity type, attr(E) is a set of simple attributes
from U and id(E) is a non-empty subset of attr(E) called the key of the entity
type.

A strong entity type has a key. An entity of a strong entity type is identifiable
by a value of the key of the entity type. On the other hand, a weak entity type
depends on other strong/weak entity types. The key of a weak entity type is
composed of its own key and the keys of the entity types it depends on. We
define weak entity types depending on one entity type in the following definition.
It can be extended to the general case, where a weak entity type depends on
more than one entity type.

Definition 4.4 (Weak entity type) :
A weak entity type has the form

E = (E′, attr(E), id(E))weak ,

where E is the name of the entity type, attr(E) is a set of simple attributes from
U , id(E) is a non-empty subset of attr(E) called the partial key of the entity
type and E′ is the identification entity type which the entity type depends on.
The key of the weak entity type is id(E) ∪ id(E′).

A strong entity type is displayed by a box with the entity type name in
the middle of the box. A weak entity type is displayed by a box with an inner
diamond connected by a solid arrow to its identification entity type. Attributes
are displayed by circles connected by a solid line with their entity types. A



4 E-R BASED CONCEPTUAL MODELS FOR XML 12

name of an attribute is displayed at the attribute’s circle. A key attribute is
displayed by a filled circle.

Figure 4.1 illustrates strong and weak entity types. The problem is to model
persons and their addresses changing in time. However, the history of person’s
addresses must be stored. The problem can be solved by creating a strong
entity type named Person and a weak entity type named PAddress. The en-
tity type Person has attributes personnum and name where personnum is the
key of Person, i.e. attr(Person) = {personnum, name} and id(Person) =
{personnum}. The entity type PAddress has attributes from, to, street, and
city where from, to is the partial key of PAddress, i.e. attr(PAddress) =
{from, to, street, city} and id(PAddress) = {from, to}. The schema is for-
mally described as follows.

Person = ({persnum, name, }, {persnum}),
PAddress = (Person, {from, to, street, city}, {from, to})weak

Figure 4.1: E-R Diagram - Strong and Weak Entity Types

Next, the extensions of entity types are defined. An extension of an entity
type is a set containing concrete entities of the entity type. Entities are defined
as tuples on attributes of the entity type. An extension of a strong entity type
is defined as follows.

Definition 4.5 (Extension of a strong entity type) :
An extension of a strong entity type E = (attr(E), id(E)) is a set EC of tuples
{e1, . . . , en} on attr(E) satisfying the key condition:

(∀ e, e′ ∈ EC) (∃A ∈ id(E)) (e(A) 6= e′(A))

The definition of an extension of a weak entity type is similar to the definition
of an extension of a strong entity type. However, the existence condition must
be satisfied, i.e. there must be a corresponding entity of an entity type the weak
entity type depends on.

Definition 4.6 (Extension of a weak entity type) :
An extension of a weak entity type E = (E′, attr(E), id(E))weak is a set EC of
tuples {e1, . . . , en} on attr(E) ∪ id(E′) satisfying the key condition:

(∀ e, e′ ∈ EC) (∃A ∈ id(E) ∪ id(E′)) (e(A) 6= e′(A))

Moreover, the existence condition must be satisfied:

(∀ e ∈ EC) (∃ e′ ∈ E′C) (∀A ∈ id(E′)) (e(A) = e′(A))



4 E-R BASED CONCEPTUAL MODELS FOR XML 13

For the schema displayed in Figure 4.1 the following extensions are valid.

PersonC = {(’p1’, ’John Black’),

(’p2’, ’Jane White’)}
PAddressC =(’2000-07-25’, ’2004-01-10’, ’Broadway Av’, ’West Beach’, ’p1’),

(’2004-01-10’, ’2005-12-02’, ’Pazmaniteng’, ’Vienna’, ’p1’),

(’1995-04-13’, ’2005-12-02’, ’Hoge Wei’, ’Zaventem ’, ’p2’)}

Relationship types The next important modeling construct of the E-R model
is a relationship type construct. Relationship types represent associations be-
tween real world objects. A relationship type is constituted by a list of entity
types connected by the relationship type and a list of attributes of the rela-
tionship type. A role can be specified for each entity type in the relationship
type.

Definition 4.7 (Relationship type) :
A relationship type has the form

R = (compon(R), card(R), attr(R)),

where R is the name of the relationship type and attr(R) is a set of simple at-
tributes from U . The member compon(R) = (l1 : E1, . . . , ln : En) is a sequence
of entity types prefixed by labels from a set of strings L. A label may be empty.
Each entity type Ei is called a participant in R and each non-empty li is called
the role of the participant Ei in the relationship type R, 1 ≤ i ≤ n. Roles
of participants in R are pairwise distinct. The member card(R) = (c1, . . . , cn)
is a sequence of cardinality constraints. The member ci = (mini, maxi) is a
cardinality constraint for the participant Ei, 1 ≤ i ≤ n.

A relationship type is displayed by a diamond with solid arrows leading to
its participants. Each of the arrows is labeled by the role and the cardinality
constraint of the participant connected by the arrow. Each attribute of the
relationship type is connected with the diamond by a solid line. The name of
the relationship type is displayed in the middle of the diamond.

Figure 4.2 displays an E-R schema with strong entity types Course and
Student, and relationship types Enrolls and IsPrerequisite between them.
The relationship type Enrolls is a binary relationship type between entity types
Student and Course, and represents students enrolled in courses. It has the
attribute result representing the result of a given student enrolled in a given
curse. There is the cardinality constraint (0, ∗) for Student and the cardinality
constraint (1, ∗) for Course. The relationship type IsPrerequisite is a recursive
relationship type. In the case of a recursive relationship type, roles of the
participants should be used to distinguish them. For example, there is the
entity type Course in the role requires with the cardinality constraint (0, ∗)
and in the role required with the cardinality constraint (0, ∗). The schema is
formally described as follows.



4 E-R BASED CONCEPTUAL MODELS FOR XML 14

Figure 4.2: E-R Diagram - Relationship Types

Student =({snum}, {snum}),
Course =({code}, {code}),
Enrolls =((Student, Course), ((0, ∗), (1, ∗)), {result, semester}),

IsPrerequisite =((required : Course, requires : Course), ((0, ∗), (0, ∗)), ∅)
An extension of a relationship type is a subset of the cartesian product

defined on the extensions of the participants and domains of the attributes of
the relationship type.

Definition 4.8 (Extension of a relationship type) :
An extension of a relationship type R = ((E1, . . . , En), (c1, . . . , cn), {A1, . . . , Ak})
is the set

RC ⊆ EC
1 × . . . × EC

n × dom(A1) × . . . × dom(Ak)

The following condition must be satisfied for each 1 ≤ i ≤ n where ci =
(mini, maxi):

(∀ e ∈ EC
i ) (mini ≤ |{r ∈ RC : r(Ei) = e}| ≤ maxi)

The members of RC are called relationships of the relationship type R.

Let StudentC = {s1, s2, s3} and CourseC = {c1, c2, c3} be extensions of the
entity types Student and Course from the schema displayed in Figure 4.2. The
following extensions are valid:

EnrollsC = {(s1, c1, ’A’, ’AS05’),

(s1, c2, ’B’, ’AS05’),

(s2, c2, ’A’, ’SS06’),

(s2, c3, ’C’, ’SS06’)}
IsPrerequisiteC = {(c2, c1),

(c3, c2)}
An extension of a role of an entity type E participating in a relationship

type can be defined as a subset of the extension of the entity type E.

Definition 4.9 (Extension of a role) :
Let R be a relationship type with a participant l : E. An extension of the role
l of the entity type E in the relationship type R is the set R.lC of all e ∈ EC

such that
(∃ r ∈ R) (e = r(l : E))



4 E-R BASED CONCEPTUAL MODELS FOR XML 15

Assuming IsPrerequisiteC from the previous example, the extensions of the
roles requires and required of the entity type Course in the relationship type
IsPrerequisite are the following.

IsPrerequisite.requiresC = {c1, c2}
IsPrerequisite.requiredC = {c2, c3}

IS-A Relationship Types IS-A relationship types are a special kind of bi-
nary relationship types. They are used for modeling specialization and gener-
alization of entity types. IS-A relationship types are defined by the following
definition.

Definition 4.10 (IS-A relationship type) :
An IS-A relationship type has the form

(E1, E2)IS−A

where E1 = (attr(E1), id(E1)) and E2 = (attr(E2), id(E2)) are entity types.
The IS-A relationship type defines a subtype hierarchy, i.e.

attr(E1) ⊆ attr(E2)

and a subset hierarchy, i.e.
EC

2 ⊆ EC
1

The entity type E1 is called the general entity type and E2 is called the special
entity type of the IS-A relationship type.

A specialization of an entity type E1 is an entity type E2 having the at-
tributes and the key of E1, and some additional attributes. Moreover, it may
have an additional key. The subset hierarchy in the definition implies that each
entity e in E2 is an entity in E1 (the tuple e is restricted to the attributes of
E1).

An IS-A relationship type is displayed by an non-filled arrow going from
its special entity type to its general entity type. Let (E1, E2)IS−A be an IS-A
relationship type. The attributes from attr(E1) of the entity type E2 are not
displayed at the box of E2. They are assumed to be attributes of E2 implicitly.
Only the attributes from attr(E2) \ attr(E1) are displayed at the box of E2.

Figure 4.3 displays the specialization of the entity type Person to the entity
types Student and Professor designed via IS-A relationship types. The schema
is formally described as follows.

Person = ({persnum}, {persnum}),
Student = ({snum}, {snum}),

P rofessor = ({office(building, room)}, ∅)

(Person, Student)IS−A,

(Person, Professor)IS−A



4 E-R BASED CONCEPTUAL MODELS FOR XML 16

Figure 4.3: E-R Diagram - IS-A Relationship Types

Complex Attributes The concept of optional, composite or multivalued at-
tributes can be considered. This concept can be naturally transformed to XML
schema languages. The integral view of these kinds of attributes is given by
the following definition proposed by Thalheim in [25]. The author proposes the
constructors for creating tuple and set-valued complex attributes. The follow-
ing definition extends the notion of complex attributes with constructors for
creating bag, list, and variant-valued complex attributes.

Definition 4.11 (Complex attributes) :
Let DD = (U, D, dom) be a data schema and CA be a set of names different
from U . The set UC of complex attributes with the empty word λ is defined as
follows:

• λ ∈ UC

• U ⊆ UC

• If X1, . . . , Xn ∈ UC are distinct complex attributes and X ∈ CA then

X(X1, . . . , Xn) ∈ UC

is a tuple-valued complex attribute named X .

• If X ′ ∈ UC, X ∈ CA and m, n ∈ {∗} ∪ {0, 1, . . .} then

X{X ′}[m, n] ∈ UC

is a set-valued complex attribute named X .

• If X ′ ∈ UC, X ∈ CA and m, n ∈ {∗} ∪ {0, 1, . . .} then

X{|X ′|}[m, n] ∈ UC

is a bag-valued complex attribute named X .

• If X ′ ∈ UC, X ∈ CA and m, n ∈ {∗} ∪ {0, 1, . . .} then

X〈X ′〉[m, n] ∈ UC

is a list-valued complex attribute named X .

• If X1, . . . , Xn ∈ UC are distinct complex attributes then

X(X1| . . . |Xn) ∈ UC

is a variant-valued complex attribute named X .



4 E-R BASED CONCEPTUAL MODELS FOR XML 17

A complex attribute is displayed by a circle as in the case of simple attributes.
However, not only the name but the whole formal description of the attribute
is displayed at the circle.

The set, bag, list or variant-valued complex attribute can be constructed as
anonymous, i.e. a name X can be omited. For example, instead of the definition

name(titles〈title〉[0, ∗], f irst, family)

the definition
name(〈title〉[0, ∗], f irst, family)

can be used.
Most of the conceptual models for XML described in this paper propose

their own complex attributes which are a subset of complex attributes from
Definition 4.11. To ensure the consistency, we define complex attributes of each
of the described models in the same way as the extension of simple attributes
from Definition 4.1 to complex attributes from Definition 4.11.

The semantics of the constructors introduced in Definition 4.11 is given by
the following definition. The definition extends the function dom to the function
Dom defined on UC.

Definition 4.12 (Dom function) :
The dom : U → D function is extended to the Dom : UC → D function as
follows:

• Dom(λ) = ∅.

• ∀A ∈ U : Dom(A) = dom(A).

• For X(X1, . . . , Xn) ∈ UC, Dom(X) = Dom(X1) × . . . × Dom(Xn).

• For X{X ′}[m, n] ∈ UC, Dom(X) = Pn
m(Dom(X ′)) where Pn

m(M) =
{M ′ ⊆ M : m ≤ |M ′| ≤ n} .

• For X{|X ′|}[m, n] ∈ UC, Dom(X) = {(x1, . . . , xk) : m ≤ k ≤ n ∧ (∀ 1 ≤
i ≤ k)(xi ∈ Dom(X ′))} where (x1, . . . , xk) denotes an unordered list of
items (not necessarily distinct).

• For X〈X ′〉[m, n] ∈ UC, Dom(X) = {〈x1, . . . , xk〉 : m ≤ k ≤ n ∧ (∀ 1 ≤
i ≤ k)(xi ∈ Dom(X ′))} where 〈x1, . . . , xk〉 denotes an ordered list of items
(not necessarily distinct).

• For X(X1| . . . |Xn) ∈ UC, Dom(X) = Dom(X1) ∪ . . . ∪ Dom(Xn).

Figure 4.4 displays an example E-R schema. The schema represents pro-
fessors, students, and courses at the university. This real-world objects are
modeled by the following entity and relationship types.



4 E-R BASED CONCEPTUAL MODELS FOR XML 18

Person =({persnum, name(< title >, first, second),

address(zip, town, street(name, no))}, {persnum}),
Student =({snum}, {snum}), (Person, Student)IS−A,

P rofessor =({office(building, room)}, ∅), (Person, Professor)IS−A,

Thesis =({title, type, year}, {title}),
Department =({name, {phone}[1, ∗]}, {name}),
StudyF ield =({name}, {name}),

Course =({code, name}, {code}),
Lesson =(Course, {time(semester, day, start, end)}, {time}),

P ractice =(Course, {time(semester, day, start, end)}, {time}),

LeadsT =((Professor, Student, Thesis), ((0, ∗), (0, ∗), (1, 1)), ∅),
Garant =((Professor, StudyF ield), ((0, 1), (1, 1)), {since}),

In =((Professor, Department), ((1, 1), (1, ∗)), ∅),
Studies =((Student, StudyF ield), ((1, 1), (1, ∗)), ∅),

Ensures =((Department, StudyF ield), ((1, ∗), (1, 1)), ∅),
Enrolls =((Student, Course), ((0, ∗), (1, ∗)), {result, semester}),
LeadsC =((Professor, Course), ((0, ∗), (1, 1)), ∅),

T eachesL =((Professor, Lesson), ((0, ∗), (1, 1)), ∅),
T eachesP =((Professor, Practice), ((0, ∗), (1, 1)), ∅),

Offers =((StudyF ield, Course), ((1, ∗), (1, ∗)), ∅),
IsPrerequisite =((required : Course, requires : Course), ((0, ∗), (0, ∗)), ∅)



4 E-R BASED CONCEPTUAL MODELS FOR XML 19

Figure 4.4: E-R Diagram - University

The modeling constructs of the well-known E-R model and some of its ex-
tending constructs were described in this subsection. In the following subsec-
tions, we describe existing extensions of the E-R model for the conceptual mod-
eling of XML. We describe them following the formalism used for the description
of the E-R model. Hence, we can be compare them with the well-known E-R
model or compare them with each other.

4.2 Extended E-R Model (by Antonio Badia)

Extended E-R model proposed by Badia in [1] is a minimalistic extension to the
E-R model. The extension is based on the idea of integration of structured and
semistructured data where an overall conceptual schema is needed. Moreover,
the author proposes algorithms for the translation of E-R schemata to relational
schemata and to DTD schemata. Further, he studies the utilization of combina-
tion of relational schemata and DTD schemata for a data representation. The
author identifies a minimal set of extensions by a reverse-engineering process
from the DTD model to the extended E-R model and studies how the semantics
of the DTD model should be expressed in the extended E-R model.

The author proposes the following DTD based extensions to the E-R model.

• optional and required attributes,

• choice attributes

The author does not introduce any special kind of relationship types for
modeling hierarchical structure explicitly. Modeling of ordering and document-
centric data is not possible. On the other hand, it is possible to model irregular



4 E-R BASED CONCEPTUAL MODELS FOR XML 20

and heterogeneous data by the choice attributes and the category concept men-
tioned in the formal description of the model.

4.2.1 Formal Description

As it was stated, the author identifies a minimal set of extensions by a reverse-
engineering process from the DTD model. However, only a restricted form of the
DTD model is considered. Following the Definition 3.1 of XGrammar used for a
description of DTD schemata, the author considers only the element production
rules of the form X → a RE, where X ∈ NT , a ∈ T , and RE is:

RE ::= ǫ | τ |n | (RECH) | (RE, RE) |n? |n∗ |n+

RECH ::= n | (RECH |RECH)

where τ ∈ τ̂ and n ∈ N .
There are four possibilities of how the element B can be contained in the

element A. The author introduces the entity types AE and BE representing
the elements A and B, respectively on the conceptual level and introduces the
following relationship type between AE and BE with the cardinality constraint
(1, 1) for AE to represent the nesting of B in A:

• If there is no mark at the element B in the production rule for A a re-
lationship type between AE and BE with the cardinality (1, 1) for BE is
used.

• If there is ’?’ mark at the element B in the production rule for A a re-
lationship type between AE and BE with the cardinality (0, 1) for BE is
used.

• If there is ’∗’ mark at the element B in the production rule for A a re-
lationship type between AE and BE with the cardinality (0, ∗) for BE is
used.

• If there is ’+’ mark at the element B in the production rule for A a
relationship type between AE and BE with the cardinality (1, ∗) for BE

is used.

• If the element B is contained in the element A in the form B|C, the author
uses the transcription to (B?, C?). He states, that the category concept
can be used. The category is comprehended as an union of underlying
entity types, but it is not specified more formally.

Hence, all possible relationships between elements which may be defined
in the DTD model can be modeled by the modeling constructs of the E-R
model and by the category concept. Futher, the author proposes two additional
concepts.

The first concept is the concept of optional and required attributes. Every
attribute in an extended E-R model must be marked as required or optional. If
an attribute of an entity type or a relationship type is marked as optional, an
entity or a relationship may not have a value of the attribute. It is different
from the situation when the value of the attribute is empty.



4 E-R BASED CONCEPTUAL MODELS FOR XML 21

The second concept is the concept of choice attributes. A choice attribute
consists of two or more underlying attributes. For an entity type E a choice of
attributes a and b means that an entity e from the extension of E has a value
for the attribute a or a value for the attribute b. Further, the choice may be
marked as exclusive or inclusive. The exlusive mark means that the entity e
may have only a value of the attribute a or b but not the both. The inclusive
mark means that the entity e may have values of the both attributes together.

Definition 4.13 (Choice and optional attributes) :
Given a data schema DD = (U, D, dom) the set Uoc of simple, optional and
choice attributes is defined as follows:

• U ⊆ Uoc

• If X ∈ U then X? ∈ Uoc is an optional attribute.

• If X1, . . . , Xn ∈ U then (X1| . . . |Xn)e ∈ Uoc is an exlusive choice attribute.

• If X1, . . . , Xn ∈ U then (X1| . . . |Xn)i ∈ Uoc is an inclusive choice attribute.

In a graphical representation, an optional attribute is connected to the cor-
responding entity type by a solid line with two dashes crossing it. Required
attributes are connected as they are now. A choice of attributes is expressed
by marking the choice with an upward triangle, with the choices in the opposed
side of the triangle. The author does not distinguish between exclusive and
inclusive choice attributes in the graphical representation. However, it can be
distinguished by displaying the symbol ’I’ for inclusive and ’E’ for exclusive
choice attributes in the middle of the triangle, for example.

The semantics of the introduced kinds of attributes is given by the following
definition. The definition extends the function dom to the function Domoc

defined on Uoc.

Definition 4.14 (Domain function extension to Uoc) :
The dom : U → D function is extended to the Domoc : Uoc → D as follows:

• ∀A ∈ U : Domoc(A) = dom(A)

• For X? ∈ Uoc, Domoc(X
?) = {∅} ∪ ⋃

x∈Domoc(X){{x}}.

• For (X1| . . . |Xn)e ∈ Uoc, Domoc((X1| . . . |Xn)e) =
⋃

1≤i≤n(Domoc(Xi))

• For (X1| . . . |Xn)i ∈ Uoc, Domoc((X1| . . . |Xn)i) = Domoc(X
?
1) × . . . ×

Domoc(X
?
n)

An optional attribute X? is a set-valued complex attribute {X}[0, 1]. An
exclusive choice attribute (X1| . . . |Xn)e is a variant-valued complex attribute
(X1| . . . |Xn). An inclucive choice attribute (X1| . . . |Xn)i is a tuple-valued
complex attribute ({X1}[0, 1], . . . , {Xm}[0, 1]).

Figure 4.5 displays the entity type Student having the optional attribute
phone? and the choice attribute (hostel(name, room)|home(street, city))e, i.e.
each student has a hostel address or a home address but not both. On the left
side, there are the attributes displayed in the author’s style. On the right side,
there are the attributes displayed in the formal style.



4 E-R BASED CONCEPTUAL MODELS FOR XML 22

Figure 4.5: Extended E-R Diagram - Choice and Optional Attributes

4.2.2 Translation to XML Schema Languages

The author proposes algorithms for the translation from the extended E-R model
to the relational model and the DTD model. He describes the algorithms in
detail in [1].

The algorithm for the translation to the relational model uses the common
techniques for the represention of optional attributes and choices in the rela-
tional model.

The main idea of the algorithm for the translation to the DTD model is the
following. One of the entity types from a schema is selected and translated to
the root element. All the other entity types are translated to child elements
of the root element. This approach leads to flat XML documents with many
references across the elements in them.

The author solves the problem whether to represent an entity type in the
relational way or in the semistructured way. He utilizes the fact that today
databases are able to store relational and semistructured data together. Hence,
the combination of the two approaches can be utilized. Each entity type is
separated in two parts: the relational part will take all the required attributes,
and the semistructured part will take all the optional and choice attributes.

4.3 EReX

EReX is an extension to the E-R model proposed by Mani in [16], [17]. The
author introduces the following extensions to the E-R model:

• structural specification called categories,

• constraints specifications called coverage constraints and order constraints

The concept of a special kind of relationship types for modeling hierarchical
structure explicitly is not introduced by the author. Modeling of document-
centric data is not possible too. On the other hand, modeling of ordering and
irregular and heterogeneous data is possible with utilizing the extensions. How-
ever, only the ordering on the participant of the relationship type is possible.

4.3.1 Formal Description

The extensions are formally described by the author in his paper. However, we
modified the formalism for the purposes of this paper.

First, the category relationship types are defined. The category relation-
ship types are a special kind of binary relationship types similar to the IS-A
relationship types.



4 E-R BASED CONCEPTUAL MODELS FOR XML 23

Definition 4.15 (Category relationship type) :
A category relationship type has the form

(E1, E2)cat

where E1 = (attr(E1), id(E1)) and E2 = (attr(E2), id(E2)) are entity types.
The category relationship type defines a subtype hierarchy, i.e.

attr(E1) ⊆ attr(E2)

and a subset hierarchy, i.e.
EC

2 ⊆ EC
1

The entity type E1 is called the categorized entity type and E2 is called the cat-
egory entity type or category of the category relationship type. The categorized
entity type may have an empty key. The categorizied entity type with an empty
key must be categorized. The categorization must be constrained by total and
exclusive coverage constraints.

A category relationship type is displayed by an arrow with the label CAT
going from its category entity type to its categorizied entity type.

Total and exclusive coverage constraints can be specified for categories and
for roles. A total coverage constraint specifies that the union of extensions
of all included categories or roles must be the same as an extension of the
categorizied entity type or the entity type with the included roles. The total
coverage constraints are defined by the following two definitions.

Definition 4.16 (Total coverage constraint for categories) :
Let E be an entity type and E1, . . . , En be category entity types of E. The total
coverage constraint for E1, . . . , En, denoted as

E1 + · · · + En = E

specifies the following condition on EC , EC
1 , . . . , EC

n :

EC
1 ∪ . . . ∪ EC

n = EC

Definition 4.17 (Total coverage constraint for roles) :
Let E be an entity type and R1, . . . , Rn be relationship types with a participant
E. Let E participates in Rk in a role lk, 1 ≤ k ≤ n. The total coverage constraint
for the roles l1, . . . , ln of E in R1, . . . , Rn, denoted as

R1.l1 + · · · + Rn.ln = E

specifies the following condition on EC , R1.l
C
1 , . . . , Rn.lCn :

R1.l
C
1 ∪ . . . ∪ Rn.lCn = EC

An exclusive coverage constraint specifies the disjunction between the ex-
tensions of the included categories or roles.

Definition 4.18 (Exclusive coverage constraint for categories) :
Let E be an entity type and E1, . . . , En be category entity types of E. The
exclusive coverage constraint for E1, . . . , En, denoted as

E1| · · · |En



4 E-R BASED CONCEPTUAL MODELS FOR XML 24

specifies the following condition on EC
1 , . . . , EC

n :

(∀ i, j, 1 ≤ i, j ≤ n, i 6= j) (EC
i ∩ EC

j = ∅)

Definition 4.19 (Exclusive coverage constraint for roles) :
Let E be an entity type and R1, . . . Rn be relationship types with a participant
E. Let E participates in Rk in a role lk, 1 ≤ k ≤ n. The exclusive coverage
constraint for the roles l1, . . . ln of E in R1, . . . , Rn, denoted as

R1.l1| · · · |Rn.ln

specifies the following condition on R1.l
C
1 , . . . , Rn.lCn :

(∀ i, j, 1 ≤ i, j ≤ n, i 6= j) (Ri.l
C
i ∩ Rj .l

C
j = ∅)

The coverage constraints are not displayed in a graphical representation of
a schema. They must be defined as additional integrity constraints.

The order constraints are specified for participants of a relationship type.
They are defined as follows.

Definition 4.20 (Order constraint) :
Let R be a relationship type with participants E1, . . . , En. An ordering on a
participant Ei, 1 ≤ i ≤ n, denoted by parenthesis < and > around Ei in the
definition of R, specifies that for the given tuple e ∈ EC

i the set of relationships

R′C = {r ∈ RC : (r(Ei) = e)}
is linear ordered.

An ordering on a participant E of a relationship type R is displayed by a
thick solid line between R and E.

Figure 4.6 displays the categorized entity type Person and its categories
Student and Professor. The key of Person is empty. Further, there are
the entity types Book and Paper connected with Professor by the relation-
ship types AuthorOfB and AuthorOfP , respectively. Attributes of Book and
Paper are not displayed. There is an ordering specified on the entity types Book
and Paper in the relationship types AuthorOfB and AuthorOfP , respectively.
It means, that the authors of a given paper or a given book are ordered.

The total coverage constraint Student + Professor = Person specifies,
that each person is a student or a professor and there are no other persons.
The exclusive coverage constraint Student|Professor specifies that students
and professors are disjoint. The total coverage constraint AuthorOfB.pbook +
AuthorOfP.ppaper = Professor specifies that each professor is an author of
some paper or book. If pbook : AuthorOfB|ppaper : AuthorOfP constraint
would be specified it would mean that a professor writes only books or only
papers but not both.

4.3.2 Translation to XML Schema Languages

The author introduces an algorithm for the translation of EReX schemata to
XGrammar language. The algorithm is formally described in [16]. In [17] more
possibilities of translation are described. An advantage of the algorithm is that
it maximizes the utilization of nesting in XML data and makes use of union and
recursive types.



4 E-R BASED CONCEPTUAL MODELS FOR XML 25

Figure 4.6: EReX Diagram

4.4 EER

EER is another extension to the E-R model proposed by Mani in [18]. The
author extends the basic features of the E-R model with the following additional
features:

• order in binary relationship types,

• element-subelement relationship types

Only binary relationship types are considered. Order in binary relation-
ship types is proposed in the similar way as for the EReX model in [16] (but
restricted only to the binary relationship types). The element-sublelement re-
lationship types is a kind of relationship types with the label ”has”. One of
the entity types has the cardinality (1,1) in each element-subelement relation-
ship type. Attributes of the element-subelement relationship types are not con-
sidered. The concepts for modeling irregular and heterogeneous data and for
modeling document-centric data is not considered.

The author proposes an algorithm for the translation of EER schemata to
the XGrammar representation. The similar algorithm as in [16] is used, where
the element-subelement relationship types are directly represented with nesting
in XML.

4.5 XER

XER is an extension to the E-R model proposed by Sengupta et al. in [23]. The
authors start from the properties of the XML Schema language and propose the
following extensions to the E-R model:

• ordered, unordered, and mixed entity types

• multivalued attributes

The XER model is bounded by XML Schema. It is possible to model docu-
ment centric data by the mixed entity types and it is possible to model ordering
on the content of an entity type. However, only the binary relationship types
without attributes and with the cardinality type 1 : N can be used. The authors
do not introduce concepts for modeling irregular and heterogeneous structure.

The authors propose the extending constructs only in the form of examples
and short descriptions. There is no formal background in their paper. However,
it is possible to formally define the constructs following the formalism used in
this paper.



4 E-R BASED CONCEPTUAL MODELS FOR XML 26

4.5.1 Formal Description

Attributes of entity types in XER can be defined as multivalued and a number
of values of a given attribute can be restricted by a cardinality constraint.

Definition 4.21 (Multivalued attributes) :
Given a data schema DD = (U, D, dom) the set Uxer of simple and multivalued
attributes with a cadinality constraints is defined as follows:

• U ⊆ Uxer

• If X ∈ U and m, n ∈ {∗} ∪ {0, 1, . . .} then

{X}[m, n] ∈ Uxer

is a multivalued attribute with a cardinality constraint named X .

The semantics of the introduced kinds of attributes is given by the following
definition. The definition extends the function dom to the function Domxer

defined on Uxer.

Definition 4.22 (Domain function extension to Uxer) :
The dom : U → D function is extended to the Domxer : Uxer → D as follows:

• ∀A ∈ U : Domxer(A) = dom(A)

• For {X}[m, n] ∈ Uxer, Domxer({X}[m, n]) = Pn
m(dom(X)) where Pn

m(M) =
{M ′ ⊆ M : m ≤ |M ′| ≤ n}.

The multivalued attributes with a cardinality constraint are a special case
of the set-valued complex attributes.

There are ordered and unordered entity types in the XER model. We must
specify an order between the attributes of an ordered XER entity type E and
an order between the relationship types with a participant E. This order is
specified directly in the definition of E.

Definition 4.23 (Ordered XER entity type) :
An ordered XER entity type has the form

E = (attr(E), rel(E), id(E))

where E is the name of the entity type, attr(E) is an ordered list of attributes
from Uxer, rel(E) is an ordered list of the relationship types with a participant
E and id(E) is a non-empty subset of attr(E) called the key of the entity type.

XER entity types are displayed by boxes with a title area showing the name
of the entity type and the body showing the attributes and relationship types
connected with the entity type in the prescribed order.

An ordered XER entity type E has an ordered list of attributes and an
ordered list of relationship types. The extension of the entity type E is a set of
tuples over a set of attributes from the ordered set attr(E). A set of relationships
with given participant from EC must be ordered in the order prescribed by
rel(E).



4 E-R BASED CONCEPTUAL MODELS FOR XML 27

An unordered XER entity type E can have only simple attributes and can
participate in a relationship type with a maximal cardinality equal to 1. This
condition arises from the XML Schema construct all. In a graphical represen-
tation a title area is labeled by ? symbol.

A mixed XER entity type E is defined in the same way as ordered XER
entity type. Moreover, tuples from the extension EC are marked as mixed. It
means that in the XML representation of the given mixed tuple, the data of the
tuple are mixed with a text. In a graphical representation a rounded rectangle
is used.

The authors speak about binary relationship types with all types of cardinal-
ity constraints. However, only the binary relationship types with the cardinality
constraint type ((1, 1), N) are demonstrated, where it is clear how to represent
them using nesting in XML data. It is not clear, how the relationship types with
the other types of cardinality constraints would be expressed in XML schema
languages.

Figure 4.7 displays a XER schema with departments modeled by the or-
dered entity type Department and professors in the departments modeled by
the ordered entity type Professor. Each professor is a member of one depart-
ment. The schema represents the papers written by a professor by the ordered
entity type Paper. Each paper is written by one professor. A paper contains
sections modeled by the ordered and mixed entity type Section. Each section
is composed of a text mixed with emphasized texts and citations represented
by the entity types Emph and Cite. The last two entity types are modeled as
mixed because their instances contain only a text. It would be useful to have
the constructs for modeling the irregular structure for modeling the content of
the entity type Section. The group CEmph and CCite should be modeled as
the repetition of the group with optional CEmph and CCite. It would allow
the Section instance to contain the text mixed with an arbitrary sequence of
Emph and Cite instances.

Figure 4.7: XER Diagram

4.5.2 Translation to XML Schema Languages

The authors give some examples of how to express XER modeling constructs in
XML Schema. They do not introduce an algorithm. Ordered, unordered, and
mixed entity types, and binary relationship types with the cardinality constraint



4 E-R BASED CONCEPTUAL MODELS FOR XML 28

type ((1, 1), N) are directly represented by XML Schema constructs. It is not
clear how binary relationship types with the other cardinality constraint types
are translated to XML Schema. IS-A relationship types are represented using
choice construct of XML Schema. A choice is created between the representation
of the special entity types and is nested in the representation of the general entity
type.

4.6 ERX

ERX is an extension to the E-R model proposed by Psaila in [22]. The author
proposes the following extensions to the E-R model:

• relationship types with alternatives

• containment relationship types

• unique attributes

• order attributes

• interfaces

The author describes the introduced concepts formally. However, the algo-
rithm for the translation of ERX schemata to XML schema languages is not
proposed in the paper. Irregular and heterogeneous data can be modeled by
the relationship types with alternatives. The author introduces the concept of
containment relationship types (with arbitrary cardinalities) for modeling the
hierarchical structure explicitly. Non-hierarchical relationship types can be used
too. However, only the binary relationship types without attributes are allowed.
Ordering on the extensions of entity types can be explicitly modeled by the order
attributes with values from the set of natural numbers {1, 2, . . .}. The difference
from the other conceptual models for XML is the concept of interfaces allowing
the integration of different schemata. However, the author does not introduce
any concepts for modeling document-centric data.

4.6.1 Formal Description

Entity types are comprehended as descriptions of complex (structured) concepts
of the source XML documents. Entities of an entity type are comprehended as a
particular occurences of a concept in a source documents. The author uses weak
entity types for modeling concepts defined in the context of another concept. It
is useful when modeling document-centric documents. For example, a chapter
is a concept defined in the context of a book. Weak entity types are displayed
using different graphical notation than the one described in Section 4.1. In the
ERX graphical notation, relationship types connect a weak entity type with the
entity types it depends on and special edges connect the partial key of the weak
entity type with the relationship types as shown in Figure 4.8.

The author introduces a new kind of relationship types called relation-
ship types with alternatives defined in the following definition. A relationship
type with alternatives connects an entity type E with alternative entity types
E1, . . . , En.



4 E-R BASED CONCEPTUAL MODELS FOR XML 29

Definition 4.24 (Relationship type with alternatives) :
A relationship type with alternatives has the form

R = (E, (E1, . . . , En), (c, c1, . . . , cn))

where R is the name of the relationship type, E, E1, . . . , En are entity types and
c, c1, . . . , cn are cardinality constraints. The entity types E1, . . . , En are called
the alternatives.

A relationship type with alternatives R specifies that an entity of the entity
type E is connected with entities of the alternatives E1, . . . , En by R. The
cardinality constraint c for E considers all variants E1, . . . , En. It specifies the
number of entities of alternatives E1, . . . , En connected with an entity of E by
R. Each alternative Ei has its own cardinality constraint specifying the number
of entities of E connected with an entity of Ei by R.

The author introduces the concept of containment relationship types. Given
two entity types E1 and E2, a containment relationship type leading from E1 to
E2 denotes that in the source XML document each entity of E1 contains entities
of E2. It is not a special kind of relationship types. Each binary relationship type
can be denoted as a containment relationship type. In a graphical representation
it is displayed by a dashed line connecting the relationship type with the enity
type E1.

The ERX model allows to model attributes of entity types. Attributes of
relationship types are not considered by the author. Each attribute is required
or optional. It is similar to the concept of optional attributes from the previous
models. The author proposes the concept of order attribute denoting the order
with which the entity of the entity type appears in the document. Values of
an order attribute are from the set of natural numbers {1, 2, . . .}. An attribute
can be marked as unique. Each key is marked as unique imlicitly. It adds an
integrity constraint meaining that only one entity of the entity type can have
a given value for the attribute. Attributes are displayed as circles connected
to their entity types by a solid line. A name of an attribute is displayed at
the circle with R,I,O,U in parenthesis denoting if the attribute is R-required,
I-implied(i.e. optional), O-order or U-unique.

The last feature considered by ERX is the concept of interface. An interface
divides a schema to two parts that are semantically different. It is connected
through a relationship types with one or more entity types in each of the two
part. It is not an entity type, but a placeholder for entity types in the two parts.

Figure 4.8 displays an ERX schema representing professors, and books and
papers written by the professors. There is the relationship type AuthorOf
connecting Professor with alternatives Paper and Book. It means that each
professor is an author of one or more papers and books. Each paper or book
has one or more authors. Books contain chapters and chapters contain sections.
Papers contain directly sections. It is represented by the containment relation-
ship types ContainsS and ContainsCh. The relationship type ContainsS is
the relationship type with alternatives Paper and Chapter. It means that both
papers and book chapters contain sections. The containment relationship type
Contains with alternatives Emph and Cite means that sections contain em-
phasized texts and citations. The ERX model does not offer mixed entity types
which would be useful to model sections containing citations and emphasized



4 E-R BASED CONCEPTUAL MODELS FOR XML 30

texts mixed with a simple text. Chapter, Section, Cite, and Emph are weak
entity types and they are ordered by the order attributes. There are the in-
terfaces IBook and IPaper making the Book and Paper, respectively available
outside the schema.

Figure 4.8: ERX Diagram

4.7 C-XML

The conceptual model called C-XML was proposed by Embley et al. in [9].
The authors propose an algorithm for the translation of the C-XML model to
the XML Schema model and vice versa and they also study how the model can
incorporate XQuery and how the model can be used for the data integration.

The authors state that the C-XML model has the same expressive power
as XML Schema. It means that C-XML can represent each component and
constraint in XML Schema and vice versa. C-XML is not described formally.

The basic modeling constructs of C-XML are object sets, relationship sets,
and constraints over them. The concept of object sets is similar to the concept
of entity types in the E-R model and the concept of relationship sets is similar
to the concept of relationship types in the E-R model.

The concept of lexical and nonlexical object sets is introduced. Nonlexical
object sets are the same as entity types of the E-R model. They have attributes
and a key. Lexical object sets are used for modeling attributes of nonlexical
object sets.

Lexical object sets are displayed as dashed boxes. The graphical notation
for the other C-XML modeling constructs is similar to the graphical notation
for the E-R modeling constructs. There are little differences in displaying keys
and cardinality constraints.

The ordering between object sets connected with a non-lexical object set can
be specified explicitly. For each connected object set A the previous object set
B can be specified by marking A with > B.

The hierarchical structure can not be modeled explicitly in C-XML. There
are no constructs for modeling document-centric data. No special concepts for
modeling irregular and heterogeneous data are introduced.



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 31

4.7.1 Translation to XML Schema Languages

The authors introduce an algorithm for the translation of a C-XML schema
C to a forest of schema trees FC . The algorithm guarantees that FC has a
minimal number of schema trees, and that XML documents conforming to FC

have no redundant data with respect to constraints in C. The authors describe
the algorithm in detail in [9] and in [10].

5 Hierarchical Conceptual Models for XML

The extensions of the E-R model allow to model conceptual schemata with a
graph structure. However, XML schema languages allow to express relationship
types only by nesting and references. It is possible to express all the relationship
types from an E-R schema by references, but it leads to flat schemata and the
advantages of the hierarchical structure of XML are not utilized. On the other
hand, if the hierarchical structure is used to express relationship types in a
conceptual schema the problem with the decision about what to nest arises.
Another problem is how to represent n-ary relationship types and attributes of
relationship types.

The problem is that there is no explicit information about a required nest-
ing. Hierarchical conceptual models solve this problem by a special kind of
nesting binary relationship types. These nesting binary relationship types de-
scribe the hierarchical structure explicitly. The nesting binary relationship type
is oriented. The entity type the relationship type goes from is called the parent
participant and the entity type the relationship type comes in is called the child
participant of the relationship type. We say that the child participant is nested
in the parent participant (by the nesting relationship type between them). Each
entity type in a hierarchical schema can be a child participant of 0 or 1 nesting
relationship types but not more. If a hierarchical model proposes another kinds
of relationship types it must be clear how to express them by nesting or they
must be used for modeling references explicitly.

In this section we describe a basic hierarchical conceptual model for XML
first. In the next subsections, we describe conceptual models for XML based on
the hierarchical approach. These models are: X-Entity [15], ORA-SS [7], and
Semantic Networks for XML [11].

5.1 Basic hierarchical conceptual model for XML

The basic hierarchical conceptual model for XML can be easily defined as a
restriction of the E-R model where only the binary relationship types with
cardinality types (1, 1) : 1 or (1, 1) : N and without attributes are allowed. Each
relationship type is oriented from the entity type with the arbitrary cardinality
to the entity type with the cardinality (1, 1). This kind of relationship types
may be called nesting binary relationship types. When modeling XML data, the
nesting binary relationship types are represented by a nesting of elements on the
XML logical level. They express a hierarchical structure on the XML logical level
explicitly on the conceptual level. However, the semantics of nesting relationship
types do not have to be only ”part-of”. It may be a general association too.

Such restrictions are too strong and do not allow to model conceptual schemata
with richer semantics. Nor n-ary relationship types, nor attributes of relation-



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 32

ship types can be modeled. Moreover, lots of redundancies may appear in
schemata. There are some approaches extending this basic hierarchical model
described in the following subsections.

5.2 X-Entity

X-Entity is a hierarchical model proposed by Loscio et al. in [15]. Probably, it
was created as an extension of the E-R model, but the restrictions on relationship
types proposed by the authors put the model to the class of hierarchical models.
The authors propose the following modeling constructs:

• cardinality of attributes

• a kind of relationship types called containment relationship types

• a kind of structural constraints called disjunction constraints

The authors describe the extending modeling constructs formally. The model
allows to model the hierarchical structure explicitly by the containment rela-
tionship types. It is possible to model irregular and heterogeneous structure by
the disjunction constraints. However, it is not possible to model ordering and
document-centric data. Other than the containment relationship types can not
be used.

5.2.1 Formal Description

An entity type in a X-Entity schema does not represent general entities but it
represents directly elements with a complex structure in an XML instance of
the schema. The authors use the concept of the multivalued attributes with
cardinality constraints as it was defined in the description of XER. The set of
single and multivalued attributes with cardinality constraints was denoted by
Uxer.

The X-Entity model allows to model only the containment binary relation-
ship types without attributes. The containment relationship types represent a
nesting between entities of related entity types. They are displayed as common
relationship types.

Definition 5.1 (Containment relationship type) :
A containment relationship type has the form

R = (E1, E2, (min, max))

where R is the name of the relationship type, E1 is the parent entity type, E2 is
the child entity type, and (min, max) defines the minimum and the maximum
number of instances of E2 that can be associated with an instance of E1.

The authors propose a kind of integrity constraints called disjunction con-
straints. It is defined by the following definition.

Definition 5.2 (Disjunction constraint) :
A disjunction constraint has the form

D(E, {d1, . . . , dn})



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 33

where E is an entity type and di is an attribute or a set of attributes of the entity
type E or a containment relationship type or a set of containment relationship
types with the parent entity type E.

A disjunction constraint D specifies that each entity of E can be associ-
ated with only one of the concepts specified in the disjunction constraint. It
is displayed as an arc, which traverses the attributes or the relationship types
participating in the constraint definition. If di denotes a set of attributes or
a set of containment relationship types then the attributes/relationship types
are attached to a single line connecting them to the entity type. Disjunction
constraints are used to represent choice constraints which can be specified by
XML schema languages.

Figure 5.1 displays an X-Entity schema representing departments, professors
in the departments, and courses teached by the professors. Each course is
teached by one professor. Each professor has specified his name as one value
or as the first name and the second name. The schema is formally described as
follows.

Department =({name, {phone}[1, ∗]}, {name}),
P rofessor =({pnum, name, first, second}, {pnum}),

Course =({code, name}, {code}),
In =((Department, Professor), (1, ∗)),

T eaches =((Professor, Course), (1, ∗)),

D(Professor, {name, {first, second}})

Figure 5.1: X-Entity Diagram

5.2.2 Translation to XML Schema Languages

The authors propose an algorithm for the translation from XML Schema to X-
Entity. An inverse algorithm is not proposed. However, the modeling constructs
of the X-Entity model can be translated to XML Schema directly because only
the containment relationship types are used.

5.3 ORA-SS

ORA-SS is a rich hierarchical conceptual model for XML proposed by Dobbie
et al. in [7]. They offer the following extending features:

• cardinality constraints for the both participants of hierarchical relationship
types



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 34

• degree of hierarchical relationship types

• attributes of relationship types

• ordering

• disjunction

• references

ORA-SS has three basic modeling constructs: object types, relationship
types, and attributes. The object type construct is similar to the entity type
from the E-R model. Relationship types between object types represent hi-
erarchical relationships. Non-hierarchical relationships can be modeled by the
references. The authors introduce the concept of n-ary hierarchical relationship
types and attributes of hierarchial relationship types. All the types of order-
ing can be modeled. Irregular and heterogeneous structure can be modeled by
the disjuntion. However, there are no constructs for modeling document-centric
data.

The authors do not propose the formalism for the ORA-SS model, but it
can be described following the formalism for the E-R model.

Applications of ORA-SS are introduced in [8], [2], [3], [4], and [26]. These
papers use the ORA-SS model for the normalization of conceptual schemata,
the conceptual modeling of hierarchical views, the data translation between con-
ceptual hierarchical views and the integration of different conceptual schemata
to an overall schema.

5.3.1 Formal Description

There are object types instead of entity types in the ORA-SS model. The
ordering between relationship types leading from an object type is specified.
Each object type is placed in the hierarchical structure of a schema by a nesting
relationship type coming to it. The authors propose the notion of attributes
of nesting relationship types. The problem is that a nesting relationship type
is expressed by a nesting in an XML schema language and can not have its
attributes assigned directly. The attributes of the nesting relationship type
must be assigned to the child participant of the relationship type or to some of
its descendants.

Attributes ORA-SS allows to model composite attributes, unordered/ordered
multivalued attributes and disjunctive attributes. Moreover, the authors pro-
pose the concept of derived attributes and attributes with an unspecified het-
erogeneous structure denoted by ANY . Derived attributes are not formalized
in the following definition of ORA-SS attributes. Each attribute can be marked
as derived.

Definition 5.3 (ORA-SS attributes) :
Given a data schema DD = (U, D, dom) the set Uora of ORA-SS attributes is
defined as follows:

• U ⊆ Uora



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 35

• ANY ∈ Uora

• If X1, . . . , Xn ∈ Uora (not necesarilly distinct) and X is an attribute name
then

X(X1, . . . , Xn) ∈ Uora

is a composite attribute named X .

• If X ∈ Uora and m, n ∈ {∗} ∪ {0, 1, . . .} then

{X}[m, n] ∈ Uora

is an unordered multivalued attribute.

• If X ∈ Uora and m, n ∈ {∗} ∪ {0, 1, . . .} then

〈X〉[m, n] ∈ Uora

is an ordered multivalued attribute.

• If X1, . . . , Xn ∈ Uora and X is an attribute name then

X(X1| . . . |Xn) ∈ Uora

is a disjunctive attribute named X .

The semantics of the introduced kinds of attributes is given by the following
definition. The definition extends the function dom to the function Domora

defined on Uora.

Definition 5.4 (Domain function extension to Uora) :
The dom : U → D function is extended to the Domora : Uora → D function as
follows:

• Domora(ANY ) is a set of all possible attribute values.

• ∀A ∈ U : Domora(A) = dom(A).

• For X(X1, . . . , Xn) ∈ Uora:

Domora(X) = Domora(X1) × . . . × Domora(Xn)

• For {X}[m, n] ∈ Uora:

Domora(X) = Pn
m(Dom(X))

where Pn
m(M) = {M ′ ⊆ M : m ≤ |M ′| ≤ n}.

• For 〈X〉[m, n] ∈ Uora:

Domora(X) =

{〈x1, . . . ,xk〉 : m ≤ k ≤ n ∧ (∀ 1 ≤ i ≤ k)(xi ∈ Domora(X))}

where 〈x1, . . . , xk〉 denotes an ordered list of items (not necessarily dis-
tinct).



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 36

• For X(X1| . . . |Xn) ∈ Uora:

Domora(X) = Domora(X1) ∪ . . . ∪ Domora(Xn)

The composite attributes are equivalent to the tuple-valued attributes. The
unordered multivalued attributes are the anonymous set-valued attributes and
the ordered multivalued attributes are the anonymous list-valued attributes.
However, a named multivalued attribute can be specified as a composite at-
tribute with one multivalued component. The disjunctive attributes are equiv-
alent to the variant-valued attributes.

Object types ORA-SS object types are defined by the following definition.

Definition 5.5 (ORA-SS object type) :
An ORA-SS object type has the form

E = (attr(E), hier(E), id(E))

where

• E is the name of the object type

• attr(E) is an ordered list of attributes from Uora or 2-tuples (A, l), where
A is an attribute from Uora and l is the name of an ancestor relationship
type of the object type; if the member of the list is an attribute it is an
attribute of the object type; if the member of the list is a 2-tuple (A, l)
the attribute A is an attribute of the ancestor relationship type with the
name l

• hier(E) is an ordered list of ORA-SS relationship types with the parent
participant E

• id(E) is a non-empty subset of the attributes (not the attributes from
2-tuples) from attr(E) called the key of the object type.

The result of the definition of the ORA-SS object types is that an object type
has assigned the attributes of ancestor relationship types. On the conceptual
level, they are the attributes of the relationship types. However, on the XML
logical level, they are undistinguishable from the attributes of the object type.

Figure 5.2 displays an ORA-SS schema modeling projects and professors by
the object types Project and Professor, respectively. Professors are members
of projects. It is represented by the relationship type Member. A professor
may be a member of zero or more projects and a project may have one or
more members. We need a list of projects and for each project a list of its
member professors. Moreover, for each professor in the project a date when the
professor became a member of the project must be stored. It is represented by
the attribute since of the relationship type Member. However, the attribute
can not be assigned directly to the relationship type. It must be assigned to the
object type Professor and connected with the relationship type by the label
Member as shown in the figure. The schema is formally described as follows.



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 37

Project = ((projno, title), (Member), {projno}),
Member = (Project, Professor, (0, ∗), (1, ∗)),

P rofessor = ((profno, name, (since, Member)), (), {profno})

Figure 5.2: ORA-SS Diagram - ORA-SS Object Types

The authors do not define the extension of an object type. However, follow-
ing the previous formalism the extension EC of an object type E can be defined
in the same way as the extension of an entity type, i.e. it is a set of tuples on
the attributes from attr(E) (the attributes in 2-tuples are considered too). The
tuples from EC are called objects of the object type E.

The previous definition of object types allows an object type to have only
one key. This key is a primary key. However, the authors propose object types
with the primary key and zero or more candidate keys. It is not formalized by
the definition. A candidate key introduces a similar integrity constraint as the
primary key.

Nesting relationship types The authors of the ORA-SS model propose
more advanced kind of nesting relationship types than the ones described in
Subsection 5.1. The ORA-SS relationship types are nesting binary relationship
types connecting two object types or another ORA-SS relationship type with an
object type (which is always the child participant). Moreover, the cardinality
constraints for the both participants can be specified. Following the formalism
used in previous definitions of different kinds of relationship types, the ORA-SS
relationship types can be defined as follows.

Definition 5.6 (ORA-SS relationship type) :
An ORA-SS relationship type has the form

R2 = (R1, E2, cardp, cardch)

where R2 is the name of the ORA-SS relationship type, R1 is an object type or
another ORA-SS relationship type, and E2 is an object type. E2 is called the
child participant in R2. If R1 is an object type it is called the parent participant
in R2. Otherwise, the child participant in R1 is called the parent participant in
R2. The last two members cardp and cardch are the cardinality constraints for
the parent participant and for the child participant.



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 38

Each ORA-SS relationship type goes from its parent participant to its child
participant. Let R2 = (E1, E2) be an ORA-SS relationship type. It goes from
the object type E1 to the object type E2. It represents the nesting of the object
type E2 in the object type E1, i.e. the objects of the object type E2 are nested
in the objects of the object type E1 by relationships from the relationship type
R2.

Now, let R3 = (R2, E3) be another ORA-SS relationship type. It goes from
the relationship type R2 to the object type E3. It represents the nesting of the
object type E3 in the object type E2 nested in the object type E1.

Let e1 be an object of the object type E1. For each relationship r2 of the
relationship type R2 going from e1 to an object e2 of the object type E2 the
object e2 is nested in the object e1. If the object e1 is considered the objects of
the object type E2 nested in e1 by the relationship type R2 can be considered
in every situation.

Now, let e2 be an object of the object type E2. There is the relationship
type R3 nesting the objects of the object type E3 to e2. However, an object e1

of the object type E1 such that e2 is nested in e1 by R2 is needed. If only e2

is considered no objects of E3 nested in e2 can be considered because it has no
meaning. If e2 nested in e1 by R2 is considered the objects of the object type
E3 nested in e2 by R3 can be considered. If e2 is nested in e′1 by R2, where
e1 6= e′1, the objects of the object type E3 nested in e2 by R3 can be considered
but they can be different from the previous case.

Degree of an ORA-SS relationship type An ORA-SS relationship type
relates two or more object types. The number of related object types is called
the degree of the relationship type. It is defined by the following definition.

Definition 5.7 (Degree of an ORA-SS relationship type) :
Let R2 = (R1, E2) be an ORA-SS relationship type. If R1 is an object type then
the degree of R2, denoted by degree(R2), is 2. If R1 is an ORA-SS relationship
type then the degree of R2 is degree(R1) + 1.

The following definition defines the context of an object. If an object e
nested by a relationship type R with degree(R) = n is considered its context
contains the objects that must be considered too.

Definition 5.8 (Context of an ORA-SS object) :
Let E1, . . . , En be ORA-SS object types and R2 = (E1, E2), Ri = (Ri−1, Ei), 3 ≤
i ≤ n be ORA-SS relationship types. Let ej be an object of the object type Ej

for 1 ≤ j ≤ n such that ek is nested in ek−1 for 2 ≤ k ≤ n. An ordered list of
the objects (e1, . . . , en−1) is called the context of the object en.

If e is an object nested by a relationship type R with degree(R) = 2, the
context of e contains only one object. It means that the object e nested by R
can be considered if its parent is considered too. If degree(R) = n, the context
of e contains n − 1 objects. All of these objects must be considered when the
object e nested by R is considered.

Cardinality of an ORA-SS relationship type Consider again the rela-
tionship types R2 and R3. Let card2

p and card2
ch be the parent participant and



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 39

the child participant cardinality constraints for R2 and card3
p and card3

ch be
the parent participant and the child participant cardinality constraints for R3.
There is a difference between the semantics of both cardinalities, because of the
different degrees of R2 and R3.

The cardinality constraints for R2 have the classical meaning because
degree(R2) = 2. The cardinality constraint card2

ch constraints the number
of objects of the object type E2 that can be nested in a given object e1 of the
object type E1. Similarly, the cardinality constriant card2

p constraints the num-
ber of objects of the object type E1 a given object e2 of the object type E2 can
be nested in.

The cardinality constraints for R3 do not constraint a nesting of E3 in E2,
because degree(R3) = 3. If e1 and e2 are objects of the object types E1 and
E2, respectively, the cardinality constraint card3

ch constraints the number of
objects of the object type E2 with the context (e1, e2). Similarly, the cardinality
constraint card3

p constraints the number of contexts of a given object of the
object type E3 nested by R3.

A relationship type is displayed as an arrow going from the parent partici-
pant to the child participant. The parent cardinality constraint is displayed at
the parent participant side of the arrow and the child cardinality constraint is
displayed at the child participant side of the arrow. The arrow is labeled by the
degree of the relationship type and by the name of the relationship type.

Figure 5.3 displays two ORA-SS schemata. There are projects, professors,
and papers represented in the both schemata. In the both schemata, there is
the object type Professor nested in the object type Project and the object
type Paper nested in Professor. The relationship types state that professors
are members of the projects and they write papers. Each paper is written
by one or more professors and each professor is a member of zero or more
projects. The relationship type AuthorOf has the attribute pages nested in
Paper representing the number of pages written by a professor in a paper.

The difference between the two schemata is that the schema on the left hand
side has the relationship type AuthorOf with the degree 2 and the schema on
the right hand side has the relationship type AuthorOf with the degree 3.
The relationship type AuthorOf in the left hand side schema represents the
papers written by a professor. All of the papers are repeated in each project the
professor is a member of. Moreover, it can not be distinguished which papers the
professor wrote in a given project. The relationship type AuthorOf in the right
hand side schema represents the papers written by a professor being a member
of a project. If a professor is nested in a project, only the papers written by the
professor during his work in the project are nested. The schemata are formally
described as follows.

Project = ((projno, title), (Member), {projno}),
P rofessor = ((profno, name), (AuthorOf), {profno}),

Paper = ((code, title, (pages, AuthorOf)), {code}),
Member = (Project, Professor, (0, ∗), (1, ∗)),

For the left hand side schema:

AuthorOf =(Professor, Paper, (1, ∗), (0, ∗)),



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 40

And for the right hand side schema:

AuthorOf =(Member, Paper, (1, ∗), (0, ∗)),

Figure 5.3: ORA-SS Diagram - Projects

Ordering The authors of the ORA-SS model distinguish 3 kinds of ordering.

• the values of an attribute can be ordered

• the attributes of an object type and relationship types going from it can
be ordered

• the objects nested by a relationship type can be ordered

The ordering of the values of an attribute was defined in the definition of
the ordered multivalued attributes. If an object type

E = ((A1, . . . , Am), (R1, . . . , Rn))

is marked as ordered then the list of its attributes and relationship types going
from it is ordered. The ordering is A1 ≤ · · · ≤ Am ≤ R1 ≤ · · · ≤ Rn and
specifies the ordering on the attributes and the nested objects of a given object
of the object type E. This type of ordering is displayed by < symbol at the
object type’s box.

The ordering on the attributes and the relationship types of the object type
does not specify the ordering on a relationship type going from the object type.
If R1 and R2 are two relationship types going from an ordered object type
E then an object of E has nested relationships from R1 first and after them
has nested relationships from R2. However this ordering does not specify that
objects nested by R1 or R2 are ordered. It is specified by the ordering on
relationship types. If R1 nesting E1 in E is specified as ordered then objects
e1, . . . , en of E1 nested by R1 in an object e of E are ordered. It is displayed by
< symbol at the relationship type’s arrow.

Figure 5.4 displays an ORA-SS schema representing the structure of papers.
Papers are represented by the ordered object type Paper, i.e. its attributes and
nested object types are nested in the following order:



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 41

1) code

2) title

3) ordered list of authors

4) abstract

5) sections

6) bibliography

The relationship type Ps nesting Section in Paper is ordered. It means
that the sections of a paper are ordered. The same is the relationship type Psp
nesting Paragraph in Section.

Figure 5.4: ORA-SS Diagram - Ordering in Papers

Disjunction The authors propose modeling constructs for disjunctive at-
tributes and disjunctive object types. The disjunctive attributes were defined
in the definition of attributes. The disjunctive object types are modeled by the
disjunctive relationship types. Following the formalism used in this paper, the
ORA-SS disjunctive relationship types can be defined as follows.

Definition 5.9 (ORA-SS disjunctive relationship type) :
An ORA-SS disjunctive relationship type has the form

R2 = (R1, (E2,1, . . . , E2,n), cardp, cardch)

where R2 is the name of the ORA-SS relationship type, R1 is an object type or
another ORA-SS relationship type, and E2,1, . . . , E2,n are object types.
E2,1, . . . , E2,n are called the child participants in R2. If R1 is an object type it
is called the parent participant in R2. Otherwise, the child participant in R1 is
called the parent participant in R2. The last two members cardp and cardch are
cardinality constraints for the parent participant and for the child participants,
respectively.

A disjunctive relationship type is displayed by a diamond with the symbol ’|’
in the middle. The diamond is connected by a solid line with the parent partici-
pant and by an arrow going from the diamond to each of the child participants.



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 42

However, the authors do not define the extensions of the disjunctive rela-
tionship types. Because of this, the semantics of the disjunctive relationship
types is not clear. Let R2 = (E1, (E2,1, . . . , E2,n)) be an ORA-SS disjunctive
relationship type (where degree(R2) = 2). On the instance level, it is not clear
whether an object e1 of the object type E1 can have nested objects of the all
object types E2,1, . . . , E2,n or it can have nested objects of only one of the object
types. The former corresponds to applying the disjunction on the instace level
(for each relationship of the relationship type R2 one of the child participants
is instanciated) and the other corresponds to applying the disjunction on the
schema level (just one of the nested object types is selected and its objects are
nested by R2).

Figure 5.5 displays an ORA-SS schema representing professors, and the
books and papers they have written. With no more constraints, the schema
has two meanings:

• Each professor writes only books or only papers.

• Each professor writes a mixture of books and papers.

The disjunction is formally described as follows.

AuthorOf =(Professor, (Book, Paper), (1, ∗), (0, ∗))

Figure 5.5: ORA-SS Diagram - Disjunction

References The authors propose another kind of relationship types called
references. A reference is a relationship type between two object types. It is
oriented from the reference object type to the referenced object type. However,
the reference is not materialized by the nesting as in the case of the nesting
relationship types. The authors do not specify (purposely) how the reference
relationship types are materialized. They assume some reference mechanism on
the instance level. References can be formalized by the following definition.

Definition 5.10 (ORA-SS reference relationship type) :
An ORA-SS reference relationship type has the form

R = (E1, E2)

where R is the name of the ORA-SS reference relationship type, E1 is the
reference object type and E2 is the referenced object type. The relationship type
R is oriented from E1 to E2.



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 43

Because of the hierarchical structure of the ORA-SS schemata, one real
world object type can be represented by more conceptual object types in a
schema. References allow to interconnect these object types. The division of real
world object types to more conceptual object types is used for the normalization
of schemata, for example. References are also used to model recursive and
symmetric relationships.

Figure 5.6 displays an ORA-SS schema representing professors as members
of departments and professors as participants in projects. The object type
Professor nested in the object type Project has nested only Paper representing
papers written by a professor during his work in the project. The information
tied with a certain professor as his name and the address is represented in
the object type Professor nested in the object type Department. Professor
nested in Project is connected to Professor nested in Department by the
reference relationship type. It avoids a redundancy in the instance level.

Figure 5.6: ORA-SS Diagram - Reference

5.3.2 Translation to XML Schema Languages

The algorithm for the translation ORA-SS schemata to DTD schemata is in-
troduced in [8]. The ORA-SS model is a hierarchical conceptual model, so the
translation to the XML schema languages is clear. However, the ORA-SS al-
lows to model n-ary relationship types and attributes of relationship types. The
semantics of this modeling constructs can not be modeled in XML schema lan-
guages if we want to maximize the utilization of the nesting. Hence, the part of
the semantics described by an ORA-SS schema is lost during the translation.

The translation algorithm is clear. First, for each object type O an element
type definition

<!ELEMENT O (SubelementList)) >

is created. SubelementList contains the names of the elements created for the
object types nested in O in the prescribed order. If there is a disjunction rela-
tionship type going from the object type O then the included object types are
divided in SubelementList by | mark. Each simple attribute is translated as
XML attribute. Each single valued simple attribute is replaced with its com-
ponents and translated separately. The other types of attributes are translated



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 44

as XML elements. N -ary relationship types are comprehended as binary re-
lationship types during the translation. Attributes of relationship types are
comprehended as attributes of the object types in which they are nested in the
ORA-SS schema.

5.4 Semantic Networks for XML

The semantic network model for XML was introduced by Feng et al. in [11]. The
model is a little extension to the basic hierarchical conceptual model described
in Section 5.1. The authors propose some new kinds of relationship types and
some new kinds of integrity constraints.

The authors introduce a formalism for the semantic network model for XML.
The concepts of the model are different from the concepts of the well-known E-R
model and the other models described in this paper. The formalism introduced
by the authors is used here without modifications.

Only the binary relationship types without attributes can be modeled in
the semantic network model. The model introduces other kinds of relationship
types than the hierarchical relationship types. Hierarchical relationship types
must have the parent participant cardinality equal to (1, 1). Irregular and het-
erogeneous structure and ordering can be modeled. However, document-centric
data can not be modeled.

5.4.1 Formal Description

A semantic network for XML is an oriented graph constisting of nodes connected
by directed labeled edges. In addition, constraints can be defined over these
nodes and edges. A semantic network model for XML consists of the four
components:

• A set of nodes Node, representing real-world objects;

• A set of directed edges Edge, representing semantic relationships between
the objects;

• A set of labels Label, denoting different types of semantic relationships;

• A set of constraints Constraint, defined over the nodes and edges.

Nodes are not equivalent to the entity types from the E-R model. Nodes
are categorized into basic nodes and complex nodes. The basic nodes are the
leaf nodes in the semantic network diagram and the complex nodes are the
internal nodes. The basic nodes are used to model simple objects and sim-
ple attributes and the complex nodes are used to model complex objects and
complex attributes.

Nodes Each node has the content. The content of a basic node is called the
basic content. The basic content can be an atomic content (string, integer, ...)
or it can be described by the set, bag, list or variant-valued constructor defined
earlier for the E-R model. The tuple constructor is not allowed in the semantic
network model. Composite attributes must be modeled by the complex nodes.
Hence, it is not possible to apply the set, bag, list or variant-valued constructor
to the domain of a composite attribute in the semantic network model.



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 45

The content of a complex node is called the complex content and it refers
to some other nodes through directed labeled edges. The complex content is
defined by the following definitions. First, the authors propose the concepts of
connection, connection cluster, and connection cluster set.

Definition 5.11 (Connection of a node) :
A connection of a node n ∈ Node is an ordered pair < l, n′ >, where l is a label
in Lable and n′ is a node in Node, representing that node n is connected to node
n′ via relation l.

Definition 5.12 (Connection cluster of a node) :
A connection cluster of a node n ∈ Node is an ordered pair < l, ns >, where l
is a label in Lable and ns is a set of nodes in Node, representing that node n is
connected to each node in ns via relation l.

Definition 5.13 (Connection cluster set of a node) :
A connection cluster set of a node n ∈ Node is a set of connection clusters,
{< l1, ns1 >, . . . , < lk, nsk >}, where ∀ i ∀ j (1 ≤ i, j ≤ k) (i 6= j ↔ li 6= lj).

Definition 5.14 (Complex content of a complex node) :
A complex content of a complex node is a connection cluster set.

Now, nodes can be formally defined.

Definition 5.15 (Node) :
A node n ∈ Node is a 4-tuple (nid, nname, ncategory, ncontent), consisting of an
unique node identifier nid, a node name nname, a node category ncategory indi-
cating whether the node n is basic or complex, and a node content ncontent.

Edges Edges connect nodes in the semantic network model. They are the
similar concept to relationship types from the ORA-SS model. However, only
the binary edges (connecting two nodes) without attributes are allowed in the
semantic network model. Another difference is that different concepts are mod-
eled using edges. These concepts are generalization, aggregation, association,
and of-property. Each edge is labeled by g, a, s or p to denote if it is general-
ization, aggregation, association, or of-property, respectively.

A generalization is used to model IS − A hierarchies between general and
special concepts. An aggregation is used to model the nesting between concepts.
An association is used to model relationships between real world objects on the
same level (one can not be nested in the other). An of-property specifies the
subsidiary attribute of an object (i.e. attributes are modeled as basic nodes
connected to their nodes by of-property edges).

Definition 5.16 (Edge) :
An edge e ∈ Edge is a triple (elabel, esource node, etarget node), consisting of a label
elabel ∈ Label stating the link type, the source node of the edge esource node ∈
Node, and the target node of the edge etarget node ∈ Node.

Integrity constraints Different constraints can be specified in the semantic
network for XML. Constraints can be specified over a node, over an edge, and



5 HIERARCHICAL CONCEPTUAL MODELS FOR XML 46

over a set of edges.
Integrity constraints over a node are uniqueness specifying a uniqueness of

the content of the node, referential integrity specifying that the content of the
node is linked to the content of another node, and domain constraint constrain-
ing the content of the node by several rules as a minimal and a maximal length
of a string content etc.

Integrity constraints over an edge comprehend cardinality constraints for
the child nodes of the node. Further, there are some less traditional constraints
called homogeneous/heterogeneous composition and adhesion. An aggregation
edge can be constrained as homogeneous or heterogeneous composition. The
former is used when a whole object is only made up of part objects of the same
type. The later is as the opposite. The adhesion constraints indicate when one
peer appears in a relationship, whether another peer must coexist. It can be
used to model required/optional attributes, for example.

Integrity constraints over a set of edges comprehend ordered composition and
exclusive disjunction. These constraints were described in the descriptions of
the previous models.

Figure 5.7 displays a semantic network schema. There are departments rep-
resented by the complex node Department and professors in the departments
represented by the complex node Professor. The content of the complex node
Professor is ordered. For each professor there are the papers he wrote repre-
sented by the complex node Paper. Each paper may be composed of chapters
or sections, but not both (the exclusive constraint). The courses offered by a
department are represented by the complex node Course. Professor is associ-
ated with Course. It represents the relationships between a professor and the
courses he teaches.

Figure 5.7: Semantic Network Diagram

5.4.2 Translation to XML Schema Languages

In [11], the authors describe possibilities of how to translate semantic network
model to XML Schema language.

The basic nodes with atomic contents are translated using the XML Schema
build-in datatypes and the XML Schema facets mechanism. If a list constructor
was used then the XML Schema < xsd : list > mechanism is used. If a variant
constructor was used then the XML Schema < xsd : union > mechanism is



6 COMPARISON OF DESCRIBED CONCEPTUAL MODELS 47

used. If a set and bag constructor was used, the basic node is translated as
an element. To ensure the uniqueness of values in a set the < xsd : unique >
mechanism can be used.

The complex nodes are translated to complex types in the XML Schema
language. The of-property edge is translated using < xsd : attribute > concept.
The aggregation edge is materialized by the nesting in XML Schema. The
association edge can be materialized by the nesting in XML Schema if it is
possible or by the ID/key mechanism in XML Schema. The generalization edge
is translated using the derivation of complex types by the extension and the
rescriction concepts in XML Schema.

The integrity constraints allowed by the semantic network model can be
easilly translated to XML Schema using < xsd : key >, < xsd : keyref >,
< xsd : choice >, and cardinality mechanisms.

6 Comparison of Described Conceptual Models

In this section, we compare the conceptual models described in this paper.
The comparison is made against the general requirements and the modeling
constructs requirements introduced in Section 2.

There are four comparative tables. Table 1 and Table 2 compare the models
based on the E-R model. Table 3 and Table 4 compare the models based on
the hierarchical approach. The E-R model and the basic hierarchical model are
compared too.

We are not able to decide, which of the previous two approaches (E-R ex-
tensions, hierarchical modeling) is better for the conceptual modeling of XML
data. Conceptual models based on the E-R model allow user to create a schema
with no metadata redundancy, but there is the problem with the modeling of
the specific XML features. Hierarchical conceptual models solve the problem
with a hierarchical structure of XML, but there arises problems such as data
and metadata redundancy, modeling of attributes of relationship types, and
modeling of n-ary relationship types.

There are requirements that are not met by the described models. The
modeling of document centric data and the reuse of content is problematic. The
important requirement on the integration of conceptual schemata is solved only
by the ORA-SS model. None of the models solve the problem of the integration
with the semantic web technologies.



6 COMPARISON OF DESCRIBED CONCEPTUAL MODELS 48

Table 6.1: Comparison of ER Based Models against the General Require-
ments

Property ER ER-B EReX EER XER ERX C-XML
· independence on XML schema languages√ − √ √ − √ √

· formal foundations√ √ √ − − √ −
· graphical notation√ √ √ √ √ √ √

· logical level mapping
− relational model√ √ − − − − −
− tree grammar based XML schema languages

− √ √ √ √ 1 − √

− pattern based XML schema languages
− − − − − − −

− utilization of hierarchical structure of XML
− − √ √ √ − √

· different structures on the logical level
− conceptual hierarchical views

− − − − − − −
− translation between hierarchical views

− − − − − − −
· semantic web mapping

− − − − − − −
1 formal description is missing



6 COMPARISON OF DESCRIBED CONCEPTUAL MODELS 49

Table 6.2: Comparison of ER Based Models against the Modeling Constructs
Requirements

Property ER ER-B EReX EER XER ERX C-XML
· hierarchical relationship types

− − − √ − √ −
− M : N cardinality
− N -ary
− attributes

− − − − − − −
· non-hierarchical relationship types√ √ √ √ √ √ √

− M : N cardinality√ √ √ √ − √ √

− N -ary
− attributes √ 1 √ √ √ − − √

· ordering
− on the values of an attribute√ 1 − − − − − −
− on the content of a concept

− − − − √ 2 − √

− on the participant of a relationship type
− − √ √ − √ 3 −

· irregular and heterogeneous structure
− variant-valued attribute constructor√ 1 √ − − − − −
− disjunctive constraints on relationship types

− √ 4 √ 4 − − √ −
· document-centric data
− basic mixed content

− − − − √ − −
− generalized mixed content

− − − − − − −
· reuse of content
− IS-A or the category concept√ √ √ − √ √ √

− named types and groups of concepts
− − − − − − −

· integration of conceptual schemata
− modeling constructs

− − − − − √ −
− algorithms for merging schemata

− − − − − − −
− algorithms for the data translation between schemata

− − − − − − −
1 with the complex attributes extension
2 unordered content in restricted by the restrictions of xsd:all construction in XML Schema
3 only by the concept of ordered attributes, native XML ordering is not utilized
4 using the category concept



6 COMPARISON OF DESCRIBED CONCEPTUAL MODELS 50

Table 6.3: Comparison of Hierarchical Models against the
General Requirements

Property Hier X-Entity ORA-SS Sem.net.
· independence on XML schema languages√ √ √ √

· formal foundations√ √ √ √

· graphical notation √ √ √ √

· logical level mapping
− relational model

− − − −
− tree grammar based XML schema languages√ √ √ √

− pattern based XML schema languages
− − − −

− utilization of hierarchical structure of XML√ √ √ √

· different structures on the logical level
− conceptual hierarchical views

− − √ −
− translation between hierarchical views

− − √ −
· semantic web mapping

− − − −



6 COMPARISON OF DESCRIBED CONCEPTUAL MODELS 51

Table 6.4: Comparison of Hierarchical Models against the
Modeling Constructs Requirements

Property Hier X-Entity ORA-SS Sem.net.
· hierarchical relationship types√ √ √ √

− M : N cardinality
− N -ary
− attributes

− − √ −
· non-hierarchical relationship types

− − √ √

− M : N cardinality
− N -ary
− attributes

− − −1 −
· ordering
− on the values of an attribute√ − √ √

− on the content of a concept
− − √ √

− on the participant of a relationship type
− − √ −

· irregular and heterogeneous structure
− variant-valued attribute constructor√ − √ √

− disjunctive constraints on relationship types
− √ √ √

· document-centric data
− basic mixed content

− − − −
− generalized mixed content

− − − −
· reuse of content
− IS-A or the category concept√ − √ √

− named types and groups of concepts
− − − −

· integration of conceptual schemata
− modeling constructs

− − √ −
− algorithms for merging schemata

− − √ −
− algorithms for the data translation between schemata

− − √ −
1 indirect modeling using hierarchical relationship types is possible



REFERENCES 52

Acknowledgement

This research was supported by the National programme of research (Informa-
tion society project 1ET100300419).

References

[1] A. Badia. Conceptual Modeling for Semistructured Data. In Proceedings of
the 3rd International Conference on Web Information Systems Engineer-
ing Workshops (WISE 2002 Workshops), p. 170-177. Singapore, December
2002.

[2] Y.B. Chen, T.W. Ling, M.L. Lee, A Case Tool for Designing XML Views. In
Proceedings of the Second International Workshop on Data Integration over
the Web (DIWeb’02), p. 47-57. Toronto, Canada, May 2002.

[3] Y.B. Chen, T.W. Ling, M.L. Lee. Automatic Generation of XQuery View
Definitions from ORA-SS Views. In Proceedings of the 22nd International
Conference on Conceptual Modeling (ER 2003), p. 158-171. Chicago, Illi-
nois, USA, October 2003.

[4] Y.B. Chen, T.W. Ling, M.L. Lee. Designing Valid XML Views. In Pro-
ceedings of the 21st International Conference on Conceptual Modeling (ER
2002), p. 463-477, Tampere, Finland, October 2002.

[5] J. Clark. XSL Transformations (XSLT) Version 1.0. World Wide Web Con-
sortium, Recommendation REC-xslt-19991116. November 1999.

[6] J. Clark, M. Makoto. RELAX NG Specification. Oasis. December 2001.

[7] G. Dobbie, W. Xiaoying, T.W. Ling, M.L. Lee. ORA-SS: An Object-
Relationship-Attribute Model for Semi-Structured Data. Technical Report,
Department of Computer Science, National University of Singapore. Decem-
ber 2000

[8] G. Dobbie, W. Xiaoying, T.W. Ling, M.L. Lee. Designing Semistructured
Databases Using ORA-SS Model. In Proceedings of the 2nd International
Conference on Web Information Systems Engineering (WISE’01), p. 171-
182. Kyoto, Japan, December 2001.

[9] D.W. Embley, S.W. Liddle, R. Al-Kamha. Enterprise Modeling with Con-
ceptual XML. In Proceedings of the 23rd International Conference on Con-
ceptual Modeling (ER 2004), p. 150-165. Shanghai, China, November 2004.

[10] D.W. Embley, W.Y. Mok. Developing XML documents with guaranteed
’good’ properties. In Proceedings of the 20th International Conference on
Conceptual modeling (ER 2001), p. 426-441. Yokohama, Japan, November
2001.

[11] L. Feng, E. Chang, T. Dillon. A Semantic Network-Based Design Method-
ology for XML Documents. ACM Transactions on Information Systems,
Volume 20, Number 4, p. 390-421. October 2002.



REFERENCES 53

[12] D. C. Fallside, P. Walmsley. XML Schema Part 0: Primer Second Edi-
tion. World Wide Web Consortium, Recommendation REC-xmlschema-0-
20041028. October 2004.

[13] T. Halpin. Information Modeling and Relational Databases From Concep-
tual Analysis to Logical Design. Morgan Kaufmann Publishers, 2001. ISBN:
1-55860-672-6

[14] International Organization for Standardization. Information Technology
Document Schema Definition Languages (DSDL) Part 3: Rule-based Vali-
dation Schematron. ISO/IEC 19757-3, February 2005.

[15] B.R. Loscio, A.C. Salgado, L.R. Galvao. Conceptual Modeling of XML
Schemas. In Proceedings of the Fifth ACM CIKM International Workshop
on Web Information and Data Management (WIDM 2003), p. 102-105. New
Orleans, Louisiana, USA, November 2003.

[16] M. Mani. EReX: A Conceptual Model for XML. In Proceedings of the
Second International XML Database Symposium (XSym 2004), p. 128-142.
Toronto, Canada, August 2004.

[17] M. Mani. Data Modeling Using XML Schemas. PhD Dissertation,
http://web.cs.wpi.edu/ mmani/dissertation.pdf, July 2003.

[18] M. Mani, D. Lee, R.R.Muntz. Semantic Data Modeling Using XML
Schemas. In Proceedings of the 20th International Conference on Concep-
tual Modeling (ER 2001), p. 149-163. Yokohama, Japan, November 2001.

[19] F. Manola, E. Miller. RDF Primer. World Wide Web Consortium, Recom-
mendation REC-rdf-primer-20040210. February 2004.

[20] P. Marinelli, C. S. Coen, F. Vitali. SchemaPath, a Minimal Extension to
XML Schema for Conditional Constraints. In Proceedings of the 13th Inter-
national Conference on World Wide Web (WWW 2004), p. 164-174. New
York, USA, May 2004.

[21] Object Management Group. UML 2.0 Superstructure Specification. October
2004.

[22] G. Psaila. ERX: A Conceptual Model for XML Documents. In Proceedings
of the 2000 ACM Symposium on Applied Computing, p. 898-903. Como,
Italy, March 2000.

[23] A. Sengupta, S. Mohan, R. Doshi. XER - Extensible Entity Relationship
Modeling. In Proceedings of the XML 2003 Conference, p. 140-154. Philadel-
phia, USA, December 2003.

[24] M. K. Smith, Ch. Welty, D. L. McGuinness. OWL Web Ontology Lan-
guage Guide. World Wide Web Consortium, Recommendation REC-owl-
guide-20040210. February 2004.

[25] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-
nology. Springer Verlag, 2000, Berlin, Germany. ISBN: 3-540-65470-4



REFERENCES 54

[26] X. Yang, T.W. Ling, M.L. Lee. Resolving Structural Conflicts in the Inte-
gration of XML Schemas: A Semantic Approach. In Proceedings of the 22nd
International Conference on Conceptual Modeling (ER 2003), p. 520-533.
Chicago, Illinois, USA, October 2003.


