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The talk in 3 minutes

Two models: (a) Erdős–Rényi random graphs 
and inhomogeneous versions thereof, (b) 
uniform spanning tree. 

Using the language of dense graph limits, we 
characterize when two dense graph give a 
similar distribution of these random subgraphs.



  

The talk in 3 minutes

Dense graphs contain sparse random 
subgraphs. In this talk: (a) percolation, (b) 
uniform spanning tree. 

Using the language of dense graph limits, we 
characterize when two dense graph give a 
similar distribution of these random subgraphs.

         Example: Uniform spanning tree (UST)

n
2

n
2

n
5

4n
5

   Kn                                Kn/2,n/2                        Kn/5,4n/5

 UST(Kn)        ≈        UST(Kn/2,n/2)     ≠      UST(Kn/5,4n/5)

#leaves:      0.367n                         0.367n                       0.626n     
       



  

Program
● Probability recap (Poisson distribution, Galton-Watson branching processes)

● Erdős–Rényi random graphs and component structure

● Bollobás-Janson-Riordan inhomogeneous random graphs
and component structure

● Main Theorem I

● Graph and graphon fractional isomorphism

● Uniform spanning tree

● Main Theorem II



  

Poisson distribution

Definition: λ≥0. Poisson(λ) is ℕ0-valued distribution 

● Key property: Poisson(λ) is limit of Binomial(n,λ/n)



  

(only Poissonian case)

Definition:  GWB(λ)

● Key property: For λ≤1, GWB(λ) survives with prob=0              
          For λ>1, GWB(λ) survives with prob s(λ) (0,1)∈

Galton-Watson branching process

λ=3.5

……………………………………………………………………………………………………….



  

G(n,p) n fixed vertices {1,2,…,n}
        each pair forms an edge with 

prob p

p = 0.3, 0.7, …: Easy; G(n,p) is connected aas, ...

p = 1/√n, log n/n, const/n: Harder

Erdős–Rényi 1959: Phase transition in G(n,p)

Erdős–Rényi random graphs



  

Component structure in G(n,p)

Erdős–Rényi 1959 (“the” phase transition)

For c<1, G(n,c/n) has largest component
of order Θ(log n). subcriticality

For c>1, G(n,c/n) has largest component
of order (s(c)±o(1))n. supecriticality

Early proofs enumerative. Karp 1990: Lets use GW branching processes.



  

Component structure in G(n,3.5/n)
G(n,3.5/n)

1
What is the neighborhood structure of vertex 1?

2

3 n

...
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26 ... 48
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Component structure in G(n,3.5/n)
G(n,3.5/n)

1
What is the neighborhood structure of vertex 1?

2

3 n

...

24

25
26 ... 48

49
50

...

1

25 49

? ?

Bin( n-1 , 3.5/n )



  

Component structure in G(n,3.5/n)
G(n,3.5/n)

1
What is the neighborhood structure of vertex 1?

2

3 n

24

25
26 48

49
50

1

25 49

?
Bin( n-3 , 3.5/n )

82
82

?



  

Component structure in G(n,3.5/n)
G(n,3.5/n)

1
What is the neighborhood structure of vertex 1?

2

3 n

24

25
26 48

49
50

1

25 49

?

No edges inside

82
82

?



  

Component structure in G(n,3.5/n)
G(n,3.5/n)

1
What is the neighborhood structure of vertex 1?

2

3 n

24

25
26 48

49
50

1

82
GWB(3.5)

What is the size of the giant component?



  

Component structure in G(n,3.5/n)
G(n,3.5/n)

1
What is the neighborhood structure of vertex 1?

2

3 n

24

25
26 48

49
50

1

82

What is the size of the giant component?
   = Number of vertices in a giant component
 

GWB(3.5)



  

Component structure in G(n,3.5/n)
G(n,3.5/n)

1
What is the neighborhood structure of vertex 1?

2

3 n

24

25
26 48

49
50

1

82

What is the size of the giant component?
   = Number of vertices in a giant component
   = n × survival probability of GW(3.5)
   = (s(c)±o(1))n
 

GWB(3.5)



  

Inhomogeneous random graphs

Bollobás-Janson-Riordan 2005
subsequent work by B., Borgs., Chayes, J., R.

● Main idea G(n,3.5/n)  G(⇝ n,W/n), where
W:[0,1]2 [0,999] is a “symmetric kernel”.➜

W

(0,0) (0,1)

(1,0) (1,1)

Legend:
              value 0
              value 333
              value 666

      value 999



  

Generating G(n,W/n)
● Vertex set {1,2,…,n}

● Generate x1, x2, …, xn [0,1] at random∈ (0,0) (0,1)

(1,0) (1,1)

x2x4 x1 x5

x3x6

1

2

3

4

5

6

n
n-1



  

Generating G(n,W/n)
● Vertex set {1,2,…,n}

● Generate x1, x2, …, xn [0,1] at random∈

● Make { i,j } an edge with probability W(xi,xj)/n

(0,0) (0,1)

(1,0) (1,1)

x2x4 x1 x5

x3x6

1

2

3

4

5

6

n
n-1

We need n ≥ 999



  

Generating G(n,W/n)
● Vertex set {1,2,…,n}

● Generate x1, x2, …, xn [0,1] at random∈

● Make { i,j } an edge with probability W(xi,xj)/n

(0,0) (0,1)

(1,0) (1,1)

1

2

3

4

5

6

n
n-1

x2x4 x1 x5

x3x6



  

Component structure in G(n,W/n)
Bollobás-Janson-Riordan 2005

Neighborhood structure of vertex 1?

● In G(n,3.5/n) … GWB(3.5) 

● In G(n,W / n) … GWB(W)



  

Component structure in G(n,W/n)
Bollobás-Janson-Riordan 2005

Neighborhood structure of vertex 1?

x1

GWB(W) type=0.42 (at random in [0,1]) 

?



  

Component structure in G(n,W/n)
Bollobás-Janson-Riordan 2005

Neighborhood structure of vertex 1?

x1

GWB(W) type=0.42 (at random in [0,1]) 

?

deg(x1)=∫W ( x1 , y )dy



  

Component structure in G(n,W/n)
Bollobás-Janson-Riordan 2005

Neighborhood structure of vertex 1?

x1

GWB(W) type=0.42 (at random in [0,1]) 

?

Poisson point process 
with intensity W(x1,○)

0 1



  

Component structure in G(n,W/n)
Bollobás-Janson-Riordan 2005

Neighborhood structure of vertex 1?

x1

GWB(W) type=0.42 (at random in [0,1]) 

Poisson point process 
with intensity W(x1,○)

0.530.430.12

0 1

? ? ?



  

Component structure in G(n,W/n)
Bollobás-Janson-Riordan 2005

Neighborhood structure of vertex 1?

x1

GWB(W) type=0.42 (at random in [0,1]) 

0.530.430.12

0 1



  

Component structure in G(n,W/n)
Bollobás-Janson-Riordan 2005

Neighborhood structure of vertex 1?

GWB(W) type=0.42 (at random in [0,1]) 

0.530.430.12

0 1

? ? ?



  

Component structure in G(n,W/n)
Bollobás-Janson-Riordan 2005

Neighborhood structure of vertex 1?

GWB(W) type=0.42 (at random in [0,1]) 

0.530.430.12

0 1

? ? ?
Summary:
● Generate type of root in [0,1] at random
● For each particle of given type x [0,1],∈

● Generate its children according to Poisson 
point process with intensity W(x,○). 
(Distribution of the number is Poisson(deg(x)).



  

Component structure in G(n,W/n)
Bollobás-Janson-Riordan 2005

Neighborhood structure of vertex 1?

GWB(W) type=0.42 (at random in [0,1]) 

0.530.430.12

0 1

? ? ?

Importance: Let s(W) be the probability of survival of GWB(W).
Then the largest component in G(n, W/n) is of size (s(W)+o(1))n.



  

Examples

0.8 3.5
7

7

4

4

Definition:
● Generate type of root in [0,1] at random
● For each particle of given type x [0,1]:∈

Generate its children according to Poisson point process with intensity W(x,○). 

0.5 0.5 0.25 0.75



  

Examples

0.8 3.5
7

7

4

4

Definition:
● Generate type of root in [0,1] at random
● For each particle of given type x [0,1]:∈

Generate its children according to Poisson point process with intensity W(x,○). 
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Examples

0.8 3.5
7

7

4

4

Definition:
● Generate type of root in [0,1] at random
● For each particle of given type x [0,1]:∈

Generate its children according to Poisson point process with intensity W(x,○). 

0.42

0.82

0.5 0.5 0.25 0.75

0.12 0.33

0.87
0.07

0.53
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0.40
0.91
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0.41

0.29
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0.98
0.90

GWB(0.8)



  

Examples

0.8 3.5
7

7

4

4

Definition:
● Generate type of root in [0,1] at random
● For each particle of given type x [0,1]:∈

Generate its children according to Poisson point process with intensity W(x,○). 

0.5 0.5 0.25 0.75

0.42

0.82
0.62 0.83

0.37
0.07

0.03
0.18

0.40
0.41

0.29

0.42

0.19

0.27
0.41

0.98
0.90

GWB(0.8) GWB(3.5)



  

Examples

0.8 3.5
7

7

4

4

Definition:
● Generate type of root in [0,1] at random
● For each particle of given type x [0,1]:∈

Generate its children according to Poisson point process with intensity W(x,○). 

0.5 0.5 0.25 0.75

0.42

0.19

0.27
0.41

0.98
0.90

GWB(0.8) GWB(3.5) GWB(3.5)



  

Examples

0.8 3.5
7

7

4

4

Definition:
● Generate type of root in [0,1] at random
● For each particle of given type x [0,1]:∈

Generate its children according to Poisson point process with intensity W(x,○). 

0.5 0.5 0.25 0.75

GWB(0.8) GWB(3.5) GWB(3.5)   0.25*GWB(e=3,o=1)
+0.75*GWB(o=3,e=1)



  

Main theorem I

H., Hng, Limbach 2024
For two kernels U, W, the following are equivalent
● GWB(U) and GWB(W) have the same distribution,
● U and W are fractionally isomorphic.



  

Fractional isomorphism of graphs
Idea: Relaxation of isomorphism. If two graphs are isomorphic 
then they have the same degree sequence. Iterate.

Tinhofer 1986, Ramana-Scheinerman-Ullman 1994

Color refinement algorithm:

G H



  

Fractional isomorphism of graphs
Idea: Relaxation of isomorphism. If two graphs are isomorphic 
then they have the same degree sequence. Iterate.

Tinhofer 1986, Ramana-Scheinerman-Ullman 1994

Color refinement algorithm:

G HV0

V1

V2

V3

...

Vk={deg=k}

V4



  

Fractional isomorphism of graphs
Idea: Relaxation of isomorphism. If two graphs are isomorphic 
then they have the same degree sequence. Iterate.

Tinhofer 1986, Ramana-Scheinerman-Ullman 1994

Color refinement algorithm:

G HV0

V1

V2

V3

...

V4

V4;(V2:1,V4:1,V7:2):
● degree is 4
● degree into V2 is 1
● degree into V4 is 1
● degree into V7 is 2



  

Fractional isomorphism of graphs
Idea: Relaxation of isomorphism. If two graphs are isomorphic 
then they have the same degree sequence. Iterate.

Tinhofer 1986, Ramana-Scheinerman-Ullman 1994

Color refinement algorithm:

G HV0

V1

V2

V3

...

V4

Definition:
G and H are fractionally isomorphic if all the 
sets of all possible “iterated degrees” are of 
the same cardinalities.



  

Fractional isomorphism of graphs
Idea: Relaxation of isomorphism. If two graphs are isomorphic 
then they have the same degree sequence. Iterate.

Tinhofer 1986, Ramana-Scheinerman-Ullman 1994

Color refinement algorithm:

G HV0

V1

V2

V3

...

V4

Definition (equivalent):
G and H are fractionally isomorphic if there 
exists a bijection between V(G) and V(H) 
preserving iterated degrees.



  

Fractional isomorphism of graphs
Idea: Relaxation of isomorphism. If two graphs are isomorphic 
then they have the same degree sequence. Iterate.

Tinhofer 1986, Ramana-Scheinerman-Ullman 1994

Color refinement algorithm:

G HV0

V1

V2

V3

...

V4

Definition (equivalent):
G and H are fractionally isomorphic if there 
exists a coupling between V(G) and V(H) 
preserving iterated degrees.



  

Fractional isomorphism
For graphs:

G and H are fractionally isomorphic, if:
● The color refinement algorithm gives the same output
● The number of copies of each tree is the same
● AH = P-1 AG P for a bistochastic matrix P



  

Fractional isomorphism
For graphs:

G and H are fractionally isomorphic, if:
● The color refinement algorithm gives the same output
● The number of copies of each tree is the same
● AH = P-1 AG P for a bistochastic matrix P

For symmetric kernels:
Grebik, Rocha 2022 

“Fractional isomorphism of graphons”
Counterparts to the above
Key: Degree has counterpart

x1

deg(x1)=∫W ( x1 , y )dy



  

Fractional isomorphism of symm kernels

coupling
=measure preserving 
    bijectionU W



  

Fractional isomorphism of symm kernels

U W
coupling
=measure preserving 
    bijection

GWB(U) and GWB(W) have the same distribution
U and W are fractionally isomorphic

Main Theorem I:

GWB(U) GWB(W)



  

Fractional isomorphism of symm kernels

U W

GWB(U) and GWB(W) have the same distribution
U and W are fractionally isomorphic

Main Theorem I:

GWB(U) GWB(W)

y1x1

degU(x1)=degW(y1)
and more



  

Fractional isomorphism of symm kernels

U W

GWB(U) and GWB(W) have the same distribution
U and W are fractionally isomorphic

Main Theorem I:

GWB(U) GWB(W)

y1x1

degU(x1)=degW(y1)
and more



  

Fractional isomorphism of symm kernels

U W

GWB(U) and GWB(W) have the same distribution
U and W are fractionally isomorphic

Main Theorem I:

GWB(U) GWB(W)

y1x1

degU(x1)=degW(y1)
and more



  

Uniform spanning tree
Definition: G connected graph. T(G)={all spanning trees of G}

UST(G)...uniform measure on  T(G) 

Probability/statistical physics: 
● electrical networks, Wilson’s algorithms, Aldous-Broder algorithm
● 2D lattices, Schramm-Loewner evolution, scaling limit, SLE(8)



  

Uniform spanning tree
Definition: G connected graph. T(G)={all spanning trees of G}

UST(G)...uniform measure on  T(G) 

Probability/statistical physics: 
● electrical networks, Wilson’s algorithms, Aldous-Broder algorithm
● 2D lattices, Schramm-Loewner evolution, scaling limit, SLE(8)

Here: dense graphs
Theorem (Kolchin 1977 / Grimmet 1980): 
UST(Kn) around vertex 1 converges to
GWB(1) conditioned on survival, n .→∞ GWB(1)

G
W

B(1)
G

W
B(1)

G
W

B(1)
G

W
B(1)

G
W

B(1)



  

Uniform spanning tree
Theorem (Kolchin 1977 / Grimmet 1980) Local structure of Kn

Borgs, Chayes, Lovász, Sós, Szegedy, Vesztergombi 2004-2012, 
Description of dense graphs using “graphons”

Theorem (Hladký, Nachmias, Tran, 2018)
Suppose that (Gn)n is a sequence of connected graphs that 
converges to a graphon W. Suppose that W has positive
minimum degree. 
Then UST(Gn) around a randomly chosen vertex converges
to a branching process UST(W).



  

Example
Hladký-Nachmias-Tran, 2018, simplified
(Gn)n converges to W.
Then UST(Gn) around a randomly chosen vertex converges to UST(W).

Kn/4,3n/4

1

0.25 0.75

1

GW=GWB(e=3,o=1/3)
GW=GWB(e=1/3,e=3)

G
W

W UST(W)

0.25             +          0.75

G
W

G
W

G
W

G
W

G
W



  

Uniform spanning tree
Main Theorem II (simplified)
The following are equivalent for two connected graphons U and W:
● UST(U) and UST(W) have the same distribution
● U and W are fractionally isomorphic ………………………….



  

Uniform spanning tree
Main Theorem II (simplified)
The following are equivalent for two connected graphons U and W:
● UST(U) and UST(W) have the same distribution
● U and W are fractionally isomorphic ………………………….

1

GWB(1)

G
W

B(1)
G

W
B(1)

G
W

B(1)

UST(U)

      U



  

Uniform spanning tree
Main Theorem II (simplified)
The following are equivalent for two connected graphons U and W:
● UST(U) and UST(W) have the same distribution
● U and W are fractionally isomorphic ………………………….

1

GWB(1)

G
W

B(1)
G

W
B(1)

G
W

B(1)

UST(U)

      U 0.3

GWB(1)

G
W

B(1)
G

W
B(1)

G
W

B(1)

UST(W)

      W



  

Uniform spanning tree
Main Theorem II (simplified)
The following are equivalent for two connected graphons U and W:
● UST(U) and UST(W) have the same distribution
● U and W are fractionally isomorphic up to multiple

(“affinely fractionally isomorphic”)
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