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The talk iIn 3 minutes

Two models: (a) Erdos—Rényi random graphs
and inhomogeneous versions thereof, (b)
uniform spanning tree.

Using the language of dense graph limits, we
characterize when two dense graph give a
similar distribution of these random subgraphs.
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Program

Probability recap (Poisson distribution, Galton-Watson branching processes)
Erdos—Reéenyi random graphs and component structure

Bollobas-Janson-Riordan inhomogeneous random graphs
and component structure

Main Theorem |
Graph and graphon fractional isomorphism
Uniform spanning tree

Main Theorem Il



Poisson distribution

Definition: A=0. Poisson(A) is INo-valued distribution

Poisson Distribution (A = 3.5)

exp(—A)A\F
k!

OOOOOO

......

* Key property: Poisson(A) is limit of Binomial(n,A/n)



Galton-Watson branching process

(only Poissonian case)

Definition: GWB(A)

A=3.5

e

* Key property: For A<1, GWB()) survives with prob=0
For A>1, GWB(A) survives with prob s(A)€(0,1)



Erdos—Rényi random graphs
G(n,p) n fixed vertices {1,2,...,n}

each pair forms an edge with
prob p

p=0.3,0.7, .... Easy; G(n,p) Is connected aas, ...
p = 1//n, log n/n, constin: Harder

Erdos—Rényi 1959: Phase transition in G(n,p)
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omponent structure in G(n,p)]

ag .

Erd6s-Rényi 1959 (“the” phase transition)

7 thay Vélug

For c<1, G(n,c/n) has largest compone'ﬁt,,.f;f\”i'{x N
of order ®(log n). e
For c>1, G(n,c/n) has largest compoﬁé f:t

of order (s(c)xo(1))n. |

Early proofs enumerative. Karp 1990: Lets use GW branching processes.



Component structure in G(n,3.5/n)

G(n,3.5/n)
What is the neighborhood structure of vertex 1?

1 W
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What is the neighborhood structure of vertex 1?
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O 50 What is the size of the giant component?
= Number of vertices in a giant component



Component structure in G(n,3.5/n)

What is the neighborhood structure of vertex 1?
1 N
VAN

/ N
-"GWB(3.5)

O What is the size of the giant component?
50 _ . : .
= Number of vertices in a giant component
= n x survival probability of GW(3.5)
= (s(c)xo(1))n



Bollobas-Janson-Riordan 2005
subsequent work by B., Borgs., Chayes, J., R.

 Main idea G(n,3.5/n) ~ G(n,WIn), where
W:[0,1]°=» [0,999] is a “symmetric kernel”.
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Generating G(n,W/n)

 Vertex set{l,2,...,n} o
4

* Generate x1, Xz, ..., Xo€[0,1] at random 00) |

P
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(1,1)



Generating G(n,W/n)

 Vertex set{l,2,...,n}

* Generate x1, X2, ..., X»€[0,1] at random

Make { i, } an edge with probability W(X;,X;)/n
©

_—

{ We need n =999 J

—

(1,1)




Generating G(n,W/n)

« Vertex set{1,2,...,n} d X
2 5

* Generate xi, X2, ..., Xp€[0,1] at random (0,0) ¢ ¢ (0,1)

« Make {ij} an edge with probability W(x;x)/n

(1,0) (1,2)




Component structure in G(n,W/n)

Bollobas-Janson-Riordan 2005

Neighborhood structure of vertex 1?

* In G(n,3.5/n) ... GWB(3.5)
* InG(n,W/n) ... GWB(W)



Component structure in G(n,W/n)

X1

Bollobas-Janson-Riordan 2005

Neighborhood structure of vertex 1?
GWB(W) B type=0.42 (at random in [0,1])
?




Component structure in G(n,W/n)

X1

Bollobas-Janson-Riordan 2005

Neighborhood structure of vertex 1?
GWB(W) B type=0.42 (at random in [0,1])
?

deg(x,)=] W(x,,y|dy



Component structure in G(n,W/n)

Bollobas-Janson-Riordan 2005 0 ¢

Neighborhood structure of vertex 1?

GWB(W) B type=0.42 (at random in [0,1])

?




Component structure in G(n,W/n)

Bollobas-Janson-Riordan 2005 0 ¢

Neighborhood structure of vertex 1?

GWB(W) Aypew.ﬂ (at random in [0,1])
0.12
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Component structure in G(n,W/n)

X1

Bollobas-Janson-Riordan 2005 0 ¢
|
([ )

Neighborhood structure of vertex 1?

GWB(W) N=0.42 (at random in [0,1])
0.12

0.43™ 0.53




Component structure in G(n,W/n)

Bollobas-Janson-Riordan 2005

o)
Neighborhood structure of vertex 1? I'
GWB(W) mp'e=0.42 (at random in [0,1])
043" 0.53




Component structure in G(n,W/n)

Bollobas-Janson-Riordan 2005

Neighborhood structure of vertex 1?

GVV(B!V‘\)/) type=0.42 (at random in [0,1])

N af 7// T
V Summary:
-\ * Generate type of root in [0,1] at random S
( * For each particle of given type x<]0,1],
N * Generate its children according to Poisson . /
‘e point process with intensity W(x,o0). N -
g (Distribution of the number is Poisson(deg(x)). /’

~ _ - -



Component structure in G(n,W/n)

Bollobas-Janson-Riordan 2005

Neighborhood structure of vertex 1?

GWB(W) MﬁOAZ (at random in [0,1])
?

0.43% 0.53
?2 ?

Importance: Let s(W) be the probability of survival of GWB(W).
Then the largest component in G(n, W/n) is of size (s(W)+o(1))n.



Examples
0.5

0.5 0.25 0.75

7

0.8

Definition:
* Generate type of root in [0,1] at random
* For each particle of given type x<]0,1]:
Generate its children according to Poisson point process with intensity W(x,o).



Examples
0.5

0.5 0.25 0.75
4
0.8
4
0.42 0.42
I 0.12 0.19
Definition:

* Generate type of root in [0,1] at random
* For each particle of given type x<]0,1]:
Generate its children according to Poisson point process with intensity W(x,o).



Examples
0.5

0.5 0.25 0.75

4
0.8
4
42
GWB(0.8) 0
0.19
Definition:

* Generate type of root in [0,1] at random
* For each particle of given type x<]0,1]:
Generate its children according to Poisson point process with intensity W(x,o).



Examples
0.5

0.5 0.25 0.75
4
0.8
4
GWB(0.8) GWB(3.5) 0.42
0.19
%2 %%, 20 45%0:%05%; %9, %% %2 %%
Definition:

* Generate type of root in [0,1] at random
* For each particle of given type x<]0,1]:
Generate its children according to Poisson point process with intensity W(x,o).



Examples
0.5

0.5 0.25 0.75

v 4
0.8

4

0.42
GWB(0.8) GWB(3.5) GWB(3.5)

0.19

0.‘900.;{? 0.9) 0.9(9

Definition:

* Generate type of root in [0,1] at random
* For each particle of given type x<]0,1]:
Generate its children according to Poisson point process with intensity W(x,o).



Examples
0.5

0.5 0.25 0.75

7 4
0.8
4
GWB(0.8) GWB(3.5) GWB(3.5) 0.25*GWB(e=3,0=1)
+0.75*GWB(0=3,e=1)
Definition:

* Generate type of root in [0,1] at random
* For each particle of given type x<]0,1]:
Generate its children according to Poisson point process with intensity W(x,o).



Main theorem |

H., Hnhg, Limbach 2024

For two kernels U, W, the following are equivalent

* GWB(U) and GWB(W) have the same distribution,
* U and W are fractionally isomorphic.



Fractional isomorphism of graphs

Idea: Relaxation of isomorphism. If two graphs are isomorphic
then they have the same degree sequence. lterate.

Tinhofer 1986, Ramana-Scheinerman-Uliman 1994

Color refinement algorithm:

C OT >




Fractional isomorphism of graphs

Idea: Relaxation of isomorphism. If two graphs are isomorphic
then they have the same degree sequence. lterate.

Tinhofer 1986, Ramana-Scheinerman-Uliman 1994

\\\

Color refinemeﬁ Vi={deg=k}




Fractional isomorphism of graphs

Idea: Relaxation of isomorphism. If two graphs are isomorphic
then they have the same degree sequence. lterate.

Tinhofer 1986, F/V4,-(v2.-1,V4.-1,V7:2)Z ran-Ullman 1994

* degreeis 4

. * degreeinto V2is 1
Color refinemer . jcqree into Vs is 1

. degree into V7is 2 H




Fractional isomorphism of graphs

Idea: Relaxation of isomorphism. If two graphs are isomorphic
then theyst

Tinhofe
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then theyst
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Fractional isomorphism
For graphs:

G and H are fractionally isomorphic, if:

* The color refinement algorithm gives the same output
* The number of copies of each tree is the same

* A= P*'AgP for a bistochastic matrix P



Fractional isomorphism
For graphs:

G and H are fractionally isomorphic, if:

* The color refinement algorithm gives the same output

* The number of copies of each tree is the same X1
* A= P*'AgP for a bistochastic matrix P

For symmetric kernels:
Grebik, Rocha 2022

“Fractional isomorphism of graphons”
Counterparts to the above
Key: Degree has counterpart

deg(x,)=[ W|x,,y|dy



Fractional isomorphism of symm kernels

coupling
=measure preserving

U bijection W

=




Fractional iIsomorphism of symm kernels

uﬁ:ﬁj A

coupling
=measure preserving

U bijection W

B cwe) cwaWw) =

Main Theorem I: ﬁGWB(U) and GWB(W) have the same distribution
U and W are fractionally isomorphic



Fractional isomorphism of symm kernels

X1 V1
A §

I

|
U

B cwe) cwaWw) =

Main Theorem I: IGWB(U) and GWB(W) have the same distribution
U and W are fractionally isomorphic



Fractional isomorphism of symm kernels
X1 V1
N

'}
, U

AGWB(U) GWB(W) J.\,

Main Theorem I: IGWB(U) and GWB(W) have the same distribution
U and W are fractionally isomorphic

W




Fractional isomorphism of symm kernels

X1 V1

i

AGWB(U) GWB(W) J.\,

Main Theorem I: IGWB(U) and GWB(W) have the same distribution
U and W are fractionally isomorphic

W




Uniform spanning tree

Definition: G connected graph. 7(G)={all spanning trees of G}
UST(G)...uniform measure on J(G)

Probability/statistical physics:
* electrical networks, Wilson’s algorithms, Aldous-Broder algorithm
» 2D lattices, Schramm-Loewner evolution, scaling limit, SLE(8)



Uniform spanning tree

Definition: G connected graph. T(G)={all spanning trees of G}
UST(G)...uniform measure on T(G)

Probability/statistical physics:
* electrical networks, Wilson's algorithms, Aldous-Broder algorith
2D lattices, Schramm-Loewner evolution, scaling limit, SLE(8)

Here: dense graphs

Theorem (Kolchin 1977 / Grimmet 1980):
UST(K,) around vertex 1 converges to
GWB(1) conditioned on survival, n—co, GWB(1)



Uniform spanning tree

Theorem (Kolchin 1977 / Grimmet 1980) Local structure of K,

Borgs, Chayes, LoVvasz, Sés, Szegedy, Vesztergombi 2004-2012,
Description of dense graphs using “graphons”

Theorem (Hladky, Nachmias, Tran, 2018)

Suppose that (Gp), is a sequence of connected graphs that
converges to a graphon W. Suppose that W has positive
minimum degree.

Then UST(G,) around a randomly chosen vertex converges
to a branching process UST(W).



Example

Hladky-Nachmias-Tran, 2018, simplified
(Gn), converges to W.
Then UST(G,) around a randomly chosen vertex converges to UST(W).

Kn/4,3n/4 W UST(VV)

025 0.75 0.25 + 0.75

=GWB(e=3,0=1/3)
=GWB(e=1/3,e=3)



Uniform spanning tree

Main Theorem II (simplified)
The following are equivalent for two connected graphons U and W:

 UST(U) and UST(W) have the same distribution
* U and W are fractionally isomorphic ........ccccoeevieennnnnen.
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Main Theorem II (simplified)
The following are equivalent for two connected graphons U and W:

 UST(U) and UST(W) have the same distribution
* U and W are fractionally isomorphic ........ccccoeevieennnnnen.




Uniform spanning tree

Main Theorem II (simplified)
The following are equivalent for two connected graphons U and W:

 UST(U) and UST(W) have the same distribution
* U and W are fractionally isomorphic ........ccccoeevieennnnnen.

GWB(1)



Uniform spanning tree

Main Theorem II (simplified)
The following are equivalent for two connected graphons U and W:
 UST(U) and UST(W) have the same distribution
* U and W are fractionally isomorphic up to multiple
(“affinely fractionally isomorphic”)
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