PROOFS TO "SOLVING INTERVAL LINEAR SYSTEMS"

οy

J. Rohn, Prague

The sole purpose of this paper consists in presenting the proofs to eleven theorems given in the author's paper "Solving interval linear systems" [0]. The reader is assumed to be familiar with that paper; notations, formulae and references introduced there are used here without further explanations.

1. Theorem O

Theorem O. Let for each y € Y the equation

 $A_{ye}x^{1} - A_{yf}x^{2} = b_{y}$

have a nonnegative solution x_y^1 , x_y^2 . Then for each $A \in A^T$ and $b \in b^T$, the equation Ax = b has a solution belonging to $Conv \{x_y^1 - x_y^2; y \in Y\}$.

Comment. As it will be seen from the proof, the theorem is valid for arbitrary num interval matrices (if A_{yz} is defined by $A_{yz} = A_c - T_y \Delta T_z$, $y \in Y_n$, $z \in Y_m$). The proof is constructive: an algorithm for computing a solution to Ax = b directly from the vectors $x_y^1 - x_y^2$ ($y \in Y$) is given below. For its description, we give two definitions. First we define by induction an ordering for each set $Y_j = \{y \in R^j; |y_k| = 1 \ (k = 1, ..., j)\}$ ($j \in N$): (i) the ordering of Y_1 is 1, -1; (ii) if $y_1, ..., y_2j$ is the ordering of Y_j , then $(y_1, 1), ..., (y_2j, 1)$,

AMS Subject Classifications: 65G10, 90C33

 $(y_1,-1),\ldots,(y_2,-1)$ is the ordering of Y_{j+1} . Second, given a sequence a_1,\ldots,a_{2m} , then each pair a_k , a_{m+k} $(k=1,\ldots,m)$ is called a conjugate pair.

Algorithm (computing a solution to Ax = b).

Step 0. For each $y \in Y$ set $x_y = x_y^1 + x_y^2$, $r_y = Ax_y - b$ and order the pairs (x_y, r_y) in the ordering of Y.

Step 1. Set j = n.

Step 2. For each conjugate pair (x_y, r_y) , (x_y, r_y) in the current sequence compute

$$\lambda = \begin{cases} (r_{y'})_{j}/(r_{y'} - r_{y})_{j} & \text{if } (r_{y'})_{j} \neq (r_{y})_{j} \\ 1 & \text{otherwise} \end{cases}$$

and set

$$x_y = \lambda x_y + (1 - \lambda) x_{y},$$

$$r_y = \lambda r_y + (1 - \lambda) r_{y},$$

Step 3. Drop out the second half of the sequence.

Step 4. If there remains a single pair (x_y, r_y) , terminate. x_y solves Ax = b (and $r_y = 0$).

Step 5. Otherwise set j = j - 1 and go to step 2.

<u>Proof.</u> For the purposes of the proof, we shall extend the pairs (x_y, r_y) to quadruples (x_y, r_y, x_y^1, x_y^2) , where x_y^1 , x_y^2 have their original meaning in step 0 and are updated in step 2 by

$$x_y^1 = \lambda x_y^1 + (1 - \lambda) x_{y}^1$$

 $x_y^2 = \lambda x_y^2 + (1 - \lambda) x_{y}^2$

From this we see that $x_y = x_y^1 - x_y^2$, $r_y = Ax_y - b$ hold throughout the algorithm. Below we shall show that each $\lambda \in [0,1]$ so that x_y^1 , x_y^2 remain nonnegative throughout. We shall prove by induction on $j = n, \ldots, 1$ that after completing step 2 there always holds

- 19 - Rohn

$$(A_{ye}x_{y}^{1} - A_{yf}x_{y}^{2})_{i} = (b_{y})_{i}$$
 $(i = 1,...,j-1)$ (a)
 $(Ax_{y})_{i} = b_{i}$ $(i = j,...,n).$

If j = n, then at the beginning of step 2 we have

$$A_{ye}x_{y}^{1} - A_{yf}x_{y}^{2} = b_{y}$$
 (b)

for each $y \in Y$ by assumption; if j < n, then for each $y \in Y$ corresponding to a quadruple in the current sequence we have at the beginning of step 2

$$(A_{ye}x_{y}^{1} - A_{yf}x_{y}^{2})_{i} = (b_{y})_{i}$$
 $(i = 1,...,j)$ (c)
 $(Ax_{y})_{i} = b_{i}$ $(i = j+1,...,n)$

due to the inductive assumption. Notice that (b) is a special case of (c) for j=n; thus for each j we may assume (c) to hold at the beginning of step 2. Since $y_i=y_i'$ for each $i\neq j$ (by ordering), the updated values x_y^{\bigstar} , x_y^{\dagger} , x_y^{\dagger} of x_y , x_y^1 , x_y^2 satisfy

$$(A_{ye}x_{y}^{1*} - A_{yf}x_{y}^{2*})_{i} = (b_{y})_{i}$$
 $(i = 1,...,j-1)$ (d)
 $(Ax_{y}^{*})_{i} = b_{i}$ $(i = j+1,...,n)$.

$$\lambda = (Ax_y - b)_j/(Ax_y - Ax_y)_j$$

we get

$$(Ax_{y}^{*})_{j} = b_{j}; \qquad (e)$$

if $(r_y)_j = (r_y)_j$, then both the values are 0 and from $(Ax_y)_j = (Ax_y)_j = b_j$ we again obtain (e), which together with (d) gives (a). Further, $(r_y)_j \ge 0 \ge (r_y)_j$ implies $\lambda \in [0,1]$, hence $r_y^{1*} \ge 0$, $x_y^{2*} \ge 0$ and x_y^* is a convex combination of x_y , x_y . This concludes the inductive proof; hence from (a) for j = 1 we obtain $Ax_y = b$, thus justifying step 4. Since in step 0 we begin with vectors

 $x_y^1 - x_y^2$ (yeY) and at each step 2 a convex combination of two previously computed vectors is taken, the final result must belong to $Conv\{x_y^1 - x_y^2 ; y \in Y\}$, which completes the proof.

2. Theorems 1 and 2

We shall first prove the lemma; notice that assertion (i) is gencralized here.

Lemma 1. Let A be a regular num matrix and let D_j be an num matrix whose all rows except the j-th are zero. Let $\mathcal{L} = 1 + (D_j A^{-1})_{jj}$. Then we have:

- (i) A + D_j is regular if and only if $4 \neq 0$; in this case, $(A + D_j)^{-1} = A^{-1} \frac{1}{4} A^{-1} D_j A^{-1},$
- (ii) if $\mathbf{4} \leq 0$, then A + tD_j is singular for some $\mathbf{t} \in (0,1]$.

Proof. Let $G = D_j A^{-1}$, then $A + D_j = (E + G)A$ and $\det(E + G) = \emptyset$. Hence $A + D_j$ is regular iff $\emptyset \neq 0$. Since $G^2 = (\emptyset - 1)G$, we have $(A + D_j)(A^{-1} - \frac{1}{2}A^{-1}G) = E - \frac{1}{2}G + G - \frac{1}{2}G^2 = E,$ which proves (i). If $\emptyset \leq 0$, then there is a $t \in (0,1]$ with $1 + tG_{jj} = 0$. Then $A + tD_j = (E + tG)A$ is singular since $\det(E + tG) = 1 + tG_{j,j} = 0$.

Before proving theorems 1 and 2, we state this

Theorem A. Let A^{I} be regular. Then for each $A_1, A_2 \in A^{I}$, both $A_1A_2^{-1}$ and $A_1^{-1}A_2$ are P-matrices.

<u>Proof.</u> 1) First we prove that all leading principal minors m_1, \dots, m_n of $A_1 A_2^{-1}$ are positive. Put $D = A_1 - A_2$, so that $A_1 A_2^{-1} = E + DA_2^{-1}$, and let D^j ($j \in \mathbb{N}$) be the matrix whose first j rows are identical with those of D and the remaining ones are zero. Then

 $m_j = \det(E + D^j A_2^{-1})$ for each j. We shall prove by induction that $m_j > 0$ (j \in N).

- 1.1) j=1: since $m_1=\det(E+D^1A_2^{-1})=1+(D^1A_2^{-1})_{11}$, the lemma implies $m_1>0$ for otherwise A_2+tD^1 would be singular for some $t\in(0,1]$, a contradiction.
- 1.2) Let $m_{j-1} > 0$, $2 \le j \le n$. Consider the matrix $(E + D^j A_2^{-1})(E + D^{j-1} A_2^{-1})^{-1} = E + (D^j D^{j-1}) A_2^{-1} (E + D^{j-1} A_2^{-1})^{-1}$. Taking determinants on both sides, we obtain

$$\frac{m_{j-1}}{m_{j-1}} = 1 + ((D^{j} - D^{j-1})A_{2}^{-1}(E + D^{j-1}A_{2}^{-1})^{-1})_{jj} .$$

If the right-hand side were nonpositive, then according to lemma 1 the matrix $\mathbb{A}_2 + \mathbb{D}^{j-1} + \mathrm{t}(\mathbb{D}^j - \mathbb{D}^{j-1}) = (\mathbb{E} + \mathbb{D}^{j-1}\mathbb{A}_2^{-1} + \mathrm{t}(\mathbb{D}^j - \mathbb{D}^{j-1})\mathbb{A}_2^{-1})\mathbb{A}_2$ would be singular for some $\mathbf{t} \in (0,1]$, a contradiction. Hence

$$\frac{m_j}{m_{j-1}} > 0$$

so that m_{j} > 0 due to the inductive assumption.

- 2) Second we prove that each principal minor of $A_1A_2^{-1}$ is positive. Consider a principal minor formed from rows and columns k_1,\ldots,k_r . Let P be any permutation matrix with $P_{k_jj}=1$ ($j=1,\ldots,r$). Then the above minor is equal to the r-th leading principal minor of $P^TA_1A_2^{-1}P=(P^TA_1P)(P^TA_2P)^{-1}$. Since the interval matrix $\{P^TA_1P, A\in A^T\}$ is regular, all leading principal minors of $(P^TA_1P)(P^TA_2P)^{-1}$ are positive due to 1).
- 3) To prove that $A_1^{-1}A_2$ is also a P-matrix, consider the interval matrix $(A^I)^T = \{A^T; A \in A^I\}$; according to 2), its regularity implies that $(A_2^T)(A_1^T)^{-1} = (A_1^{-1}A_2)^T$ is a P-matrix, hence so is $A_1^{-1}A_2$.

Theorems 1 and 2 are now easy consequences of theorems 0 and A.

Theorem 1. A^{I} is regular if and only if A_{y} is a P-matrix for each $y \in Y$.

<u>Proof.</u> "Only if": follows from theorem A. "If": take y \(\)Y, j \(\) N. Then according to the result by Samelson, Thrall and Wesler [12], the linear complementarity problem $x^+ = A_y x^- + A_{ye}^{-1} e_j$ has a solution x_y , hence $A_{ye} x_y^+ - A_{yf} x_y^- = e_j$. Now the regularity follows from theorem 0 since $A_x = e_j$ has a solution for each $A \in A^T$ j \(\)N.

Theorem 2. Let A^{I} be regular. Then for each $y \in Y$, the equation $A_{ye}x^{+} - A_{yf}x^{-} = b_{y}$ (f)

has exactly one solution x_y . Moreover, we have $x_y \in X$ for each $y \in Y$ and Conv $X = Conv \{x_y ; y \in Y\}$; especially,

$$\underline{x} = \min \{x_y ; y \in Y\}$$
 $\overline{x} = \max \{x_y ; y \in Y\}$.

<u>Proof.</u> From theorem 1 and from the result by Samelson et al. it follows that for each $y \in Y$ the equation $x^+ = A_y x^- + w_y$ has exactly one solution x_y , thus satisfying (f). From the equivalent equation $A_{yz}x_y = b_y$, $z = sgn x_y$, we see that $x_y \in X$. Now, according to theorem 0, for each $A \in A^T$, $b \in b^T$ the (unique) solution to Ax = b belongs to $X_1 = \text{Conv}\{x_y; y \in Y\}$, hence $X \subset X_1$ and $X \subset X_1$, implying $X \subset X_1$. So $X \subset X_1$ are min $X \subset X_1$ and $X \subset X_1$ similarly for $X \subset X_1$.

- 23 - Rohn

3. Theorems 3 and 5

Since theorem 5 is a direct consequence of theorem 3, it is placed here just after this theorem, the proof of theorem 4 to be given in the next section. Theorem 3 is proved here in a slightly weaker form.

Theorem 3. Let \mathbf{A}^{I} be regular. Then for each $i \in \mathbb{N}$ we have: (i) $\underline{\mathbf{x}}_{i} = (\mathbf{x}_{y})_{i}$ for some $y \in \mathbb{Y}$ satisfying $(\mathbf{A}_{yz}^{-1}\mathbf{T}_{y})_{i} \leq \mathbf{0}^{\mathrm{T}}$, where $\mathbf{T}_{z}\mathbf{x}_{y} \geqslant \mathbf{0}$,

(ii) $\overline{x}_i = (x_y)_i$ for some $y \in Y$ satisfying $(A_{yz}^{-1}T_y)_i \geqslant 0^T$, where $T_z x_y \geqslant 0$.

<u>Proof.</u> We prove (i) only; (ii) is analogous. Let $i \in \mathbb{N}$.

1) First we prove the theorem for the case $\boldsymbol{\delta}>0$. Theorem 2 assures the existence of a $y \in Y$ such that $\underline{x}_i = (x_y)_i$. Take a $j \in \mathbb{N}$, set $y' = y - 2y_j e_j$ (i.e. $y'_j = -y_j$ and $y'_k = y_k$ for $k \neq j$) and consider the system $A_{y',z}x' = b_{y'}$, $z = \operatorname{sgn} x_y$. Since $A_{y',z} = A_{yz} + 2y_j T_{e_j} \Delta^T z'$, we may use lemma 1 for evaluating $A_{y',z}^{-1}$, which after a lengthy computation gives $x' = x_y - \frac{2}{2}(\Delta |x_y| + \delta)_j y_j (A_{yz}^{-1})_{.j}$. Since d > 0, $\delta > 0$ and $x'_i \geqslant \underline{x}_i = (x_y)_i$, we obtain $y_j (A_{yz}^{-1})_{ij} \leq 0$. Since j was arbitrary, we get $(A_{yz}^{-1}T_y)_i \leq 0^T$.

2) Next let $\delta \geqslant 0$. For $k=1,2,\ldots$, let $\delta_k = \delta + \frac{1}{k}e \geqslant 0$, $b_k^I = [b_c - \delta_k, b_c + \delta_k]$ and let $[\underline{x}^k, \overline{x}^k]$ be the interval solution to $A^I x = b_k^I$. According to 1), for each k we have $\underline{x}_i^k = (x_y^k)_i$ (where x_y^k denotes the vector x_y for the system $A^I x = b_k^I$), $(A_{y_k^2 k}^I T_{y_k})_i \le 0^T$, $T_{z_k} x_y^k \geqslant 0$. Since Y is finite and each x_y^k belongs to the compact solution set of $A^I x = b_1^I$, there exist $y \in Y$, $z \in Y$ and an infinite subsequence $\{k_j\}$ such that $y_k = y$, $z_k = z$ for

each k_j and $\begin{Bmatrix} k \\ j \end{Bmatrix}$ is convergent, $k_y^j \rightarrow x$. Since $k_y z^k y^j = b_y + \frac{1}{k_j} T_y e$, $T_z x_y^j \geqslant 0$ for each k_j , taking $k_j \rightarrow \infty$ we obtain $k_y z^k = b_y$, $T_z x \geqslant 0$, hence $x = x_y$. Since $(x_y^j)_i = \underline{x}_i^j \rightarrow \underline{x}_i$ and $(x_y^j)_i \rightarrow (x_y)_i$, we have $\underline{x}_i = (x_y)_i$, $(x_y^{-1}T_y)_i \leq 0^T$, $T_z x_y \geqslant 0$.

Theorem 5. Under the above [in [0]] notations, we have

$$\underline{x}_{i} = \min \left\{ (x_{y})_{i} ; y \in -Y_{i} \right\}$$

$$\overline{x}_{i} = \max \left\{ (x_{y})_{i} ; y \in Y_{i} \right\} ,$$

$$(i \in \mathbb{N})$$

hence also

$$\underline{x} = \min \left\{ x_y ; y \in Y_0 \right\}$$

$$\overline{x} = \max \left\{ x_y ; y \in Y_0 \right\}.$$

<u>Proof.</u> We shall confine ourselves only to the proof of the formula for \underline{x}_i . According to theorem 3, $\underline{x}_i = (x_y)_i$ for some $y \in Y$ satisfying $(A_{yz}^{-1})_{ij}y_j \leq 0$ ($j \in \mathbb{N}$). If $\underline{B}_{ij} > 0$, then $(A_{yz}^{-1})_{ij} > 0$, hence $y_j = -1$; if $\underline{B}_{ij} < 0$, then $y_j = 1$. Thus $y \in -Y_i$.

Next we prove three unnumbered statements following theorem 5 in [0]. Let (8) hold; then for each $A \in A^{I}$, using $\Delta_{o} = A_{c} - A$, $|\Delta_{o}| \leq \Delta$, we may expand A^{-1} into Neumann series $A^{-1} = (A_{c} - \Delta_{o})^{-1} = (\sum_{i=0}^{\infty} (A_{c}^{-1} \Delta_{o})^{i}) A_{c}^{-1}$,

implying

 $|A^{-1} - A_c^{-1}| \leq (\sum_{l=1}^{\infty} D^{l}) |A_c^{-1}| = C |A_c^{-1}|.$ From this we have $A^{-1} \in [A_c^{-1} - C |A_c^{-1}|, A_c^{-1} + C |A_c^{-1}|]$, an estimation of the interval inverse. Second, if $C |A_c^{-1}| < |A_c^{-1}|$, then A^{l} is inverse-stable. Finally we prove that (8) holds for positively (even nonnegatively) invertible matrices. Assume for contrary that $r = P(D) = P(A_c^{-1} \Delta) > 1$. Then, due to the Perron-Frobenius theorem, $A_c^{-1} \Delta r = rx$ for some real $x \neq 0$, hence $(A_c - \frac{1}{r} \Delta)x = 0$, implying singularity; thus r < 1.

- 25 -

Rohn

4. Theorem 4

We shall grove the finiteness of algorithm 1 in a slightly more general form, proposed by M. Baumann, with step 0 being replaced by Step $0^{\frac{4}{5}}$ Select a $z \in Y$.

(in [0], we set z = e; here, z is arbitrary).

Theorem 4. Let A^{I} be regular. Then the algorithm [with step 0^{*}] is finite for each $y \in Y$.

 $\underline{\text{Proof.}}$ Let \boldsymbol{z}_0 be the initial vector \boldsymbol{z} in step 0 .

- 1) First assume that $z_0 = e$. Consider what is going on in the current step of the algorithm. Let $A_{yz}x = b_y$; put $x^1 = \frac{1}{2}(T_zx + x)$, $x^2 = \frac{1}{2}(T_zx x)$, then $(x^1)^Tx^2 = 0$, $x = x^1 x^2$, $T_zx = x^1 + x^2$ (but, generally, x^1 and x^2 need not be nonnegative). Then $A_{yz}x = A_{ye}x^1 A_{yf}x^2 = b_y$. Since $x_j^1 = 0$ ($z_j = -1$), $x_j^2 = 0$ ($z_j = 1$), we can see that x^1, x^2 is a basic solution to the system $x^1 = A_yx^2 + w_y$ with basic variables x_j^1 ($z_j = 1$), x_j^2 ($z_j = -1$). Moreover, since $x_j^2 = x_j^2 + x_j^2 = x_j^2 + x_j^2 = x_j^2$
- 2) Let z_0 be arbitrary. Together with our algorithm, started with z_0 , consider a parallel algorithm applied to the system $\widetilde{A}^I z = b^I$, $\widetilde{A}^I = \begin{bmatrix} A_c T_{z_0} \Delta & A_c T_{z_0} + \Delta \end{bmatrix}$, for the same y with the initial vector z = e. We shall prove by induction that at each step

the current values z, \widetilde{z} of both algorithms satisfy $T_z = T_z T_{z_0}$. This is clear for the initial step, when $z = z_0$, $\widetilde{z} = e$. Assuming validity in certain step, for the current solutions x, \widetilde{z} we have $\widetilde{A}_{y\overline{z}}\widetilde{x} = (A_c T_{z_0} - T_y \Delta T_z T_{z_0})\widetilde{x} = A_{yz} T_z \widetilde{x} = b_y = A_{yz} x$, hence $x = T_z \widetilde{x}$, thus also $k = \min\{j; z_j x_j < 0\} = \min\{j; \widetilde{z}_j \widetilde{x}_j < 0\}$, and the updated values z', \widetilde{z}' again satisfy $T_{z'} = T_{\overline{z}'} T_{z_0}$. Since \widetilde{A}^T is regular, the second algorithm terminates due to 1) in a finite number of steps with $T_z\widetilde{x} \geqslant 0$. Then $T_z x = T_z\widetilde{x} \geqslant 0$, and the first algorithm terminates at the same step.

For a verification of algorithm 2, let $z'=z-2z_ke_k$ be the updated vector z. Then $A_{yz'}=A_{yz}+2z_kT_y\Delta T_{e_k}$, where $T_y\Delta T_{e_k}$ has all columns except the k-th zero. We shall use an easily verifiable fact that lemma 1 holds in the same form also in this case if ω is given by $\omega=1+(A^{-1}D_j)_{jj}$. Then for $p=2z_kA_{yz}^{-1}T_y\Delta_{k}+e_k$ and $x'=A_{yz}^{-1}$, by we have $(A_{yz'}^{-1})_{k'}=\frac{1}{2}(A_{yz}^{-1})_{k'}$

hence pivoting on p_k in the tableau brings A_{yz}^{-1} , x to A_{yz}^{-1} , x'.

If $p_k \le 0$, then $A_{yz} + t(A_{yz} - A_{yz})$ is singular for some $t \in (0,1]$.

Next we prove the statement in parentheses following (3). Assume $D_{jj} \ge 1$ for some $j \in \mathbb{N}$. Put $y = -\text{sgn}(A_c^{-1})_j$, then $1 + (A_c^{-1}T_y\Delta T_{e_j})_{jj} = 1 - D_{jj} \le 0$, hence $A_c + tT_y\Delta T_{e_j} \in A^I$ is singular for some $t \in (0,1]$.

- 27 -

Rohn

5. Theorems 6-10

Theorem 6. A^{I} is regular if and only if for each $y \in Y$ the matrix equation

$$B = D_{y} |B| + A_{c}^{-1}$$
 (3)

has a solution $\boldsymbol{B}_{\boldsymbol{y}}.$ If this condition is met, then $\boldsymbol{B}_{\boldsymbol{y}}$ is unique for each y \in Y. Moreover, for each $\lambda \in \lambda^{I}$ there exist nonnegative diagonal matrices L_y (y $\in Y$) satisfying $\sum_{y \in Y} L_y = E$ such that

$$A^{-1} = \sum_{y \in Y} \beta_y L_y$$
holds; especially, we have

$$\underline{B} = \min \left\{ B_{y} ; y \in Y \right\}$$

$$\overline{B} = \max \left\{ B_{y} ; y \in Y \right\}.$$
(j)

Proof. Let A be regular. Then, according to theorem 2, for each $y \in Y$ and each $j \in N$ there exists a unique $x_{y,j}$ such that

$$A_{ye}x_{yj}^{+} - A_{yf}x_{yj}^{-} = e_{j} . \tag{k}$$

Defining B_y by $(B_y)_{i,j} = x_{i,j}$, we obtain

$$A_{ye}B_{y}^{+}-A_{yf}B_{y}^{-}=E,$$

which can be easily rearranged to (g). Conversely, let (g) have a solution B_y for each $y \in Y$. Defining x_{yj} by $x_{yj} = (B_y)_{.j}$, we have (k). Thus, according to theorem 0, $Ax = e_{ij}$ has a solution for each $A \in A^{\tilde{I}}$, $j \in \mathbb{N}$, implying regularity of $A^{\tilde{I}}$. Furthermore, again from theorem 0, $(A^{-1})_{i,j}$, being a solution to $A^{I}x = e_{j}$, can be expressed as

 $\begin{array}{c} (\mathbf{A}^{-1})_{\cdot,j} = \sum_{\mathbf{y} \in Y} \boldsymbol{\lambda}_{\mathbf{y}j}^{\mathbf{X}} \mathbf{y}j \\ \text{with } \boldsymbol{\lambda}_{\mathbf{y}j} \geqslant 0, \sum_{\mathbf{y} \in Y} \boldsymbol{\lambda}_{\mathbf{y}j} = 1. \text{ Now if we define } \mathbf{L}_{\mathbf{y}} \text{ by } (\mathbf{L}_{\mathbf{y}})_{jj} = \boldsymbol{\lambda}_{\mathbf{y}j} \\ (j \in \mathbb{N}) \text{ and } (\mathbf{L}_{\mathbf{y}})_{ij} = 0 \text{ for } i \neq j, \text{ we obtain (h). Finally,} \end{array}$

 $\underline{\beta}_{,j} = \min \left\{ x_{yj}; y \in Y \right\} = \min \left\{ (\beta_y)_{,j}; y \in Y \right\}$ which gives (j); similarly for $\overline{\mathbb{B}}$.

Theorem 7. Let A^{I} be regular and let i, j \in N. Then, we have:

- (i) $\underline{\beta}_{ij} = (A_{yz}^{-1})_{ij}$ for some $y, z \in Y$ satisfying $(A_{yz}^{-1}T_y)_i \le 0^T$, $(T_zA_{yz}^{-1})_{ij} \ge 0$,
- (ii) $\overline{B}_{ij} = (A_{yz}^{-1})_{ij}$ for some $y, z \in Y$ satisfying $(A_{yz}^{-1}T_y)_{i.} \ge 0^T$, $(T_zA_{yz}^{-1})_{.j} \ge 0$.

<u>Proof.</u> Take i, j \in N. Since $[\underline{B}_{.j}, \overline{B}_{.j}]$ is the interval solution to $A^{T}x = e_{j}$, from theorem 3 we get $\underline{B}_{ij} = (x_{y})_{i} = (A_{yz}^{-1})_{ij}$ for some y satisfying $(A_{yz}^{-1}T_{y})_{i} \leq 0^{T}$, where $T_{z}x_{y} \geq 0$, i.e. $(T_{z}A_{yz}^{-1})_{.j} \geq 0$; analogously for \overline{B}_{ij} .

Theorem 8. A^{I} is regular if and only if for each $y \in Y$ and each $j \in \mathbb{N}$ there exists a $z \in Y$ such that $(T_{z}A_{yz}^{-1})_{\cdot,j} \geqslant 0$.

<u>Proof.</u> Let A^I be regular. Then for each $y \in Y$ and each $j \in N$ there exists a x_{yj} such that (k) holds. Putting $z = sgn x_{yj}$, we have $A_{yz}x_{yj} = e_j$, hence $(T_zA_{yz}^{-1})_{,j} = T_zx_{yj} \ge 0$. Conversely, letting $(B_y)_{,j} = (A_{yz}^{-1})_{,j}$ ($y \in Y, j \in N$), we see that B_y satisfies (g); hence A^I is regular due to theorem 6.

Unfortunately, theorem 9 is not valid in the form given in [0]; its "only if" part is not true. In order to reformulate it correctly, let us introduce the type of a matrix A to be a matrix Z satisfying $Z_{ij} = 0$ if $A_{ij} = 0$ and $Z_{ij} = \sup_{A_{ij}} A_{ij}$ otherwise. Then, by definition, A^{I} is inverse-stable iff all the matrices A^{-1} , $A \in A^{I}$, have the same type Z, $\{Z\} > 0$.

Theorem 9. A^{I} is inverse-stable if and only if all the A_{yZ}^{-1} 's are of the same type 2, |Z| > 0.

<u>Proof.</u> Only the "if" part is to be proved; put $z_j = Z_{.j}$ (j∈N), then from $(T_{Z_j}A_{yZ_j}^{-1})_{.j}>0$ (y∈Y,j∈N) we obtain regularity of A^I in view of theorem 3. Next, as in the proof of theorem 5, for a given

 $A \in A^{I}$ we have

for some
$$\lambda_{yj} \ge 0$$
, $\sum_{y \in Y} \lambda_{yj}^{y}_{yj} = 1$. Since $x_{yj} = (A_{yz_{j}}^{-1})_{.j}$, there holds $T_{z_{j}}(A^{-1})_{.j} = \sum_{y \in Y} \lambda_{yj}^{T}_{z_{j}}(A_{yz_{j}}^{-1})_{.j} > 0$

for each $j \in \mathbb{N}$, hence A^{-1} is of the type Z.

Theorem 10. A regular interval matrix $A^{\rm I}$ is positively invertible if and only if $A_{\rm ef}^{-1}>0$.

<u>Proof.</u> By assumption, $(A_c + \Delta)^{-1} > 0$. In the light of the well-known Kuttler's theorem, it will suffice to show that $(A_c - \Delta)^{-1} > 0$. For each $j = 0,1,\ldots,n$, define $A_j \in A^T$ by

$$(A_j)_{\dot{1}} = \begin{cases} (\dot{A}_c - \Delta)_{\dot{1}}, & (i = 1, ..., j) \\ (\dot{A}_c + \Delta)_{\dot{1}}, & (i = j+1, ..., n). \end{cases}$$

We shall prove by induction that $A_j^{-1} > 0$ for each j. Since $A_0 = A_c + \Delta$, the first step follows from the assumption. Now let $A_{j-1}^{-1} > 0$ ($j \le n$). Let $D_j = A_j - A_{j-1}$, then all the rows of D_j are zero except the j-th which is equal to $-2 \Delta_j$. Hence lemma 1 gives

 $A_{j}^{-1} = (A_{j-1} + D_{j})^{-1} = A_{j-1}^{-1} - \frac{1}{d}A_{j-1}^{-1}D_{j}A_{j-1}^{-1}.$ Since $A_{j-1}^{-1} > 0$, $D_{j} \le 0$ and d > 0, we have $A_{j}^{-1} > 0$, concluding the induction. Hence $(A_{0} - \Delta)^{-1} = A_{0}^{-1} > 0$.

Notice that the proof goes through also for nonnegatively invertable interval matrices (A⁻¹ > 0 for each A \in A^I) if the condition is changed to "A⁻¹ > 0".

References

- [0] J. Rohn, Solving interval linear systems, in: "Herrn Professor Dr. Karl Nickel zum 60. Geburtstag gewidmet" (J. Garloff, A. Neumaier, D. Norbert, A. Schäfer, Eds.), Freiburg 1984, 419-432
- [1] [12] as in [0].

Author's address: J. Rohn, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 11800 Prague, Czechoslovakia