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The uole purpose of this puper consists in presenting the proofs
to eleven btheorsems Jiven in the author ‘s paper "Solving interval
linear systems" {0]. The reader is assumed to be familiar with that
paper; notations, formilue and references introduced there are used

here without further explanations.

1. Theorem O

Theorem Q. Let for each y€Y the equation

1 2
AL % = A x5 = b
ve vt oo, : .
. e i . Lo 1
have w nonnegative solution xy’ x&. Then for each A€ A~ and b&DLT,
. . X . 1 2
the equation ax = b has a solution belonzing to lJonv {Xy - i Y€ X}.

Comment. As it will be seen from the sroof, the theoren is valid

for arbitrary nsm interval matrices (af Ayz is defined by a =

yz
= Ac - *’L‘ya‘l‘z, W < zeYT). The proof is coanstructive: an algorithm
for computing a solution to ax = b directly fron the vectors 1; - 13

—

y€Y) is given below. For its description, we give two definitions.
Pirst we define by induction an ordering for each set Yj = {yeﬁ‘];

ly | =1 (x = 1,...,0} (j€M: (1) the ordering of ¥y is 1, =1;
(1) if Jyreens

=
b

y . i the ordering of Y., then (F~91)goeesy Hl)y
24d J e 2J
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(yl,-l),...,(y J,-l) is the ordering of Y Second, given a
2

j+1°

SEQUENCEe Ay yeesriy g then each nair dyy o

; e (8= 1een,m) is

called a4 conjugate pair.

alxorithm (computing a2 solution to Az = b).
e 1 2 .
Step 0. For each Y set x_ = x = X r =A% = b and
Step 0. yE Xy = ®p = Xy Poo= A%, and
order the pairs (xy,ry) in the ordering of Y.

Step 1. Set j = n. .
Step 2. For each conjugate pair (xy,ry),,(zyL,ry,) in the

current seguence compute

(ry,)‘]/(ryl - ry)] if (ry,)’] ?{ (ry).]

\ =

1 otherwise

and set
¥ = b 1 - X
y = Ayl A=y,
ry:)\ry+(l-}\)ry, .

Step 3. Drop out the second half of the segyuence.

Step 4. If there remains a single pair (xy,ry), terminate.
x. solves Ax = b {(and r_ = 0O).
¥y ( y )

Step 5. Otherwise set j = j - 1 and go to step 2.

Proof. For the purposes of the proof, we shall extend the pairs
] : o A2y vere . %2 na i i #in
(}.y,ry) to quadruples (Ay,ry,‘-‘y,,‘,y), where s ¥y Dave their orlgln,‘
meaning in step O and are updated in step 2 by

it X*} + (1 - 7\):“:3];,

i

=y
2 2 2
= =+ (1 - )\ p.4 .
xy o= A+ )ly’ ,
From this we see that xy = Fy - xy, ry = A:y - b hold throuzhout
the algorithm. Below we shzll show that each )\6[0,1] go that
Xl 2

- xy remain nonnegative throughout. We shall prove by induction
on j = N,...yl that after completing step 2 there always holds



. we gzet
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i

1 :
(a o2, 1yeeeyj=1) (2)

)l = (by)l (l
(Azy)i-b. (1 = Jyoesyn)e
If j = n, then at the beginning of step 2 we have
1 2 ;

A ¥ =4 35 =D (

ye'y T tyeTy T %y (b)
For each y€Y by assuaption; if j<¢n, then for each ye€Y corre—
sponding to a guadruvle in the current seqguence we have «t the

beginning of step 2

, 1 . 2 ; ;
(Ayel‘(y = Ayfy'y)i = (by)i (1 = 1,°--9J) (C)
(A}ly)i = bi (1= j4l,...,n)

due to the inductive assumption. Notice that (b) is a swvecial
case of (¢) for j = n; thus for each j we may assume (c) to hold

at the beginning of step 2. Bince y. = ! for euwch i i (by order-
I Y3 J J

ing), the updated values ;", }f:]/*, .\;5* of ‘V‘y’ ,]y_’ :rfl satisfy
(4,07 - Ayfxi*)i = (v), (i=1,ee.,3-1)  (a)
(A.:»:?):.L = b, (i = J+lyeeeyn).

Since yj = 1, y'. = -1, we have

J 1 2
5 - -Db ). =0
(c)); = WGL = 2) - v)y > Gye¥y = Ay T By
1 2 ) 1 2 -

(ry’);j = (A(}:y,— X;f') S D)J- < (Ay'exy‘— Ay'fxy'- by’)j = O,
1f (ry)j # (ry')j’ then from

A= (Axy,- b)j/(A:v:y,- Axy)j

(axf) 5 = by 5 (e)
if (ry)J = (ry, )j , then both the values are O and from (Axv)j e
= (Axy,)j = bj we asiin obtain (e), which together with (d) gives (a).

Purther, (ry)j 202> (r'y, ),j implies A€l0,1] , nence )?} 0,

2% L NN . A e £ . DN o
X and x s o convex combination of ¥ , . This concludes
- 20 an y is a n L gy T

the inductive proof; hence from (a) for j = 1 we obtain .A:iy =3 o)

thus justifying step 4. 3ince in sted 0 we bezin with vectors
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s 2 - 8 ] .
“os }ry (y€7Y) and at each stey 2 a convex combination of two
areviously computed vectors is taken, the final result must belong
1 2 . .
to Conv{zy - }:y 3 y&‘.{} , whicihh completes the proof.
2. Theorems 1 and 2
We shall first prove the lemna; notice that assertion (i) is gen- ‘

cralized here.

Lemnaa l. Let A be a regular nim matrix and let D. be an nxn
o)

matrix whose all rows except the j-th are zero. Let ob =1 + (DJ.A— i3t
Then we haves

(i) & + D, is resular if and only if &b # 0; in this case,
s
(ii) if oU£0, then i + tDJ. ig singular for some t&{0,1]) .

(A + D,
J

Proof. Let G = Dj_ri_l, then A + DJ. = (E + 3)i and det(E + &) = .
Hence 4 + D, is regular iff o # 0. Since 32 = (- 1)3 , we have
R -1 1 =1, 1l . ~ 1l .2 S
(a + Dj)(A i G) = E ~ P Rl B,

which proves (i). If 00, then there is a t& (0,1] with
1+ ‘t"}j_; = Q. Then A + tDJ. = (E + t3)4 is singular since
det(E + tG) = 1 + Gy = 0.
Before proving theorems 1 and 2, we state this I

Theorem 4. Let AI be regular. Then for each Al,AZGAI, both

=1 . =1 " Bt (e
Aqhs and Aq A2 are P-matrices.
Prgof. 1) First we prove that 211 leading principal minors
s =1 . B P - - 5 - G 4 -1
My geesyill, OF AlAZ are positive. Put D = Al = 4oy 80 that nl.r\z =
= T + DAEl, and let DY (j& H) be the matrix whose first j rows are

identical with those of D and the remuining ones are zero. Then
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=1y SR . .
5 ) Tor each j. We shall prove by iaductlon

that u, > 0 (igin).

a. = det(Z + Dla

. . Y LSl 1, -1 .
1.1) j =1 : since my = det(B + D74, ) =1+ {(» Ay ) the
lemmu implies m, > 0 for otherwise Ay ¥ tDl would be si lar for

some © e,(O,l] o e contradiction.

1.2) Let my_1 >0, 2%jign., Consider the matriz
(E + DJA51}(E + DJ‘lagl)“l - E + (D¢ - Dﬂ‘l)agl(E + 33"1351)‘1

Teking deterain

nts on both sitdes, we obtain

i ’ . . . .
e o1 e (Y - DJ_I)AEL(E + pi~hThh

= F=9
mj-l
If the right-hand side were nonpositive, then according to lemma ]

the matrix a, + 5371 4 (9 - 23 h = (& . 33'1A;1 +

43

+ 5(0d = DJ“l)Agl)AZ would be sinsgular Ffor some +&€(0,1) , & contra-
diction. Hence

1,
. ;> 0y
i=1
so thut mj > 0 due to the ianductive assumnotion.

o 8 . . . . =1 L
2) Second we prove that each p»rincinal minor of AlAZ is positive.
Congider a yrincipal minor formed Trom rows and columns kl,...,kr.

Let P be any permutation matrix with P, =1 (i = lyess,r). Then
k5
the above minor is egual to the r-th leading princinal minor of

i — Ui nd - - . y " A P
PzﬁlAzlP = (PlAlF)(PTAZP) l. since the interval matrix {PTﬂP ] AEEAT}

=1

H m
iz regulur, 211 leading principal minors of (PPAlF)(P*AZP, are

positive due to 1).

3) To w»rove that A:lgz iz also a P-matrix, consider the interval

m .

matrix (AI)* = {AT; AGAl} ; according to 2), its regularity

A LTy Ty=1 =1, T
olies that (nz)(xl) = (Al Az)*
=1y
Al & 2.

&

s a P-matrix, heace 30 1is

(=N




Tneorems 1 and 2 are now easy conseguences of thesrems 0 and e
i e— I cilap T i s s . A
Tneorem l. A~ is resular if and only if 4. dis a4 P- matrix

o
for each y€Y.

Proof, "Only if": follows from theoren 4. "If": talke y&Y, j&i,

Then according to the result by Samelson, Thrall and Wesler [12] ,

the linear coamplementarity problex o= A + A:iei has a solution
ye 3l
+ - .
: hence o= A X = e., How 1Y EGRE: vy £ W !
}\y, Ayefy dor¥y eJ. How the rezularity ;oliLo s from
theorem O since Ax = e, has a solution for esch A@AaA~ jed.
J
ach - , \ .
Theorem 2. Let A™ be rezular. Then Tor each y&Y, the equation
+ R )
A ¥ = 4 % =D )
ye vt y (

e

has eractly one solution x . loreover, we have » _€X for each y&€Y
v

and Conv X = Conv {Xy 5 er} ; especially,
X = min {}:y ] er}
¥ = max {Xy N~ Y} .
Proof. From theorem 1 and from the result by Sa:;elson et al.
it follows that for euch y €Y the eguation =t = Ay}f-‘ + wy nas
exactly one solution x , thus satisfying (f). Prom the eguivalent

v

equation Ayzxy = b Z = sSgn Xy’ we see that x €X. Now, according
v

I . .
to theorem O, for each AEA™, bé.bI the (unique) solution to Ax = b

Nad

belongs to X = Conv{:zy ; VE Y} s hence }{C}Cl and Conv XC}Cl, .
implying Conv X = Xl. 50 x = min X = min Conv X = min {:—'y ;s Y€ Y} 3

similarly for X,
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3. Theoremsz 3 and 5

Since theorem 5 is a direct conseguence of theorem 3, it is placed
here just after this theorem, the proofl of theorea 4 to be ziven
in the nezt section. Theorem 3 is proved nere in a slishtly

weaker fora.

LI . o= s
Theorem 3. Let A~ be rezular. Then for eazch 1€H we have:

W) e B [k T T

(i) x5 = (7~.y)i for some y €Y satisfying (AyZTy)i. <0,
where TZ:«ty > 0,

—_ - m

(ii) zy = (:«:y)i for some y€Y satisfying (Ayé' y)i. > 0,
where Trj(y) 0.

Proof. We srove (i) only; (ii) is analogous. Let i€N.

1) Pirst we prove the theorem for the case $>O. Theorein 2

‘"’y)
= -y and y}l( =y, for k # j) and conszider

assures the exristence of a y&Y such that Z = ( i Take a J€H,

set y'=y - 2yjej (i.e. yg
e

the system 4 mox,. Since Ay, = A+ Zije-ATz’

o = P
g2’ = Oy Uy N vz
we may use lemma 1 for evaluating A;,Z , which after a lengthy

. . -1 .
computation gives x = iy = ——i (All'iy.|+J)Jyj(Ayz) . . since >0,

> J
and 'S 5. = (x . . it 31y I e
4> 0 and - W (“y)i' we obtain yj(‘\‘yz)ijé 0. Since j was
e L qaml T
arbitrary, we zet (Aszy)i. £ 0.

2) Next let d'20. For k = 1,2,..., let J‘,( =&+ e >0,
b}I{ = [o, - 61,, b, +c?k] und let [xK,¥K] be the interval solution

)?
to AIx = b’Ic . Accordinz to 1), for each k we have 31; = (x‘;).1 {where
] k
1
X denotes the vector ¥ for the systen :xl:\ = b,i),
dEl Iy N

(A ig finite and each . Dbelongs

A

T k .
T . &0, T x 0. Since Y i
Vit e » Ta P &5
to the compact solution set of AIK = b% , there exict y&Y, z€Y
t

and an infinite subsceguence {kj} such that 7 =y, 2. = 3 for
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k. 7. i

euch k;j and {};‘,J} is convergent, x;y‘}-,:(. Since _L,,Z > 3 = by + )
7 ¥
___l . moo J - - 1 3ledin o ) -
+ 1_,3 T,c, T,%, 2 0 for each AJ},\ tu.xlnﬂk;fa —p OO ywe out;un n}z> =0y
0 - . v %, and (x 9
T, ¥ 2 0, hence x s Since ( ) Y —wx. and (“J )1'—’(";{)1’
. T
i avVe Xy b -<
we have = (z J)l, (a” vz j):L %= 07, T x o > 0.

Theorem 5. Tnder the above [in [0]] notations, we have
x; = min {(:&y)i ; VE '-Yi} (1€Wm)

_1 = maxn {(":y)i i eri} ’ .

hence also

154
I
=
.
o)
P
"1

=, 5 €Y
;yEYO] 5

Iroof. We shall confine ourselves only to the proof of the formula

for e according to theorem 3, x, = (}:y)i for soume y€Y satisfying

~1 3 -1 .
(A‘JZ):LJJJ 0 (Jel) ~ > 0, then (AJZ)17> 0, hence y = -1;
if Bij £ 0, then yJ. = 1. T;m.; ."/E.—Yi-

Next we prove three unnumbered statements following theorem 5
in (0] . Let (8) hold; then for ecach AéAI, using A = 4, = iy
|A°| < A s We may expand A’l into Neumann series

At s - )7t = (Z(rla,,)i’);l ,
implying
‘A_l - '-l, < (ZJJ)IA l &3 |!‘s;l|.

From this we have A4~ é[;; - CIA l “;l + C‘Agll] , an estimation

of the interval inverse. Second, if lex;:I'l(IAgll y then al is

inverse-stable. Finally we worove that (8) holds for positively

{even nomnegatively) invertible matrices. Assume for contrary that
?(D) §3( _lA )2 1. Then, due to the Perron-Frobenius theorem,

%c ~ = rx for zome recal » # 0, hence (.1 - -A) ¥ = 0, implying

sinmularity; thus r € 1.
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We sve the Tiniteness of alporitim 1 in a oliznlly more
seneral form, proposed by i, Jawsann, with step 0 veiny rejlaced by
PP e
3ten 0. Select a z&Y.
(in (0] , we set z = e; here, z is arbitrary).
i - y Let i1 ne Teilar Than K 37 ey s e Rty o p *
Theoren 1. Let 4® bve remular. Then the algorithm [with sten O

ig finite for each ye&Y.

2roof, Let z, be the initizl vector z in step O .

1) Pirst ascume that 3, = e. Consider whal is soingz on in the
. . 11

current step of tue wlzorithm. Let Av”x = wt T o= E(sz + ),
T2 - ]
pras %(T¢” - =)}, then (zl)‘x = 0, ¥ o= ¥ T ¥ o= s P

1 4 B . .
(but, generadlly, »7 and :P need a0t be nonnesative). Then

1.a f12 = o_. Since X% =0 (zj = =1),
1.2

A3 = A E
o J
e can see that 1, is & basic solution to the sys

-

ve

A . . 1 2 .
with basic variables =% (z, = 1), Xj (Zj = ~1). ~eover, since

J

J
k = min { hH zj:r:j(O} = min {j; 37?(0 or :»:‘3(0} , in the next step

1 : e 5 L P
x, enters and xi leaves the basis if z,= -1 and conversely if z,= 1.

e
. - 1 - .
Since we started with x7 = w , xz = 0, the zlgoritum in terms of
..1 -2 3o 1 ~y LT i Ty o 547 [’J F 3 R 3 37
x, ¥ is precisely urty S algorithm L] for solvimg the linear
complementarity problem vt AT w,. This algorithm, as proved
J J
in [BJ, terminztes (since A, iz & P—amatriz:)
& '“*VV*”1>O "2>O'tﬁ1 T'"-"l "2>O
steps with =20, x°20; tavs T, % = = + 2 0.

in a finite mumber of

2) Let z_ be arbitrary. Together witih our 2l zorithm, started
o} v - =) 2

with Lo consid 4 mnarallel alzorithn applied to the systen

- T .
ISl i —p, st
a omo= g 4 = La i, A Aaty

(o3 A
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the current values z, Z of hoth algor s

[P

This is clear for the initial steopn, when 5 =

validity in certain step, for the current solutions x,

rad
Aygu
thas

Lot
s =

= (4,7, = T, 8T,T, ) )

[+]

2K

e A,
o

<O} = min {j;

asein satisfy

~
>

“3

algo k = nin {j;

ol )
“

:TJ-

dated values z', ¥

the second algoritiun terminates due to 1

steps with To¥20. Then T x = T5¥ 3 0, and th

terminates at the same step.

!

For a verification of algorithm 2, let

updated vector z. Then Ayz,= Ayz + 2szyATck
all columns except the k-th zero. We shall us

fact that lemma 1 holds in the same form also

is ziven by b= 1 + (A_]‘Dj)jj. Then for » =
. ~1 )
and ¥ = Ayz'by we have
-1 1 ,,~1
(Ayz’ )k. - BZ(Ayz)k.
-1 = ‘--l = gnl A o1
(535, = Gin), - oDy, = GoD),
X’ = ‘—l" pee
k Py kp
i I N .
ry = Ey Bk R (j#z),

hence pivoting on Py in the tableau brings A;
If p £0,"
Hext we prove the statement in parentheses

p - g N K [ -1 ¥
.Djj;l for some j€HN. Put y = .Jan(Ac >,j.’ th

g 5 . , L S,
=1 - Djjso, hence A+ tTyAIeje“ is sinzu

A4

o 1
oLowe fuve
o~

= P
o]

(O} y and the up-

Ly naence I T

o s -
Jince A™ is reguler,
finite number of

e first algorithm

P

= 7

- 2z, e, be the
Zkk

has
k
e an easily verifiable

’

ol i
where fyATe

in this case if eb

=L
2ZkAyZTy 4+ 8

-1
yaz!

- pyla (3#%)

V.

1

z?

=1
x to Ayz‘ . .

then ‘\‘yz + t(AyZ,—- A‘yz) is singular for some t€ (0,1} .

following (8). Assume
en 1 + (A—l

T LLo=
c TyA ej)JJ
lar for some t€(0,1) .
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5. Theorems 6-10

Theoren 6. AI is regular if and only if for each y €Y the
matrix equation
- : -1
B = D 18]+ Ag (3)
has a2 solution By. If this condition is met, then B 1s unique
. B!
for each y€Y. Horeover, for each A €ai~ there exist nonnegative

diagonal matrices L (y €Y) satisfying S L = E such that
Y y€Y J

-1 :
AT = 8 L (h)
%oty
holds; especially, we have
B = min{By H er}
B = max{By ; yéY}- (3

Proof, Let AI be regular. Then, according to theorem 2, for
each y€Y and each jEN there exists a unique xyj guch that

+ —

X . = A X . = €. . X
ye'yd yEyi J (k)
Defining By by (By).j = % s We obtain

A

i e
Bl - A B =E

Ayely y&y '

which can be easily rearranged to (g). Conversely, let (g) have

a solution By for each y€Y. Defining Xy by x5 = (By).j' we

have (k). Thus, according to theorem 0, ax = e.'j has a solution

for euach AeAI, j €N, implying regularity of 4L, Furthermore,
I

again from theoren O, (A_l) j? being a solution to A™x = ej,

can be expressed as
(A'l) j= nyjx .
ot ey A A X
with >‘yj 20 ;Yij = 1. Now if we define L, by (I’_y)jj =Xy,
(jeN) and (Ly)ij =0 fa i £ j, we obtain (h). Finally,
x ;3 €Y} = min {(8) 3 yey ,

which gives (j); similarly for 3.

3 j = min{
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Theorem 7. Let 4~ ove rezular and let i,j€N. Then, we have:

L=l o . . L -1, i
(i) gl =l(f.yb,)i‘j for some y,z€Y satisfying (A»yzl‘y)l <0,
(Tz"yz).j ; 0,
= ) . e . T
W = T ] o o afvins
(ii) Sij l(dyc)ij for some y,z€Y satisfyinzg (& *zTyt. > 07,

( H.J?-O.

Proof. Take i,j€ N, Since [3 ,3 ] ig the interval solution to
aTx = ey, from theorem 3 we zet 3 (xy = (Ayz X for some .

20, i.e. (T-x 2 0;

;osa s < T — T
vy satisfying (x ) s _.O,vme‘e vyz-;]

"Z.Jl 7y

analogously [lor Bij'
. LI . . 5
Theorem 8. 4~ is resular if and only if for each y€Y and each

jE€N there exists a z€Y such that (Tz‘*y]z‘) > 0.

o
Proof., Let A~ be regular. Then for each y&Y and each j€N

there exists u Eyj such that (k) holds. Putting z = s }‘ij’
-1 N
we have AJV —_ eJ., hence (’I‘P,A,_Z) = szy,j > 0. Conversely,

;;-,

letting ('dy).j = yz>.,j (yG.Y,Jén), we see that By satisfies (g);

| 1o n
hence A~ is regular due to theorsm 6.

Unfortunately, theorem 9 is not valid in the form given in [0] ;
its Monly if" purt is unot brue. In order to reformulate it correctly,

let us introduce the type of & matrix A to be a matrix Z satisfying

Zij = 0 if A, ij = 0 and Z*j = 351 Aij otherwise. Then, by definition,.

.

. =il . .
AT is inverse-stuble iff @1l the mstrices 4 —, AeAI, have the sume

tyne 2, |21> 0.

-

Rl ] . . S -1
Theoren 9. AT iu inverse—stable if and only if all the Ay,?’s

zre of the szame type Z, 21> 0.

Proof. Only the "if" oart is to be proved;
. o =1
then from (T, A

a7 )
in view of theorem 3. Next, as in the proof of theorem 5, for a given

put By = Z.j (j€N),

) j>O (y€Y,j€d) we obtain rezularity of AI
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A e‘ll we have
=1
(A' ) 5 = Z A\r’i}.v‘f
«d vey Vi ¥
for some A . 32 O, S A, =1l. Since x_.
Jd &Y yd Jd

L~ =1
I, 6T = T, rp ) 520
¥ S0 & ¥tz TyEy o J

for each j €N, hence 471 is of the type Z.

(A;}.) i there holds
5

I

Theorem 10, & rejular interval matrix _«.I is positively invertible

if and only if A;%. > o.

-1
Proof. By assumption, (Ac+ A) "D 0. In the light of the well-known

¥uttler ‘s theorem, it will suffice to show that (A - A)nl > 0.
For each j = Oy1,...,1, define AJ.EAI by

| G- &), (1= Lyeeeyd)

(Aj)i- = X X

(a,+ Q)4 (i = j+l,.eeyn).
We shall prove by induction that Agl>0 for each j. Since Ay = ALt A)
the first sten follows from the assunption. How let .‘4.:}_1 > 0 (i£n).
o

Let Dj = A, - Aj-—l’ then 211 the rows of D, are zero except the j-th

J J
which is equal to =2 Aj . lence lemmna 1 gives
~1 -1 _ -1 _1.-1 1
A= (Aj_l + DJ.) = 4301 " gAj-1Ph g

Since A}_l_l >0, D, £0 and ob>0, we have A-j'l> 0, concluding the

induction. Hence (Ac- A)—l = A-r-xl > 0.

Hotice that the groof goes through also for nonnezatively invert=

. . . -1 . . . v .
ible. interval matrices (a”~— @ O for each AG.&I) if the condition is
1

Lo

changed %o "A;
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