SOME RESULTS ON INTERVAL LINEAR SYSTEMS

by

J. Rohn, Prague

This article can be viewed a complement to our earlier papers
[6],[73,[8]. Therefore we do not repeat here the basic notations
which are the same as before.

In the first two sections we give new proofs of some theorems
from [6],[8], especially of cornerstone theorems 2, 4 in [6]
that were proved in [7] wusing rather strong results on P-matri-
ces; the proof given here 1s quite elementary. The third section
brings an LCP procedure, althougsh slow and lacking proper theore-
tical support, for computing X

the x;s . Several new necessary and sufficient regularity con-

;i- directly without using

ditions for interval matrices are presented in section 4, while
the last section 5 deals with the problem of testing effecti-
vely singularity of interval matrices; two descent algorithms

are described there, none of which, however, is general.

AMS Subject Classifications: 65G10, 65H10
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1. Other proofs of some theorems

In this section, we give elementary proofs to some important
theorems presented in [6] - [8].

We begin with a nonconstructive proof of theorem O in
[6], based on this lemma, which is of independent interest (it

deals only with real matrices and vectors): .

Lemma 1.1, Let A€ R®*? , bé r" ~and let for each

JC N there exist an xJe R® such that

(ax;); < b5 (3 €V)

J
(ax;) > by GE I .
Then the equation Ax = b has a solution which is a convex

combination of vectors x, , JCON.

Proof. We shall prove using Farkas lemma that the system

(2 >\JxJ) =b, 2 >\J = 1 has a nonnegative solution AJ .
JCN JCN

JC N . In fact, let poAx > 0 for some p€R", py € R'

g * Pp

and each JC N ., Define J, by J°={J; p; 20, JeN_}-

Then pr + Py 2 pTAxJ. + Py 2 0, and we are done.B .
o

Now, theprem O of C6J is a simple consequence of the

lemma :
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Theorem 1.1. Let for'each y & Y the equation Ayex1-Ayfx2 =
= by have a nonnegative solution x;r, xf' . Then for each A& AI

and bé& bI , the equation Ax = b has a solution belonging to

1 2
Conv{xy -xy ; YE Y} .

Proof. Let A€ AT , bEDB , TC N . set xJ=x;r-x§,

where vy = -1 if JE€J and ¥y = otherwise. Then

1

_ < (ix! - ax? - - 1 _ 2 _ -
(Ax 5 b)J‘(‘uY Ax_ _p_)J (Ayexy Agexg by)J 0 for
j € J , and similarly (AxJ-b)jBO for j¢J.Henoe the

assertion follows from lemma 1.1. 8

Our next aim is an elementary proof of theorems 2 and 4 in
(6], again preceded by a lemma :
I t_1 2.2
Lemma 1,2, Let A be regular and let A x = A'Xx for

some A', a2 e At , x1, x> € RB* . Then either (a) or (b) holds :

1_2 1 2
(a) x;x; > 0 for some i with A , A7,

(p) x!

x; = 0 for each i with A'i;éAzi, and

X, = X otherwise.

B
o Ee D

Proof. Assume for contrary that neither (a) nor (b) holds

for some A‘, Az, x‘, x2 , 8o that xlxi

A‘i;éAzi and there is a Jj such that A‘J ;£A2J .

#£. 0 for each i with

(x;|+lx§|>0. Set J={i; Afi;éA?i and xlxi(()} and

define A, x by
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("11 / (‘;. - ‘i» A:i '(xi / ("l - "i)) A?i
A = if i&E J

1 . R 1
A, if 1¢J,x’i£0

Azi otherwise
<! - x2 if i € J
i i
1 2 . . 1
x, = x; - X3 if 1¢J,x'i;§0

- xi otherwise
(1EN). If i€ J , then A, is a convex combination of A1i .

Azi,hence AeAI and Ax = O . But xj;éo,showing that A

is singular, a contradiction. Bl

We shall prove theorems 2 and 4 of [6] together.

Theorem 1.2. Let AI be regular, Then for each yg€ Y ,
the system Ayzx = bY 5 sz 2 0 has a unique solution xye X,
which can be computed by the following finite algorithm, and we

have Conv X = Conv {xy; Yy E Y} 5

Algorithm 1.1. (computing x, for a given yg£ Y).

0., Select a z € Y (arbitrarily).

1. Solve Ayzx = by .

2. If T x 2 0 , terminate with x, = x .

3. Otherwise compute k = min {j; %X, 4 o} .

k., Set z, 1= -z, and go to step 1.
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Proof. Finiteness: We shall prove the finiteness of the se-
quence of k’s defined in step 3 by induction, showing that

1K times (k = n,...,1).

each k can occur there at most 2
Case k =n : assume n appears at least twice in the sequence,

and let %,x,z ,x  correspond to its two nearest occurrences.Then

zjxj;(),zxjao (j ¢ n) ,znzn=—1,znxn<0,znxn<0,
hence zjzngx; ; 0 for each J€ N . But according to lemma 1.2
there is an i with 2.,Z; = -1, x, % > 0 , hence 2 Z XX £ 0,

a contradiction.
Case k <n : let again =z,x,z,x correspond to two successive

occurrences of k , so that zjzéxjx‘; 2 0 for each £ k . Then

lemma 1.2 implies the existence of an i > k such that Z,Z, = -1.

Hence between any two occurrences of k there is an occurences of

some i > k in the sequence; this means that k cannot occur

n-x

# eee + 2 +1) =2 times.

more than 1 + (2n—k-1

Existence: Due to what we have just proved, the algorithm

gives after a finite number of steps an x with A x = by ,

vz
T,x 20.

Uniqueness: Assume Ayzx = Ayz'x‘ = by » T,x 30, Tz;x'a 0,
x # x° . Then according to lemma 1.2 there exists an i with
ziz]f_ = -1, xix].'_ > 0 , hence zizj'_xixj'_ < 0 contrary to z;x, > O,
z]f_x:;~ 20 .

+ -

A x = A X = A =b f h
yz'y = SyeTy T CyfTy y 1°oF eac
vy &€ Y , it follows from theorem 1.1 that for each A € At y

Convex hull: Since

b € bI , the unique solution to Ax = b belongs to Conv{xy; Yy € Y};
thus Conv X C Conv {xy; y € Y} . The converse inclusion follows

from the fact that x, €X foreach y €Y .1
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In f7J , we proved this theorem with the help of the
P-property of regular interval matrices (theorem A in [71).
Also this assertion can be proved by simple means:

Theorem 1.3. If AI is regular, then for each A

both A;1A2 and A1A;1 are P-matrices.

4, € AT,
Proof. According to the characterization of P-matrices
arrived at independently by Fiedler, Ptak [3] and Gale, Nikaido‘
Lyl A;1A2 is a P-matrix if for each x £ 0 (say, x5 # 0),
there is an 1 with x (A7'A,x), >0 . Put y = A;‘A?_x , then
A,y = A,x and lemma 1.2 gives that either (a) yiX; > 0 for
some i , or (b) y = x , hence ij,j> 0; we are done. Applying
this result to the transpose (AI)T , we obtain that A1A;1 is
la.lso a P-matrix. @
At the end of this section, we note parenthetically that
the mapping constructed in theorem 1.4 in (8] is a homeomor-
phism of X and [f,e] ; in fact, since it is a continuous

one - to - one mapping of the compact set X onto the compact

set [f,eJ , its inverse mapping is also continuous.

2, Duality - type theorem for interval linear systems .

I [6] , we presented theorem 3, which in many cases contribu-
tes to an essential reduction in the amount of computations,
Meanwhile we realized that this theorem can be given a more
symmetric form, leading to an interesting duwality - type result.

Consider a pair of optimization problems
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max {cTJ:; Alx = ot , ¢ & cI} (2.1)
max {pr; AITp = cI, b & bI} (2.2)
I -
where, as usual, " A’x = b denotes " Ax = b for some
A€ Al , be bl ", similarly for * A'0p = o' " with

AT - {AT ;i A& AI} . In the sequel, we speak of feasible
and optimal solutions to (2.1), (2.2) in the sense usual in

mathematical programming. We have this result

Theorem 2.1, Let AI be regular. Then the problems (2.1),

(2.2) have a pair of optimal solutions x satisfying
p P r P y

A% = by y T,x 20 (2.3)
ATp—e TpXoO (2.4)
yz© ~ =z ' Tyt & )

for some y,z €Y and the optimal values of (2.1), (2.2)

T
are equal : e, X = byp .

Comment. It follows from (2.3), (2.4) that x = X, P =P, s

so that we could speak of optimal solutions x P satis-

y ' =z

fying szy 20, Typz 2 0 ;we preferred the form (2.3},
(2.4) for easier references.

Proof. Assume first that d > O . Since both X and ol

are compact, the problem (2.1) has an optimal solution x’.
Set z = sgn x° and consider the problem max {c’i‘x; AIx=bI}.
According to theorem 1,2, this problem has an optimal solu-

tion X ¥ & Y ; obviously, chy = c':x' is the optimal
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value of (2.1). Now let p be the solution to Agzp =c, .
To prove that T_p ; O , consider the value of ch =

y zy

T T. T. .
_.pAszy_pby=pbc + % piyiJi . If yJ.pJ.<O for some j ,
then setting y\; = - and yi =y; for i Z 3 , we would
T T T, -1 T I T T

have o %y < p by' = cszzbyrémax{czx ; ATx = b } A S
a contradiction. Hence Ty_p ; O, p is an optimal solution

T T
to (2.2 and c¢_x_ = b .

( )1 zy Yp
Now let cr =0 for some i . For each k = 1,2,... , .

1
put (5‘ = J + -112 e , b1£ = [bc - Jk f bC + JkJ and consider
the pair

T I T T
max{cx; Ax:bk,cEc} (2.1k)
T IT I I
max {bp i ATp =, bébk}. (2.2k)

The first part of the proof assures the existence of Yie %k €Y

and of optimal solutions xk, pk to (2.1k), (2.2k) such that

k k
A x=b_ ,T x>0, A P = e y T.p 20.
Y% Yo kT Y%k Zy Yk

Then there are y,z & Y such that Yy =Y » %, =2z for infi-
J hi
nitely many kj . Letting kj —» ©© and using the compactness

of solution sets, we obtain (2.3), (2.4). m

Setting cI = [ei, ei_'j ; we obtain a neccessary optimality

condition in the form given in [63 H ;i = (xy) for some y,z,
i

T -1 ul
where Ayzp =e , Typ 20, szy 2 0 ; hence (Aszy)io 20 .

This condition is, generally, not sufficient :
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Example 2.1. Consider the problem max {xz; AIx = bI} for
the well-known example by Barth, Nuding [ 1, p. 118J . Here
the conditions (2.3), (2.4) are satisfied for y =z = (1,1),
x = (4,3), p = %, 1), which is not an optimal solution

(max x, = 4).

However, (2.3) and (2.4) become sufficient optimality
conditions in case that the whole solution set X lies in
a single orthant. Denote R: = {x [ R ; sz }O} . Then,

we have :

Theorem 2.2. Let AI be regular, let X R: and let (2.3),

(2.4) hold, Then x,p are optimal solutions of (2.,1), (2.2).

Proof. Since X R: y We may use the description of X gi-
ven in f8, corollary 1.14-] to bring (2.1) to an equivalent
form :

max {c:x i A X £ b, -Afzxé -b , -sz.é 0} , (2.5)

which is a linear programming problem whose dual problem

(in the LP sense) is
. (=T T T T T, T
mln{b P1~R'Py 5 PyAg mPoAp,PaT, = c,, p1.p2'p3>0}, (2.6)

We shall show that x,p satisfying (2.3), (2.4) also satisfy
the complementarity slackness conditions for this
pair of LP problems if we put py = p+ y Pp = P Py = 0.

In fact, x is obviously a feasible solution to (2.5), and

: T T T T
since p1Aez - PzAfz = p Ayz =c, , we have that p1,p2,p3

is a feasible solution to (2.6). Now if Pys >0 for some i ,
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then from Typ > o, Ayzx = by it follows that y, = 1 and
(A x); = Si . Similarly, if p,; > O , then (Afzx)i =b, .
So the complementary slackness conditions are met, hence x
is an optimal solution of (2.5), thus also of (2.1); and since
(2.3), (2.4) imply c:x = bgp , we also get that p is an

optimal solution of (2.2).m

We add a simple verifiable sufficient condition for

XCR] . Denote D = [a7{4, a= [a]'|[d , x_ =aT"v_ ,

c = p(E-D)"" .
Theorem 2.3. Let SJ (D) €1 and 1let

(B-p)"' ([x_|+a) < 2{x_) (2.7)
held, Then xCR‘z‘ , where =z = sgn x_ .
lm. Let (A, - Ao)x=bc+Jo v [Apl €4 450]45‘ :
Then from x = x_ + AZ'd + i (a'a ) (x, + 4" d) e
have [x - x_|£d + c(lx [+ a) —: (B-0)"'([x | +a)- x| <|x |,

hence x and x, lie in the same orthant R: .

3. LCP procedure for computing X5 0 ;i directly

In this section, we give a certain kind of solution of
problem 3, set in f8, p. 55] ; namely, we present a procedure
for computing X which avoids at all computations of the

rd . hand .
xys . Since x; = max x, = - min(- xi) y we shall deal only

xeX xeX
with computations of the ;_:is .

It follows from [8, corollary 1.4] that

X:{x; Ax+-Kx-s'ﬁ, —Kx++Ax-£-_l_o_}. Hence for

X, =min x, (1 & N) we have
xeX
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T - —_
x; = min {ei(x‘I - xz); A.x1 - sz é b
-Kx, + Ax, £ b (3.1)
xx, = 0, x, 2 O, x2’>,-0},

which is a nonlinear programming problem. In order to enforce

x x to be complementary, we may include the term x’fx2

11 "2
into the objective function with a sufficiently big positive
penalty parameter M , thus obtaining a quadratic programming

problem :

x. = min eT(x —x)+MxTx ; Ax, - 3x, <Db

=i = i't™M 2 172 7 =1 R~
Ax

< -b (3.2)

Denoting the Lagrange multipliers by p,, p, , the Kuhn-Tucker

optimality conditions for the problem (3.2) are

T T
Mx2+ép1—Ap2+ei>_O
=T T
Mx1 —Ap1+_ép2—ei>0
- AX, + BAx +T 20
-1 2 el
A.X1—AX2 —320 (33)
x5 Mx, + Alp, - AL +e,) =0 )
1 2 T &P Pa i’ =
T - 7T T - =
x5 (Mx1 A'p, + A'p, ‘ei) =0
T = —
p (- Ax, + Ax, +b) =0
T, == -b) =0
py( Ax; - Ax,
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T .
where X,, X5, Pys Py 2 0 and x;x, = 0 . Hence putting
T T)T

] T .
X = (X?, X5s Pyr Py and introducing

0 ME AT AT e,
hand A
ME o -iT AT -e,
A= g=
-A A 0 0 b
Iy ~A 0 o -b

we may rewrite (3.3) as a linear complementarity problem (LCP)

AX + q ;; 0
= (Ax + q) = O (3.4)

x2 0 .

This problem can be solved by Lemke s complementary pivot al-
gorithm (see [ 5, sect. 16.6] for its description). Although
the objective function in (3.2) is nonconvex, so that (3.3)
are necessary, but generally not sufficient optimality condi-
tions, our experience gathered so far on a limited number of
examples showed that the algorithm, when performable, always
found the optimal solution (even at the example &.1, where
some other methods for solving (3.1) we tested failed due to
jamming). The major setback with the problem (3.4) is the fact
that A is of size 4n x 4n , which slows down the computation§
considerably. According to our experience, even moderate va-
lues of the penalty parameter M suffice to enforce x’fx2 = 0

1

(Me~10" & 102). It x’fx2 > 0 , the procedure must be repeated

with an increased value of M (e.g. M := 10M).
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When solving (3.4) using Lemke s algorithm, a phenomenon
called ray termination may occur (no entry in the column being
introduced into the basis is positive, so that pivot cannot be
found), in which case the algorithm fails.

We shall show that ray termination cannot occur for a suffi-
ciently large class of interval matrices having in each row
at least one nondegenerate interval coefficient

Theorem 3.1. Let AI be a regular matrix satisfying

Ae D> 0 . Then ray termination cannot occur for any i € N .

Proof. Lemke s algoritm generates solutions to the system

z=Ax+xe+q,sz=0,z)O,x>0,x)O until

(o}

Xg = O . Assume for contrary that ray termination occurs at

some step; then from the current tableau we may construct

0

(see [5], p. 504) =, x, x, such that z = Ax + x4e ,

Zix = 0 , (z,x,xo); o, (z,x,xo) # 0 . Then from O = xlz =

= xTAx + xo(xTe) = 2Mxlx, + x (xTe) it follows due to the

172
nonnegativity of both the right-hand side terms that x’fx2 =

(4]

= x5 = 0 (since =x = O would imply cycling). Hence we have
Ax:z;O,x’fx2=0,x;£0‘Assumefirst that x, = x, = 0,
so that p, £ 0 or P, # 0 . Then from ATp1 - K{rpz 20,

we obtain ;A_Tp1 - Ksz = KTp1 - Asz , hence

T

—T T
“A'p, + Ap, 20
0 . Since A}O,p1+p220 and

AT(p, + py)

(p1 + p2)i> 0 for some i , we have Ai = ot contrary to

the assumption Ae > 0 . Hence x, # 0 or Xy # O . Then

from Ax 2 O we have -Ax, +Ax2>0 » Ax, - Ax, > O which

in the light of corollary 1.4 in (8] means that A(x1-x2) =0
for some A € AI . Since X, =X, £ 0, it implies singularity of

AI, a contradiction. Hence ray termination cannot occur.B
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Example 3.1 (see CB], system (3.1) for n = 3). Ray ter-

mination occurs when computing x for the system

2

-1

x, + f—2,2J‘ x,
x, + [-2,2_7;:3

x = -1 5

3

-1

where the condition Ae > 0 is not met in the third row.

Let x,p satisfy (2.3), (2.4) with oF = [-e,, -0,] . .
Then it can be easily verified that x, = x+, x, = x , Py = p+ .
P, = p~ satisfy (3.3) for arbitrary M 2 0 . Hemce (2.3), (2.4)

are a special case of the Kuhn~Tucker conditions.

4. Regularity conditions

In our earlier papers we gave some necessary and sufficient
regularity conditions {(theorems 1,6 and 8 in (el , theorems
6.3, 6.6 in [8] ). Several others are added here.

~ -1 n
Notation : D _ = T AT AZ! (v,2 €Y), ¥, = {te B 5 (e, £

for some j& N, lti[ = 1 for each i # .J} » Dy = A;‘Ll‘yd (v € Y).
Theorem 4,1, The following assertions are mutually equivalent :

(1) AI is regular

(ii) for each y & Y , Ayex1 - Ayfxz = ¥ has a solution '

'>0,x*2 0
(ii1) for each yE€ Y , Ayzx =Yy, sz ; O has a solution
(iv) for each Y & Y there exists an x > 0 such that

-1
A A x 0
ye yf >
(v) for each y € Y there exists a q such that

-1 -1
Ayeq>0 ,Ay_fq>0
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(vi) for each y € Y there exists a p such that

[pyp] < »
(vii) for each y,z€ Y , i € N there holds AcAyz)il > 2

(viii) for each A € AT , 1 € N there holds '(AQA'1 )i > -;-

(ix) for each y,z2€ Y , 1 € N there holds ((E-i);z)”)ii)%

(x) for each t & Y,, 2 &Y there holds det A, £0 .

Proof scheme :

/(iX) (x) (v)
(viti) &= (;Q) = l)lz/—> (E)<<‘;.—_—_§(Vi)
N

(144i) (ii)

i iii) : Follows from theorem 1.2. (iii) ==—=> (ii):
Putting x1 =xt 5 x2 = x , we obtain Ayex1 - Ay_fx2 = Ayzx =¥.
ii i) ¢+ Let A€Al | K EN, JC N and let y be such
that y; = -1 (JE ), v, =1 (j% J). Then for x; = x;-x}zr

we have (AIJ)J <(Ayex;! - )j =y; = - = (ek)j for

JE€J and similarly (A.xJ)‘j ‘; 12 (e for jﬁ J . Hence

k)j
Ax = U has a solution due to lemma 1.1. Since A and k

were arbitrary, AI is regular.

i iv) : Since A-1A is a P-matrix, the existence

ye yf
of such an x follows from theorem by Gale , Nikaido [h,p.BB].

iv ii) : Since A_1A x > 0 , there is a positive number M

5uch1 that 2AyeAyf(Mx) + Ayey> 0 . Now for x' = A A (Mx) +
1 2 1 2
+Ayy,x = Mx we have Ayex-Ayfx =y,x>0,x;0.
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iv v) :+ Put q = A__.x and vice versa. (iv @ vi

v

-1 ~-1 -1
Si A__A = (E-D E+D = E 2(E-D = 2{(E-D -E
ince AU A . = (E-D )7 (E+D,) + 2(B ) D, (B-D_) ,

we obtain the equivalence by setting p = (E—Dy)- x and vice
versa.
i vii) :+ Let v ,y,z2€ Y and let y ',y differ

. 3 1
just in the i-th entry. Then, since Ay (E+2y T, ATZ yz)Ayz

-1 -1
and det(E+2y,T, ATZAYZ) = 1+2(’I‘yATszz)ii = 2(AcAyz)il

- 1
i
we have .

-1
det A ., = (2(A0Ayz)1l - 1) det A, - (4.1)

Since both det Ay'z and det Ayz must be of the same sign,

we get 2(A0Ayz)ii-1 >0. vii i) by contradiction :

Agsume AL is singular, then det A det A 50 for some

Y1702 €Y (Baumann [ 2], proof of theorem 1). Consider a path
in the unit cube in Rr? leading from ¥y to Y since

det Ay1z det A}’zz £ 0 , there exlsts a pair of neighbouring

vertices y ',y (differing in the i-th entry only) such that

A . —1
det A_-, det A, Z£0 . Then (4.1) implies 2(Ac yz)li ~1<0 .

(vii) Z?Lviii[ : Since for each A & Al we nhave

E yz yz for some nonnegative diagonal matrices LYZ

72€Y .
satisfying vz = E ([8] , theorem 7.1) , for any i EN

Fmrl °
we have (ACA E (aA vz ii( yz)11> 7 .
ZGY 1

(v:.ll)%(lx) From (viii) follows (vii), hence ((E-—D )- )

-1 . Ao . _

(AcAyz)11> -‘-2- . (ix vii) : again from (AcAyz)ii =

((E—D )-1)11 . siiapﬂ is obvious. (x[ﬁ(lt Assume

for contrary that AI is singular, then, as in the proof of
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(vii) é(i) y, We may argue that det Ay'z det Ayz <0 for

some y,y € Y differing just in the i-th entry. For '2’6[0,1] .

define a real function f£(77) = det Ay Since f

+t(y’-Y)7z :
is linear and f£(0) £(1) £ 0 , there is a T, & [0,1] with

f('C'O) =0 ., Then for ¢t =y +'Z'(')(y'-y) we have t €Y1 and

det A =0 .0

tz
Another set of regularity conditions can be obtained when

applying theorem 4.1 to the transpose (AI)T. E.g., this leads

to conditions

(vii* ) for each y,z&€ Y, 1€ N there holds

-1 1
(Ayer)ii > 2/

(x*) for each t & Y, , 2€ Y there holds det A, =0,

etc., From (viii) it follows that AI is singular if

(AQA"1 )iié% for some A € AT . 1€ N (although A need not

be singular). In (ii), the number of equations is reduced

in comparison with assertion (iii) of theorem 6.6 in [ 8] from

n n

n+2 to 27 . Assertion (iv) shows that a necessary condition
for P-matrices becomes also sufficient in this context if it
is valid for each y € Y . It is better to read (x) negated

AI is singular iff A is singular for some t E_Y1 ,

tz
2 & Y . Generally we cannot assert t € Y , as the interval
matrix AI = C—E,EJ shows, which is obviously singular (0 € AI)
but det Ayz # 0 for each y,z €Y . An application of (x) is
given in the next theorem. Recall that 5¢O(A) denotes the
maximum absolute value of real eigenvalues ( ?O(A) = 0 4if no

real eigenvalue exists) and denote SQO(AI) = max {SDO(A) ;
A€ AI} .
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Theorem 4.2. Let AI be a square interval matrix. Then

Polk™) = maz Poliy) -

Proof. The assertion obviously holds if 0(AI) =0.
Let XO = O(A) for some A, RO #Z 0. Then det(A~ >\OE)=O,
hence the interval matrix [Ac - ;\OE - A4, A, - ;\OE + 4]
is singular, therefore according to (x), det(Atz - )LOE) =0
for some t E'.Y1 , ZE€Y . If t& Y , we are done; thus
assume that Iti[ & 1 for some i . Since det(Atz - )\OE)
is linear in t;, , defining y, = -1, yi =1, vy = y"]. = tj
(1 #1), wvehave YE Y, y'€ Y and det(a - AOE)det(Ay,z-
- >L0E) .S O . Assume that the left-hand side is negative.
Since the polynomial p(X) = det(a,, - XE)det(Ay.z - AE)
is of even degree, it holds p(A) —> & for )k-—)oo
as well as A— -0 , If AO>O,taking A oo , we
obtain that p(l) = 0 for some ) D >\0 T o <o,
taking A - oo , we have p(A ) = 0 for some ).<>\.O.
In both the cases, ‘)Lo[ 4 !K] , where )\ is a real

eigenvalue of some Ayz - B

5. Descent method for testing singularity

We present here a simple method for testing singu-
larity of interval matrices. This method is, however, not
universal since it may fail without stating singularity or

regularity.
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Let A& AI and consider some perturbation of coefficients
in the j-~th row; more precisely, consider A + Dj , Where all
P = Ly
= (E+DJA—1 )A and det(E+DJ,_A_1) =

rows of Dj except the j-th are zero and (D

K& N, Since A + D

J
= 1 + (DJA'1)jJ , we have
-1
det{A + D.) = (1 + (D A .. )det A. .1
(a+D)=(1+(da"),) (5.1)
Set oC =1 + (DjA-1)jj for a while and consider three cases:

(a) if o €0 , then Al is obviously singular;

(b) if 0 < <1 , then (det(A+DJ-)l £ {det o] ;

(e} if ol 21 , then |det(A+Dj)[ > | aet af .

Hence an obvious idea arises to organize the method in such a
way as to decrease |det Al according to (b) in each step
until (a) occurs or (c) holds for any j . Since ol =

-1
=1 + 2 djkAkj , we must look for djk such that

-1 . - .
djkAkj < 0 and, since the expression is linear in djk , to

take djk as large as possible. If Ajk = Ajk , we take

if Ajk = AJK ; we take d

g = AR gk = Ay 7 Ao

in both the cases dJk = 2(Ac - A)jk . We can sunmarize

d

during the algorithm, we look for j,k satisfying

(g - A) e Agy L0 (5.2)
until
(Ac = A)Jk Al':] 2 0 for each j,k (5.3)

holds. If (5.2) occurs for some j,k, we set A +

Jk:=AJk
+ 2(Ac_A)jk = <2Ac-A)jk for each k satisfying (5.2)

(we do it only for elements of the j-th row), thus obtaining
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a matrix with a lower absolute value of the determinant
(case (b)). If the sum over all k’s satisfying (5.2) is
less than - % , then the above case (a) occurs and Al is
singular.

Hence the full description of the algorithm looks
like this :

Algorithm 5.1 (testing singularity of AI).

0. Start with an A& AT satisfying |A-Ac‘ =A
(e.2. A=A or A =1]).
1. Compute At
-1 .
2. If (Ac - A)J.kAkj 20 for each j,k€ N , terminate.
The algorithm fails.,

3. Otherwise find the minimum index j for which the set

K, = {k; (&, - A)J.kA];j]. £ o} is nonempty.

-1 1 I . :
h. If :E:(Ac - A)jkAkj < - 5 » terminate. A" is singular.
5

5. Otherwise set AJk r= (2Ac - A)jk for each k El{j and

go to step 1,

The algorithm is finite. In fact, since each matrix A appe-

aring in the course of computations satisfies Ajke .éjk,xjk}
for each j,k & N , the algorithm goes through a finite set
of matrices and since ‘det A‘ decreases at each step, no
matrix can appear twice. When returning from step 5 to

step 1, the algorithm requires to invert a matrix differing
only in the j-th row from the previous one. This can be done

on the base of lemma 1 in C6J using only one pivot ope-

ration. In case of terminating in step 2, we may expect in
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many practical cases AI to be regular {theorem 5.1 below
supports in some sense this statement), but one must be
careful because it is not always so.

The following nice

counterexample was constructed by Dr. M. Baumann:

Example 5.1. The interval matrix

B (1,31 [o,2]

is singular, but (5.3) holds for A = A , hence the algorithm,
when started from this A , fails immediately.

Neverthieless, we have this partial result:

Theorem 5.1. Let A& at satisfy (5.3) and let

‘A—1| > 0. Then A is a local minimum point of ldetl

over AI .

Proof. Since ‘A-1| > 0 , there exists an £ > 0 such
that for each B € S = {A ‘e Al ; a‘- all <E} there holds
B> 0 , so that BT'aT 0 (j,k € N) and det B det A D O.

jik Jk.

For j = 1,...,n , define matrices BJ., Cj in this way (i&N):

Ay, ir i<y A4, ir i<
(Bj)i. = L (cd)i'= (B-A)i’ if i o=
By, if 127, s
B, it 1> 3§ .
M
ThenB &S (JeN) and we have det B - det A = Z det C, =

J=1

Z det B Z (B-A)Jk(B )kJ . Since (B-A)Jk =
k=1 _ _
d';k(A A) for some d’;jk 20 and (BJ._ )kj‘Akj >

we have that ﬁa Z (B—A)jk(B}-‘ )kd’>’ 0 due to (5.3).
'Y
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Now with 6v= sgn det A we obtain
o

|aet B] - |aes Al = ©’(det B - det A) = Z/J’J.G’det BJ>O ,
-
hence |det A| £ |det B|. since B & S was arbitrary, this means

that A is a local minimum point of the absolute value of

the determinant, @

Recall { [6] ) +that Al is called inverse-stable if

lA_q > 0 for each A €AI . .

Theorem 5.2. Let AI be inverse-stable. Then Idet‘

achieves its unique global minimum over AI at the matrix A()
given by
-1
Ay if (A7 )k\1 Do
(AO)jk =

- . -1
Ay if (a3 )kd <o ,
which can be found by algorithm 5.1 in at most n iterations

(ending with failure).

Proof. Both the expression for A0 and its uniqueness
follow from (5.3), which must be satisfied at the global mi-
nimum point, Due to the inverse-stability, the algorithm

never returns to the same row index j , hence it takes at

most n steps.B .

Before arriving at the idea of algorithm 5.1, we tested
(also with rather good results) another algorithm based on
negated assertions (vii), (vii* ) from section 4. In case of

detecting singularity, it also produces a singular matrix Ayz

with either YE Y,, 2€Y or yE&Y, z€ Y, (see (x),(x*)).

1
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We present it here without further comments; example 5.1 again
serves as an counterexample.

Algorithm 5.2 (testing singularity of AI).

0. Select y,z €Y (e.g. y =2 = e).

. =1 -1
1. Invert Ayz and compute p = m;.én(AcAyz)kk = (ACAyz)ii .
. -1 -1 ’
q = ml::n(AyzAc)kk = (AYZAO)JJ .
2, If p ; 1 and q > 1, terminate. The algorithm fails.

3. If p£%, set y,:= (y;p)/(p-1) and terminate. At is

singular: det Ayz =0, vy & Y1, z &Y.
b, If q __4_-}2- , set zJ.:= (zjq)/(q—1) and terminate. AI is sin-
gular: det Ayz =0, yE&Y, =z 6Y1 5

5. Otherwise, if p <q , set Yii= <Y

i and go to step 1;

if set 2.:= -z. and go to .
P>a, j 3 & step 1

Added after finishing the MS, It seems reasonable to start

algorithm 5.1 in step O with matrix A0 defined as in theo-

B -1
rem 5.2 (with e.g. (Ao)jk = if (Ac )kj = 0). If

A‘jk
det Ac det Ao 50 , then singularity 1s detected already in
step O (this is the case of example 5.1 now). Global minimum

of [det' for inverse-stable matrices is then always found

in only one iteration,
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