J. Rohn
Charles University
Prague/Czechoslovakia

A vector $x \in R^{n}$ is called an inner solution of a system of linear interval equations $A^{I} x=b^{I}\left(A^{I}=[\underline{A}, \bar{A}]=\left[A_{C}-\Delta, A_{C}+\Delta\right]\right.$ of size $m \times n$, $b^{I}=[\underline{b}, \bar{b}]=\left[b_{c}-\delta, b_{c}+\delta\right]$) if $A x \in b^{I}$ for each $A \in A^{I}$ (for a motivation, see [1]). Denote by X_{i} the set of all inner solutions. We have this characterization:

Theorem. $x \in X_{i}$ if and only if $x=x_{1}-x_{2}$, where x_{1}, x_{2} is a solution to the system of linear inequalities

$$
\begin{align*}
\overline{\mathrm{A}} \mathrm{x}_{1}-\underline{\mathrm{A}} \mathrm{x}_{2} \leqq \overline{\mathrm{~b}} \\
-\underline{\mathrm{Ax}} \mathrm{x}_{1}+\overrightarrow{\mathrm{A}} \mathrm{x}_{2} \leqq-\underline{\mathrm{b}} \tag{S}\\
\mathrm{x}_{1} \geqq 0, \quad \mathrm{x}_{2} \geqq 0 .
\end{align*}
$$

Proof. Due to Oettli-Prager theorem, $\left\{A x ; A \in A^{I}\right\}=\left[A_{C} x-\Delta|x|\right.$, $\left.A_{c} x+\Delta|x|\right]$. "Only if": Let $x \in x_{i}$, then $\underline{b} \leqq A_{c} x-\Delta|x|$ and $A_{C} x+\Delta|x| \leqq \bar{b}$; substituting $x=x^{+}-x^{-},|x|=x^{+}-x^{-}$, we see that $x_{1}=x^{+}$, $x_{2}=x^{-}$satisfy (S). "If": Let x_{1}, x_{2} solve (S); define $d \in R^{n}$ by $d_{j}=$ $=\min \left\{x_{1 j}, x_{2 j}\right\} \forall j$, then $d \geqq 0$ for $x=x_{1}-x_{2}$ we have $x^{+}=x_{1}-d$, $x^{-}=x_{2}-d$, hence $A_{c} x+\Delta|x|=\bar{A} x_{1}-\underline{A} x_{2}-2 \Delta d \leqq \bar{b}$, similarly $A_{c} x-\Delta|x| \geq \underline{b}$. Thus $\left[A_{C} x-\Delta|x|, A_{C} x+\Delta|x|\right] \subset b^{I}$, implying $x \in X_{i}$.

As consequences, we obtain: (i) X_{i} is a convex polytope, (ii) each $x \in X_{i}$ satisfies $\Delta|x| \leqq \delta$ (by adding the first two inequalities in (S)), (iii) X_{i} is bounded if for each j there is a k with $\Delta_{k j}>0$ (since then from (ii) follows $\left|x_{j}\right| \leqq \delta_{k} / \Delta_{k j}$), (iv) $X_{i} \neq \emptyset$ if and only if (S) has a solution, which can be tested by phase I of the simplex algorithm, (v) for $\underline{x}_{j}=\min \left\{x_{j} ; x \in x_{i}\right\}$ we have $\underline{x}_{j}=\min \left\{\left(x_{1}-x_{2}\right)_{j} ; x_{1}, x_{2}\right.$ solve (S)\}, which is a linear programming problem (similarly for $\bar{x}_{j}=\max .$.), (vi) nonnegative inner solutions
are described by $\overline{\mathrm{A}} \mathrm{x} \leq \overline{\mathrm{b}},-\underline{\mathrm{A}} \mathrm{x} \leqq \underline{-\mathrm{b}}, \mathrm{x} \geqq 0$, (vii) also, $x_{i}=\left\{x ;\left|A_{c} x-b_{C}\right| \leqq-\Delta|x|+\delta\right\}$ (observe the similarity with the OettliPrager result).

Acknowledgment.

Dr. A. Deif's posing the problem to the author is acknowledged with thanks.

Reference.
[1] Nuding, E.; Wilhelm, J.: Über Gleichungen und über Lösungen, ZAMM 52, T188-T190 (1972).

