INNER SOLUTIONS OF LINEAR INTERVAL SYSTEMS

J. Rohn

Charles University

Prague/Czechoslovakia

A vector $x \in \mathbb{R}^n$ is called an inner solution of a system of linear interval equations $A^I x = b^I (A^I = [\underline{A}, \overline{A}] = [A_C - \Delta, A_C + \Delta]$ of size $m \times n$, $b^I = [\underline{b}, \overline{b}] = [b_C - \delta, b_C + \delta]$ if $Ax \in b^I$ for each $A \in A^I$ (for a motivation, see [1]). Denote by X_i the set of all inner solutions. We have this characterization:

<u>Theorem</u>. $x \in X_i$ if and only if $x = x_1 - x_2$, where x_1, x_2 is a solution to the system of linear inequalities

$$\overline{Ax}_{1} - \underline{Ax}_{2} \leq \overline{b}$$

$$-\underline{Ax}_{1} + \overline{Ax}_{2} \leq -\underline{b} \qquad (S)$$

$$x_{1} \geq 0, \quad x_{2} \geq 0.$$

<u>Proof</u>. Due to Oettli-Prager theorem, {Ax; $A \in A^{I}$ } = $[A_{c}x - \Delta |x|, A_{c}x + \Delta |x|]$. "Only if": Let $x \in X_{i}$, then $\underline{b} \leq A_{c}x - \Delta |x|$ and $A_{c}x + \Delta |x| \leq \overline{b}$; substituting $x = x^{+} - x^{-}$, $|x| = x^{+} - x^{-}$, we see that $x_{1} = x^{+}, x_{2} = x^{-}$ satisfy (S). "If": Let x_{1}, x_{2} solve (S); define $d \in \mathbb{R}^{n}$ by $d_{j} = \min\{x_{1j}, x_{2j}\} \forall j$, then $d \geq 0$ for $x = x_{1} - x_{2}$ we have $x^{+} = x_{1} - d, x^{-} = x_{2} - d$, hence $A_{c}x + \Delta |x| = \overline{A}x_{1} - \underline{A}x_{2} - 2\Delta d \leq \overline{b}$, similarly $A_{c}x - \Delta |x| \geq \underline{b}$. Thus $[A_{c}x - \Delta |x|, A_{c}x + \Delta |x|] \subset b^{I}$, implying $x \in X_{1}$.

As consequences, we obtain: (i) X_i is a convex polytope, (ii) each $x \in X_i$ satisfies $\Delta |x| \leq \delta$ (by adding the first two inequalities in (S)), (iii) X_i is bounded if for each j there is a k with $\Delta_{kj} > 0$ (since then from (ii) follows $|x_j| \leq \delta_k / \Delta_{kj}$), (iv) $X_i \neq \emptyset$ if and only if (S) has a solution, which can be tested by phase I of the simplex algorithm, (v) for $\underline{x}_j = \min\{x_j; x \in X_i\}$ we have $\underline{x}_j = \min\{(x_1 - x_2)_j; x_1, x_2 \text{ solve (S)}\}$, which is a linear programming problem (similarly for $\overline{x}_j = \max...$), (vi) nonnegative inner solutions

are described by $\overline{Ax} \leq \overline{b}$, $-\underline{Ax} \leq -\underline{b}$, $x \geq 0$, (vii) also, $X_i = \{x; |A_c x - b_c| \leq -\Delta |x| + \delta\}$ (observe the similarity with the Oettli-Prager result).

Acknowledgment.

Dr. A. Deif's posing the problem to the author is acknowledged with thanks.

Reference.

[1] Nuding, E.; Wilhelm, J.: Über Gleichungen und über Lösungen, ZAMM 52, T188-T190 (1972).