Characterization of a Linear Program in Standard Form
by a Family of Linear Programs with Inequality Constraints

JIRf ROHN

In the linear programming theory, conditions for feasibility, unboundedness or
existence of an optimal solution of a linear program in standard form

(P) min {¢"x; Ax = b, x 2 0}

are given in terms of the dual problem. It is the purpose of this short note to show
that such conditions can be also given in terms of a family of primal problems
which arise when releasing each equality constraint in (P) by replacing it by either
of the two associated inequality constraints, This result is almost certainly of no
practical value, but may be of some theoretical interest.

We shall first formulate an auxiliary result concerning the existence of a solution
of a system of linear equations

(8) Ax=1b

with an m x n matrix A. Denote Y = {y e R™; |y;| = L for j = 1,..., m}, sothat ¥
consists of 2™ elements, and for each y € Ydenote D, = diag {yy, ..., ¥}, the diago-
nal matrix with diagonal vector y. Together with (S), we shall consider the family
of systems of linear inequalities of the form

(s,) ' D,Ax < Db
for all ye Y. Tt is easy to see that the i-th row in (S,) has the form (4x); < b, if
y; = 1 and the form —(4x); £ —b;if y; = — 1.

Now we have this

Lemma. Let for each y € Y the system (S,) have a solution x,. Then (S) has
a solution which is a convex combination of the x,’s.

Proof. We shall prove that the system of linear equations

(1) Z, A(Ax,) = b
ye
Y =1
ye¥

has a nonnegative solution A,€ R!, y € Y. In the light of the Farkas lemma ([1]),
this amounts to proving that for each pe R™ and p, e R, if p"dx, + po, = 0 for
cach y € Y, then p™b + p, = 0. So let p, p, satisfy p"Ax, + p, = 0 for each ye Y.
Define a vector z € Y in the following way: z; = 1if p, 2 0and z; = —1if p; < 0
(i =1,..., m). Since x, satisfies (4x,); < b; if z; = 1| and (Ax,); = b; if z; = —1,
we have that p™h + p, = pTAx, + p, = 0, and wc are done. So the system (1)
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has a nonnegative solution. Taking x = Zlyxy, we have that Ax = b and x is

yeY
a convex combination of the x,’s, which concludes the proof. O
Let us now return to our original linear program (P). We shall show in the next
theorem that (P) can be characterized in terms of the family of linear programs of
the form

(P,) min {c¢"x; D,Ax < D,b, x = 0}

for all y € Y (so that there are 2™ of them). Notice that the characterization is given
purely in primal terms,

Theorem. The following assertions hold for (P) and (P,), y€ Y:

(i) (P) is feasible if and only if (P,) is feasible for each y € ¥,

(i) (P) is unbounded if and only if (P,) is unbounded for each y e ¥,

(iti) (P) has a finite optimum if and only if each (P,), y € Y, is feasible and at least
one (P,) has a finite optimum,

(iv) if x* is an optimal solution to (P) and x; an optimal solution to some (P,),
then ¢™x* Zz c'x},

(v) if (P) has a finite optimum, then there exists at least one y € Y such that each
optimal solution of (P) is also an optimal solution of (P,), so that the optimal
values of (P) and (P,) are equal,

(vi) if x is a feasible solution of (P) satisfying ¢"x = ¢"x} for an optimal solution x}
of some problem (P,), y € Y, then x is an optimal solution to (P).

Remark. The assertions (iv), (v), (vi) may be considered analogues to weak
duality, duality theorem and optimality conditions of LP, respectively.

Proof. (i) If (P) has a feasible solution x, then x is also feasible for each (P,),
y € Y. Conversely, if each (P,) has a feasible solution x,, then our Lemma gives
that Ax = b has a solution which is a convex combination of the x,’s, hence non-
negative, thus feasible for (P).

(i) If (P) is unbounded, then also each (P,), y € Y, is unbounded since each
feasible solution of (P) is also feasible for each (P,). Conversely, assume that each (P,)
is unbounded. Then, as well-known ([1]), for each (P,) there exists a vector x, such
that D,4x, £ 0, x, =2 0, ¢"x, < 0. Using the Lemma, we get that there exists an x,
such that Ax, = 0 and x, is a convex combination of the x,’s, so that x, = 0 and
¢Txo < 0. Then for each feasible solution x, of (P), the whole half-ray {x, + px,:
= 0} consists of feasible solutions for (P) and the objective decreases to — o along
it, so (P) is unbounded.

(iii) If (P) has a finite optimum, then each (P,) is feasible due to (i) and at lcast
one (P,) must have a finite optimum since otherwise (P) would be unbounded due
to (ii). Conversely, if each (P,) is feasible and some (P,) has a finite optimum, then
(P) is feasible due to (i) and its objective is bounded from below by the optimal val-
ue of (P,), so that (P) has a finite optimum.

(iv) The assertion follows obviously from the fact that the set of feasible
solutions of (P) is a part of the set of feasible solutions of (P,).
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(v) Let (P) have a finite optimum. Take an optimal solution p* of its dual
problem
(D) max {bTp; 4"p < ¢},
so that x*T(ATp* — ¢) = 0 for any optimal solution x* of (P). Define y as follows:
yi = 1if pf £0and y; = —1 otherwise. Now, consider (P,) and ils dual problem
(D,) max {bT"(—D,n); AN(-Dyn) < ¢, n = 0}.
Obviously, x* is feasible for (P,) and n* = — D,p* is feasible for (D,) and, moreover,
x*T(A"(—Dyn*) — ¢) = x*T(ATp* — ¢) = 0, n**(D,Ax* — D,b) =0, so that the
optimality conditions for the pair (P,), (D,) are satisfied, showing that x* is an
optimal solution of (P,).
(vi) Since each feasible solution % of (P) is also feasible for (P,), we have
¢'% 2 ¢"x; = ¢"x, which means that x is an optimal solution to (P). O
If (P) has a finite optimum, then at least one (P,) has a finite optimum (assertion
(iii)), but there may exist another (P,)’s which are unbounded. Consider a simple
example
min x,
subject to
X1 + Xy = 0
X, —x,=0
x=20, x,=0

which has a unique feasible solution (0,0)". For y = (1, 1), the set of feasible
solutions of (P,) contains the half-ray {(x,, 0)"; x; < 0}, hence (P,)is unbounded.
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Resumé

CHARAKTERIZACE LINEARNIHO PROGRAMU
VE STANDARDNI FORME SOUBOREM LINEARNICH PROGRAMU
S OMEZENIMI VE TVARU NEROVNOSTI

Ji¥i Rohn
V ¢lanku je ukézéano, Ze uloha linearniho programovani s omezenimi ve tvaru rovnosti muZe
byt charakterizovina (co se ty&e pFipustnosli, neomezenosti, existence optimalniho ¥eseni)

souborem uloh linedrniho programovani, které vzniknou nahrazenim kaZdé rovnice v soustavd
omezeni jednou ze dvou odpovidajicich nerovnosti.
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