A perturbation theorem for linear equations

Jiří Rohn*
Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 11800 Prague 1, Czech Republic

We describe here explicit formulae for componentwise bounds on solution of a system of linear equations

$$
A x=b
$$

(A square) under perturbation of all data. To make the result numerically tractable, we avoid the use of exact inverses, using instead some matrices R and M required only to satisfy certain inequalities. Hansen's optimality result [1], [2] is a special case of our theorem. Notations used: I is the unit matrix, ϱ denotes the spectral radius, for $A=\left(a_{i j}\right)$ we denote $|A|=\left(\left|a_{i j}\right|\right)$ and inequalities are understood componentwise.

Theorem 1 Let $A, \Delta \in R^{n \times n}, b, \delta \in R^{n}, \Delta \geq 0, \delta \geq 0$ and let R and M be arbitrary matrices satisfying

$$
\begin{align*}
M G+I & \leq M \tag{1}\\
M & \geq 0
\end{align*}
$$

where

$$
G=|I-R A|+|R| \Delta .
$$

Then for each A^{\prime} and b^{\prime} such that

$$
\begin{aligned}
\left|A^{\prime}-A\right| & \leq \Delta \\
\left|b^{\prime}-b\right| & \leq \delta,
\end{aligned}
$$

A^{\prime} is nonsingular and the solution of the system

$$
A^{\prime} x^{\prime}=b^{\prime}
$$

for each $i \in\{1, \ldots, n\}$ satisfies

$$
\begin{equation*}
\min \left\{\frac{x_{i}}{\stackrel{x_{i}}{\alpha_{i}}}, \stackrel{\underset{\sim}{\beta_{i}}}{\underset{\beta_{i}}{ }}\right\} \leq x_{i}^{\prime} \leq \max \left\{\frac{\tilde{x}_{i}}{\alpha_{i}}, \frac{\tilde{x}_{i}}{\beta_{i}}\right\}, \tag{2}
\end{equation*}
$$

[^0]where
\[

$$
\begin{aligned}
x_{i} & =-(M(|R b|+|R| \delta))_{i}+m_{i}(R b+|R b|)_{i} \\
\tilde{x}_{i} & =(M(|R b|+|R| \delta))_{i}+m_{i}(R b-|R b|)_{i} \\
\alpha_{i} & =1+\left(\left|r_{i}\right|-r_{i}\right) m_{i}+h_{i} \\
\beta_{i} & =2 m_{i}-1-\left(\left|r_{i}\right|+r_{i}\right) m_{i}-h_{i} \\
m_{i} & =M_{i i} \\
r_{i} & =(I-R A)_{i i} \\
h_{i} & =(M-M G-I)_{i i}
\end{aligned}
$$
\]

and

$$
\beta_{i} \geq \alpha_{i} \geq 1
$$

Moreover, if $A=I$ and $\varrho(\Delta)<1$, and if we take $R:=I$ and $M:=(I-\Delta)^{-1}$, then the bounds (2) are exact (i.e, achieved).

The proof employs the ideas of the proofs of Theorems 1 and 3 in [2]; details are omitted here.

Comments. The quantities r_{i} and h_{i} correct the influence of the approximate inverses R and M; they vanish if $R=A^{-1}$ and $M=(I-G)^{-1} \geq 0$ are used. The last statement of the theorem is Hansen's optimality result [1] as reformulated in [2]. It can be shown that matrices R and $M \geq 0$ satisfying (1) exist if and only if

$$
\varrho\left(\left|A^{-1}\right| \Delta\right)<1
$$

holds.

References

[1] Hansen E.R., Bounding the solution of interval linear equations, SIAM J. Numer. Anal. 29(1992), 1493-1503
[2] Rohn J., Cheap and tight bounds: the recent result by E. Hansen can be made more efficient, to appear in Interval Computations

[^0]: *This work was supported by the Charles University Grant Agency under grant GAUK 237.

