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ABSTRACT

We prove that it is NP-hard to decide whether the solution set of a system
of linear interval equations is contained in a given interval vector, even in the
case that the system matrix is strongly regular.

1. INTRODUCTION

Consider a system of linear interval equations

AIx = bI (1.1)

where

AI = [Ac −∆, Ac + ∆] := {A′; Ac −∆ ≤ A′ ≤ Ac + ∆}

is an interval matrix and

bI = [bc − δ, bc + δ] := {b′; bc − δ ≤ b′ ≤ bc + δ}
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is an interval vector; here, Ac, ∆ ∈ Rn×n, bc, δ ∈ Rn and ∆ ≥ 0, δ ≥ 0
(matrix and vector inequalities are understood componentwise). The solu-
tion set of the system (1.1) is defined by

X(AI , bI) = {x; A′x = b′ for some A′ ∈ AI , b′ ∈ bI}.

It is well known (cf. e.g. Neumaier [4]) that the solution set is of a com-
plicated nonconvex structure in general. Therefore the problem of solving
(1.1) is usually formulated as follows (see [1], [4]): find an interval vector
xI (as narrow as possible) satisfying

X(AI , bI) ⊂ xI (1.2)

(provided X(AI , bI) is bounded), or verify that X(AI , bI) is unbounded.
It has been proved recently that this problem is NP-hard [8]. Let us recall
that a problem is called NP-hard if each problem in the class NP can be
polynomially reduced to it. Thus, unless the class NP of problems solvable
by nondeterministic polynomial-time algorithms is equal to the class P
of problems solvable by polynomial-time algorithms, which is currently
considered highly unlikely (see Garey and Johnson [3] for details), there
does not exist a polynomial-time algorithm for solving an NP-hard problem.

In this paper we address another related problem: for a system (1.1),
given an n-dimensional interval vector xI , check whether (1.2) holds, or
not. We shall prove that this problem is NP-hard even for a very restricted
class of systems with strongly regular interval matrices. Let us recall that
an interval matrix AI = [Ac−∆, Ac + ∆] is called strongly regular [4] if Ac

is nonsingular and
ρ(|A−1

c |∆) < 1 (1.3)

holds (here, ρ denotes the spectral radius and for A = (aij), |A| is defined
by |A| = (|aij |)). A well-known result by Beeck [2] states that if AI satisfies
(1.3), then AI is regular (i.e., each A ∈ AI is nonsingular). The problems
(1.1) with strongly regular matrices are usually considered “tractable”, for
several reasons: 1) regularity of AI can be easily checked (whereas it is an
NP-hard problem in general [5]), 2) a vector xI satisfying (1.2) can be found
in polynomial time [4], [7] (whereas the enclosure problem is again NP-hard
in general [8]), and 3) several iterative methods (as Rump [10], Rohn [6])
are guaranteed to converge under (1.3) (and convergence is generally not
preserved if (1.3) is violated). Nevertheless, the main result of this paper
shows that checking bounds on solutions is difficult even in this special
case:

Theorem 1.1. The following decision problem is NP-hard:
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Instance. A strongly regular interval matrix AI and interval vectors
bI , xI (with rational bounds).

Question. Is X(AI , bI) ⊂ xI?

The proof of this theorem will be carried out in section 3, employing two
auxiliary results established in section 2. The recent NP-hardness result for
computing the optimal (i.e., narrowest) bounds on X(AI , bI) (Rohn and
Kreinovich [9]) then becomes an easy consequence of Theorem 1.1.

2. AUXILIARY RESULTS

In this section we describe an auxiliary construction and prove its prop-
erties to be used later in the proof of the main theorem.

Let A be an arbitrary real nonsingular n×n matrix and β a positive real
number. We shall consider an (n + 1)× (n + 1) interval matrix introduced
in [9] and defined as follows:

AI
β = [Ac −∆, Ac + ∆] (2.1)

with

Ac =

(
A−1 0

(A−1)n. −1

)
(2.2)

and

∆ =

(
βeeT 0
0T 0

)
(2.3)

where (A−1)n. denotes the n-th row of A−1 and e = (1, 1, . . . , 1)T ∈ Rn.
Let us additionally denote by I the unit matrix and by en the vector
(0, 0, . . . , 0, 1)T ∈ Rn.

Proposition 2.1. Let A be nonsingular and let β satisfy

0 < β <
1

eT |A|e . (2.4)

Then the interval matrix AI
β given by (2.1)-(2.3) is strongly regular and

each A′ ∈ AI
β satisfies

|(A′)−1 −A−1
c | ≤ β

1− βeT |A|e
( |A|eeT |A| 0

eT |A| 0

)
. (2.5)
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Proof. First, a direct computation shows that

(
A−1 0

(A−1)n. −1

)(
A 0
eT
n −1

)
=

(
I 0
0T 1

)
,

hence

A−1
c =

(
A 0
eT
n −1

)
,

so that for D = |A−1
c |∆ we have

D = β

( |A|eeT 0
eT 0

)
.

Let Dx′ = λx′ for some (complex) λ and x′ 6= 0. Let x′ = (xT , xn+1)T ,
then we have

β|A|eeT x = λx, (2.6)

βeT x = λxn+1.

Hence, if eT x = 0, then λ = 0; if eT x 6= 0, then from (2.6) we obtain
λ = βeT |A|e. Thus ρ(D) < 1 due to (2.4), so that AI

β is strongly regular.
Next, a simple computation gives that D2 = β(eT |A|e)D, hence Dj =

βj−1(eT |A|e)j−1D for j ≥ 1. Then for each A′ ∈ AI
β , from the identity

A′ = Ac(I − A−1
c (Ac − A′)), in view of the fact that ρ(A−1

c (Ac − A′)) ≤
ρ(D) < 1 we obtain

|(A′)−1 −A−1
c | ≤

∞∑
1

Dj |A−1
c | =

∞∑
1

βj−1(eT |A|e)j−1D|A−1
c |

=
β

1− βeT |A|e
( |A|eeT |A| 0

eT |A| 0

)
,

which proves (2.5). 2

In the next proposition we shall consider the solution set of the system

AI
βx = bI

β (2.7)

where AI
β is as above and bI

β is the (n + 1)-dimensional interval vector

bI
β =

[( −βe
0

)
,

(
βe
0

)]
. (2.8)

Denote e′ = (eT , 1)T ∈ Rn+1.
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Proposition 2.2. Let A be nonsingular, L a nonnegative integer, and
let β satisfy

0 < β <
1

max{eT |A|e, L} . (2.9)

Then
zT Ay > L (2.10)

holds for some z, y ∈ {−1, 1}n if and only if the solution set X(AI
β , bI

β) of
the system (2.7) does not satisfy

X(AI
β , bI

β) ⊂ xI , (2.11)

where xI = [x̃, ˜̃x] is given by

x̃ = −νe′ (2.12)

˜̃x =

(
νeT ,

β

1− βL

)T

(2.13)

and

ν =
β max{‖ A ‖∞, 1}

1− βeT |A|e . (2.14)

Proof. Let x ∈ X(AI
β , bI

β), so that A′x = b′ for some A′ ∈ AI
β , b′ ∈ bI

β .
Then from Proposition 1 we have

|x| ≤ |A−1
c | · |b′|+ |(A′)−1 −A−1

c | · |b′|
≤

( |A| 0
eT
n 1

)(
βe
0

)
+

β

1− βeT |A|e
( |A|eeT |A| 0

eT |A| 0

) (
βe
0

)

≤ β

1− βeT |A|e
( |A|e

1

)
≤ νe′,

hence X(AI
β , bI

β) ⊂ [−νe′, νe′]. By comparing this with (2.12) and (2.13),

we see that X(AI
β , bI

β) ⊂ [x̃, ˜̃x] does not hold if and only if

µ := max{x′n+1; x′ ∈ X(AI
β , bI

β)} >
β

1− βL
.

Let x′ ∈ Rn+1. Then from the construction of Ac and ∆ it follows that
x′ ∈ X(AI

β , bI
β) if and only if it is of the form x′ = (xT , xn+1)T , where
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x ∈ X([A−1 − βeeT , A−1 + βeeT ], [−βe, βe]) and xn+1 = (A−1)n.x. Then
from Proposition 2 in [9] we have

µ =
β

1− β max{zT Ay; z, y ∈ {−1, 1}n} ,

hence µ > β
1−βL if and only if zT Ay > L for some z, y ∈ {−1, 1}n. Hence,

(2.10) is true if and only if (2.11) does not hold. 2

3. PROOF OF THE MAIN RESULT

We shall now prove the main result formulated in section 1 as a conse-
quence of Proposition 2.

Proof of Theorem 1.1. In [5],Thm. 2.6 it is proved that the decision
problem
Instance. A nonsingular rational matrix A and a nonnegative integer L.
Question. Is zT Ay > L for some z, y ∈ {−1, 1}n?
is NP-hard. We shall polynomially reduce this problem to that one for-
mulated in Theorem 1.1. Given a nonsingular rational matrix A and a
nonnegative integer L, choose a rational number β satisfying (2.9), invert
A and construct AI

β , bI
β and xI by (2.1)-(2.3), (2.8) and (2.12)-(2.14); this

can be done in polynomial time, and AI
β is strongly regular (Proposition 1).

Now, if (2.11) is true, then the solution to the above decision problem is
“no”, and if (2.11) is false, then the solution is “yes” (Proposition 2). In this
way we have polynomially reduced the above-formulated NP-hard problem
to that one of Theorem 1.1, hence the latter problem is NP-hard as well.

2

In [9] it is proved that computing the narrowest interval vector xI
opt

containing the solution set X(AI , bI) is NP-hard. This can be now proved
as a simple consequence of Theorem 1.1. The narrowest interval vector
xI

opt = [x, x] is obviously given by

xi = min{xi; x ∈ X(AI , bI)},
xi = max{xi; x ∈ X(AI , bI)}

(i = 1, . . . , n). Thus for an arbitrary xI ,

X(AI , bI) ⊂ xI

is true if and only if
xI

opt ⊂ xI

holds. Hence, the decision problem of Theorem 1.1 can be polynomially
reduced to that of computing xI

opt, which is then NP-hard.



7

REFERENCES

1 G. Alefeld and J. Herzberger, Introduction to Interval Computations, Aca-
demic Press, New York, 1983.

2 H. Beeck, Zur Problematik der Hüllenbestimmung von Intervallgle-
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