NP-Hardness Results for Some Linear and Quadratic Problems*

Jiří Rohn ${ }^{\dagger}$

Abstract

Several problems concerning norms, linear inequalities, linear equations, linear programming and quadratic programming are proved to be NP-hard.

Key words. Norm, linear inequalities, linear equations, linear programming, quadratic programming, NP-hardness

1 Introduction

The first part of this report (sections 2 to 5) was originally made as a transcript of transparencies of seminar talks ${ }^{1}$. Improvements and consequences found shortly after the transcription had been completed were added as Appendices 1 to 4. In this rather incoherent form, the main result is Theorem 2, supported by Proposition 2 (already known in a slightly different setting). Among other consequences, it is shown that computing $\|A\|_{\infty, 1}$ within accuracy $\frac{1}{2}$ is NP-hard (Corollary 9), which in turn implies that the same is true for computing the maximal value of a convex quadratic program (Corollary 11) and for one of the two bounds on the optimal value of a linear program with inexact right-hand side (Corollary 12). Another result (Corollary 3) shows that checking sensitivity of a system of linear equations is an NP-hard problem.

[^0]
2 MC-matrices

The following concept will be used as a basic tool throughout this report:
Definition A real symmetric $n \times n$ matrix $A=\left(a_{i j}\right)$ is called an $M C$-matrix ${ }^{2}$ if it is of the form

$$
a_{i j}\left\{\begin{array}{lll}
=n & \text { if } & i=j \\
\in\{0,-1\} & \text { if } & i \neq j
\end{array}\right.
$$

$(i, j=1, \ldots, n)$.
Proposition 1 If A is an $M C$-matrix, then A^{-1} is nonnegative and symmetric positive definite.

Proof. By definition, A is of the form

$$
A=n I-A_{0}=n\left(I-\frac{1}{n} A_{0}\right)
$$

where $A_{0} \geq 0$ and $\left\|\frac{1}{n} A_{0}\right\|_{\infty} \leq \frac{n-1}{n}<1$, hence

$$
A^{-1}=\frac{1}{n} \sum_{0}^{\infty}\left(\frac{1}{n} A_{0}\right)^{j} \geq 0
$$

A is symmetric by definition; it is positive definite since for $x \neq 0$,

$$
x^{T} A x \geq n\|x\|_{2}^{2}-\sum_{i \neq j}\left|x_{i} x_{j}\right|=(n+1)\|x\|_{2}^{2}-\|x\|_{1}^{2} \geq\|x\|_{2}^{2}>0 .
$$

Hence A^{-1} is also symmetric and positive definite.
The next result is due to Poljak and Rohn [8] (given there in a slightly different formulation without using the concept of an $M C$-matrix). We add the proof for completeness.

Proposition 2 The following decision problem is NP-complete:
Instance. An MC-matrix A and a positive integer L.
Question. Is $z^{T} A z \geq L$ for some $z \in\{-1,1\}^{n}$?
Proof. Let (N, E) be a graph with $N=\{1, \ldots, n\}$. Let $A=\left(a_{i j}\right)$ be given by

$$
a_{i j}= \begin{cases}n & \text { if } i=j \\ 0 & \text { if }\{i, j\} \notin E, i \neq j \\ -1 & \text { if }\{i, j\} \in E, i \neq j\end{cases}
$$

[^1]then A is an $M C$-matrix. For $S \subseteq N$, define a cut by
$$
c(S)=\operatorname{Card}\{\{i, j\} \in E ; \text { exactly one of } i, j \text { is in } S\} .
$$

If z is given by

$$
z_{k}= \begin{cases}1 & \text { if } k \in S \\ -1 & \text { if } k \notin S\end{cases}
$$

then

$$
c(S)=\frac{1}{4}\left(z^{T} A z+2 \operatorname{Card}(E)-n^{2}\right)
$$

hence

$$
c(S) \geq L
$$

if and only if

$$
z^{T} A z \geq 4 L-2 \operatorname{Card}(E)+n^{2}
$$

Since the problem

$$
" c(S) \geq L "
$$

(maximum cut in a graph) is NP-complete (Garey and Johnson [1]), the current problem is NP-hard. It is obviously in the class NP, since a guessed solution z can be verified in polynomial time; hence it is NP-complete.

3 The result

Theorem 1 below forms a common basis for several NP-hardness results listed in the next section.

$$
z^{T} A z \geq L
$$

holds for some $z \in\{-1,1\}^{n}$ if and only if the system

$$
-e \leq L A^{-1} x \leq e
$$

has a solution satisfying

$$
\|x\|_{1} \geq 1
$$

(where $e=(1,1, \ldots, 1)^{T}$ and $\|x\|_{1}=\sum_{i}|x|_{i}$).
Proof. \Rightarrow : Let $z^{T} A z \geq L$. Put

$$
x=\frac{A z}{z^{T} A z}
$$

then

$$
\left|L A^{-1} x\right|=\left|\frac{L z}{z^{T} A z}\right| \leq|z|=e
$$

and

$$
\|x\|_{1}=\frac{e^{T}|A z|}{z^{T} A z}=\frac{z^{T} A z}{z^{T} A z}=1
$$

$\Leftarrow:$ If $\left|L A^{-1} x\right| \leq e$ and $\|x\|_{1} \geq 1$, then for z given by $z_{i}=1$ if $x_{i} \geq 0$ and $z_{i}=-1$ otherwise we have

$$
L \leq L\|x\|_{1}=L z^{T} x=L z^{T} A A^{-1} x \leq\left|z^{T} A\right| e=z^{T} A z
$$

Theorem 1 The following decision problem is NP-complete:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Does the system

$$
-e \leq A x \leq e
$$

(where $\left.e=(1,1, \ldots, 1)^{T}\right)$ have a solution satisfying

$$
\|x\|_{1} \geq 1 \text { ? }
$$

Proof. According to Propositions 2 and 3, the NP-complete problem

$$
" z^{T} A z \geq L "
$$

can be polynomially reduced to this one (if A is an $M C$-matrix, then $L A^{-1}$ is nonnegative symmetric positive definite), hence the current problem is NP-hard.

If the problem has a solution, then it also has a rational solution of the form

$$
x=\frac{A z}{z^{T} A z}
$$

(proof of Proposition 3) which can be checked in polynomial time; thus the problem belongs to the class NP, hence it is NP-complete.

4 Corollaries

The following five corollaries are direct consequences of Theorem 1. The instances are always assumed to be rational without further notice.

Corollary 1 The following problem is NP-hard:
Instance. $A \in R^{m \times n}, b \in R^{m}, m \geq 2 n, L$ positive integer.
Question. Does each solution of the system

$$
A x \leq b
$$

satisfy

$$
\|x\|_{1}<L ?
$$

Corollary 2 The following problem is NP-hard:
Instance. $A, B \in R^{n \times n}, b \in R^{n}$.
Question. Does the system

$$
A x+B|x| \leq b
$$

have a solution?
Corollary 3 The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite $A \in R^{n \times n}, b \in R^{n}, \delta>0$, $\epsilon>0$; denote $x=A^{-1} b$.
Question. Does the solution of each $A x^{\prime}=b^{\prime}$ with $\left\|b^{\prime}-b\right\|_{\infty}<\delta$ satisfy $\left\|x^{\prime}-x\right\|_{1}$ $<\epsilon$?

Corollary 4 For $A \in R^{m \times n}, b \in R^{m}, c \in R^{n}, m \geq 2 n$, it is NP-hard to compute

$$
\max \left\{c^{T}|x| ; \quad A x \leq b\right\}
$$

Note A linear programming problem with objective $c^{T} x$ can be solved in polynomial time (Khachiyan [6]).

Corollary 5 For a symmetric positive definite $A \in R^{n \times n}$ and $a, b \in R^{n}$, it is NP-hard to compute the optimal value of the quadratic programming problem

$$
\max \left\{x^{T} A x ; a \leq x \leq b\right\}
$$

Note NP-hardness of quadratic programming with indefinite matrices was proved by Murty and Kabadi [7].
The proofs follow directly from Theorem 1 and Proposition 2.

5 Nearness to singularity

Let us use the norm (Golub and van Loan [3])

$$
\|A\|_{1, \infty}=\max _{i, j}\left|a_{i j}\right| .
$$

The number

$$
d(A)=\min \left\{\left\|A-A^{\prime}\right\|_{1, \infty} ; A^{\prime} \text { singular }\right\}
$$

is called the componentwise distance to the nearest singular matrix (Demmel [4]). If A is rational, then $d(A)$ is rational [8].

Corollary 6 Suppose there exists a polynomial-time algorithm which for each $n \times n$ nonnegative symmetric positive definite rational matrix A computes a rational approximation $d^{\prime}(A)$ of $d(A)$ satisfying

$$
\left|d^{\prime}(A)-d(A)\right|<\frac{1}{12 n^{4}}
$$

Then $P=N P$.

Proof. A direct computation shows that for an $M C$-matrix A we have

$$
\frac{1}{12 n^{4}} \leq \frac{d^{2}\left(A^{-1}\right)}{d\left(A^{-1}\right)+2}
$$

hence

$$
\left|d^{\prime}\left(A^{-1}\right)-d\left(A^{-1}\right)\right|<\frac{d^{2}\left(A^{-1}\right)}{d\left(A^{-1}\right)+2}
$$

which implies that

$$
z^{T} A z \geq L
$$

holds for some $z \in\{-1,1\}^{n}$ if and only if

$$
\left[\frac{1}{d^{\prime}\left(A^{-1}\right)}+\frac{1}{2}\right] \geq L
$$

Hence, if such a polynomial-time algorithm exists, then $\mathrm{P}=\mathrm{NP}$.

6 Appendix 1: $\|A\|_{\infty, 1}$

The material of this appendix was found later, when the previous part had been already written. In my view, Theorem 2 below forms the core of this report, as it clarifies the relationship between Proposition 2, Theorem 1, Corollary 5 and Corollary 6 , and offers a deeper insight into the matter ${ }^{3}$. We shall use the norm

$$
\|A\|_{\infty, 1}=\max \left\{\|A x\|_{1} ;\|x\|_{\infty}=1\right\}
$$

(see [3, p. 15]; $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$).
Theorem 2 For an MC-matrix A we have

$$
\begin{aligned}
\|A\|_{\infty, 1} & =\max \left\{z^{T} A z ; z \in\{-1,1\}^{n}\right\} \\
& =\max \left\{x^{T} A x ;-e \leq x \leq e\right\} \\
& =\max \left\{\|x\|_{1} ;-e \leq A^{-1} x \leq e\right\} \\
& =\frac{1}{\min \left\{x^{T} A^{-1} x ;\|x\|_{1}=1\right\}} \\
& =\frac{1}{d\left(A^{-1}\right)} .
\end{aligned}
$$

Proof. 1) If $\|x\|_{\infty}=1$, then x belongs to the unit cube $[-1,1]^{n}$ and therefore can be expressed as a convex combination of its vertices which are just the points in $\{-1,1\}^{n}$. Hence from convexity of the norm we have

$$
\|A\|_{\infty, 1}=\max \left\{\|A z\|_{1} ; z \in\{-1,1\}^{n}\right\}=\max \left\{z^{T} A z ; z \in\{-1,1\}^{n}\right\}
$$

[^2](since $\|A z\|_{1}=e^{T}|A z|=z^{T} A z$ for an $M C$-matrix A and $z \in\{-1,1\}^{n}$).
2) $x^{T} A x$ is convex (since A is positive definite), hence its maximum value over the cube $\{x ;-e \leq x \leq e\}$ is achieved at some of its vertices, implying
$$
\max \left\{x^{T} A x ;-e \leq x \leq e\right\}=\max \left\{z^{T} A z ; z \in\{-1,1\}^{n}\right\}=\|A\|_{\infty, 1} .
$$
3) Since an $M C$-matrix A is nonsingular, we have
\[

$$
\begin{gathered}
\max \left\{\|x\|_{1} ;-e \leq A^{-1} x \leq e\right\}=\max \left\{\|A y\|_{1} ;-e \leq y \leq e\right\}= \\
\max \left\{\|A y\|_{1} ;\|y\|_{\infty} \leq 1\right\}=\max \left\{\|A y\|_{1} ;\|y\|_{\infty}=1\right\}=\|A\|_{\infty, 1}
\end{gathered}
$$
\]

4) For a positive real number λ,

$$
\|A\|_{\infty, 1} \geq \lambda
$$

holds iff $\left|A^{-1}-A^{\prime}\right| \leq \frac{1}{\lambda} e e^{T}$ for some A^{\prime} which is not positive definite [11, proof, equivalence 0) $\Leftrightarrow 1$)] iff $x^{\prime T} A^{-1} x^{\prime}-\frac{1}{\lambda}\left|x^{\prime}\right|^{T} e e^{T}\left|x^{\prime}\right|=x^{T} A^{-1} x^{\prime}-\frac{1}{\lambda}\left\|x^{\prime}\right\|_{1}^{2} \leq 0$ for some $x^{\prime} \neq 0$ iff $x^{T} A^{-1} x \leq \frac{1}{\lambda}$ for some x with $\|x\|_{1}=1$ iff

$$
\frac{1}{\min \left\{x^{T} A^{-1} x ;\|x\|_{1}=1\right\}} \geq \lambda
$$

which gives

$$
\|A\|_{\infty, 1}=\frac{1}{\min \left\{x^{T} A^{-1} x ;\|x\|_{1}=1\right\}}
$$

5) By Kahan's theorem [5, p. 775],

$$
\|A\|_{\infty, 1}=\frac{1}{\min \left\{\left\|A^{-1}-A^{\prime}\right\|_{1, \infty} ; A^{\prime} \text { singular }\right\}}=\frac{1}{d\left(A^{-1}\right)} .
$$

Corollary 7 Computing $\|A\|_{\infty, 1}$ is NP-hard for MC-matrices.
Proof. From Proposition 2 and Theorem 2.
Corollary 8 The following problem is NP-hard:
Instance. A symmetric rational M-matrix A.
Question. Is $\|A\|_{\infty, 1} \geq 1$?
Proof. For an $M C$-matrix $A, z^{T} A z \geq L$ holds if and only if $\left\|\frac{1}{L} A\right\|_{\infty, 1} \geq 1$, where $\frac{1}{L} A$ is an M-matrix. Hence the problem of Proposition 2 can be polynomially reduced to this one.

The NP-hardness part of Theorem 1 follows from this result and from Theorem 2.

Corollary 9 Suppose there exists a polynomial-time algorithm which for each MCmatrix A computes a rational number $\nu(A)$ satisfying

$$
\left|\nu(A)-\|A\|_{\infty, 1}\right|<\frac{1}{2}
$$

Then $P=N P$.
Proof. If such an algorithm exists, then $\|A\|_{\infty, 1}=\left[\nu(A)+\frac{1}{2}\right]$ (since $\|A\|_{\infty, 1}$ is integer for an $M C$-matrix A), hence the NP-hard problem of Corollary 7 can be solved in polynomial time, implying $\mathrm{P}=\mathrm{NP}$.

In the next corollary we present a problem whose complexity depends on the norm used:

Corollary 10 The decision problem

Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is $x^{T} A x \leq 1$ for some x with $\|x\|=1$?
is NP-complete if the norm $\|\cdot\|_{1}$ is used and is solvable in polynomial time for $\|\cdot\|_{2}$.
Proof. NP-hardness of the problem for $\|\cdot\|_{1}$ follows from Proposition 2 and Theorem 2. The fact that it belongs to NP is proved via a similar construction as in Proposition 3 (see [11]). $x^{T} A x \leq 1$ for some x with $\|x\|_{2}=1$ holds if and only if $x^{T}(A-I) x \leq 0$ for some $x \neq 0$, which is the case if and only if $A-I$ is not positive definite. Since $A-I$ is symmetric, the latter fact can be verified in polynomial time using Sylvester determinant criterion and Gaussian elimination.

The last result shows that the norm $\|A\|_{\infty, 1}$ has nontrivial properties and is worth further studying. It is preceded by a "theorem on the alternative" which may be of independent interest:

Proposition 4 Let $A, B \in R^{n \times n}$, A nonsingular, $B \geq 0$. Then exactly one of the two alternatives holds:
(i) the inequality $B|A x| \geq|x|$ has a nonzero solution,
(ii) the inequality $B|A x|<|x|$ has a solution in each orthant.

Proof. 1) $B|A x| \geq|x|$ for some $x \neq 0$ iff $B\left|x^{\prime}\right| \geq\left|A^{-1} x^{\prime}\right|$ for some $x^{\prime} \neq 0$ iff

$$
\left|A^{\prime}-A^{-1}\right| \leq B
$$

for some singular A^{\prime} [10, Lemma 2.1].
2) $B|A x|<|x|$ has a solution in each orthant iff each A^{\prime} satisfying

$$
\left|A^{\prime}-A^{-1}\right| \leq B
$$

is nonsingular [9, Thm. 3].
Clearly, exactly one of the two possibilities occurs.

Proposition 5 A nonsingular matrix A satisfies $\|A\|_{\infty, 1}<1$ if and only if in each orthant there exists an x satisfying $\|A x\|_{1}<1$ and $|x| \geq e$.

Proof. For $B=e e^{T}, B|A x| \geq|x|$ is equivalent to $\|A x\|_{1} \geq\|x\|_{\infty}$, hence $B|A x| \geq$ $|x|$ has a nonzero solution iff $\|A\|_{\infty, 1} \geq 1$. Thus $\|A\|_{\infty, 1}<1$ holds iff

$$
\left\|A x^{\prime}\right\|_{1} e<\left|x^{\prime}\right|
$$

has a solution in each orthant. Setting $x=\frac{x^{\prime}}{\min _{i} \mid x_{i}^{\prime} i}$, we see that this is equivalent to the fact that

$$
\begin{gathered}
\|A x\|_{1}<1 \\
|x| \geq e
\end{gathered}
$$

has a solution in each orthant.

7 Appendix 2: Approximate quadratic programming is NP-hard

The results of the previous section enable us to strengthen the formulation of Corollary 5 :

Corollary 11 Suppose there exists a polynomial-time algorithm which for each integer data A, b, c, A symmetric positive definite, computes a rational number $\nu(A, b, c)$ satisfying

$$
\left|\nu(A, b, c)-\max \left\{x^{T} A x+c^{T} x ; 0 \leq x \leq b\right\}\right|<\frac{1}{2}
$$

Then $P=N P$.
Proof. Due to Theorem 2, for an $M C$-matrix A we have

$$
\|A\|_{\infty, 1}=\max \left\{x^{T} A x ;-e \leq x \leq e\right\}=\max \left\{y^{T} A y-2(A e)^{T} y ; 0 \leq y \leq 2 e\right\}+e^{T} A e
$$

hence

$$
\left|\nu(A, 2 e,-2 A e)+e^{T} A e-\|A\|_{\infty, 1}\right|<\frac{1}{2}
$$

and the conclusion follows from Corollary 9.

8 Appendix 3: Linear programming with inexact right-hand side is NP-hard

For a linear programming problem

$$
\operatorname{minimize} c^{T} x
$$

subject to

$$
\begin{gathered}
A x=b, \\
x \geq 0,
\end{gathered}
$$

denote

$$
f(A, b, c)=\inf \left\{c^{T} x ; A x=b, x \geq 0\right\}
$$

(so that $f=-\infty$ if the problem is unbounded and $f=\infty$ if it is infeasible). Consider the problem with the right-hand side ranging within the bounds \underline{b} and \bar{b} (componentwise). With A and c fixed, define

$$
\begin{aligned}
& \underline{f}=\inf \{f(A, b, c) ; \underline{b} \leq b \leq \bar{b}\} \\
& \bar{f}=\sup \{f(A, b, c) ; \underline{b} \leq b \leq \bar{b}\}
\end{aligned}
$$

Obviously,

$$
\underline{f}=\inf \left\{c^{T} x ; \underline{b} \leq A x \leq \bar{b}, x \geq 0\right\}
$$

hence \underline{f} can be determined by solving an LP problem, which can be done in polynomial time [6]. But the case of \bar{f} is different:

Corollary 12 Computing \bar{f} within accuracy $\frac{1}{2}$ is NP-hard for rational data $A, \underline{b}, \bar{b}, c$ and for a finite value of \bar{f}.

Proof. For an $M C$-matrix A, consider the problem

$$
\min \left\{e^{T} x_{1}+e^{T} x_{2} ;\left(A^{-1}\right)^{T} x_{1}-\left(A^{-1}\right)^{T} x_{2}=b, x_{1} \geq 0, x_{2} \geq 0\right\}
$$

with

$$
-e \leq b \leq e
$$

From the duality theorem and Theorem 2 we have

$$
\bar{f}=\sup _{-e \leq b \leq e} \max \left\{b^{T} y ;-e \leq A^{-1} y \leq e\right\}=\max \left\{e^{T}|y| ;-e \leq A^{-1} y \leq e\right\}=\|A\|_{\infty, 1}
$$

and it suffices to apply Corollary 9.
Note A linear programming problem with the right-hand side satisfying $\underline{b} \leq b \leq \bar{b}$ can be also viewed as a parametric linear programming problem with fully parametrized right-hand side. Hence this problem is also NP-hard.

9 Appendix 4: Complexity of solving linear interval inequalities

Under a system of linear interval inequalities $A^{I} x \leq b^{I}$ we understand the family of systems of linear inequalities

$$
\begin{gathered}
A x \leq b \\
A \in A^{I}, b \in b^{I}
\end{gathered}
$$

where $A^{I}=\{A ; \underline{A} \leq A \leq \bar{A}\}$ is an $m \times n$ interval matrix and $b^{I}=\{b ; \underline{b} \leq b \leq \bar{b}\}$ is an interval m-vector. There are two basic problems concerning solvability of such families of systems: first, whether each system $A x \leq b$ with data satisfying $A \in A^{I}, b \in b^{I}$ has a solution; second, whether some of such systems has a solution.

The first problem was solved by Rohn and Kreslová [12]: each system $A x \leq b, A \in$ $A^{I}, b \in b^{I}$ has a solution if and only if the system of linear inequalities

$$
\begin{aligned}
& \bar{A} x_{1}-\underline{A} x_{2} \leq \underline{b} \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

has a solution. Since this can be checked by solving an associated linear programming problem, the first problem can be solved in polynomial time [6].

Rather surprisingly, it turns out that the second problem is more involved. For a square matrix A,

$$
\begin{gathered}
-e \leq A x \leq e \\
\|x\|_{1} \geq 1
\end{gathered}
$$

is equivalent to

$$
\left(\begin{array}{c}
A \\
-A \\
0^{T}
\end{array}\right) x-\left(\begin{array}{c}
0 \\
0 \\
e^{T}
\end{array}\right)|x| \leq\left(\begin{array}{c}
e \\
e \\
-1
\end{array}\right)
$$

which, due to the theorem by Gerlach [2], is the case if and only if x solves

$$
A^{\prime} x \leq b^{\prime}
$$

for some $A^{\prime} \in A^{I}, b^{\prime} \in b^{I}$, where

$$
\begin{aligned}
A^{I} & =\left[\left(\begin{array}{c}
A \\
-A \\
-e^{T}
\end{array}\right),\left(\begin{array}{c}
A \\
-A \\
e^{T}
\end{array}\right)\right], \\
b^{I} & =\left[\left(\begin{array}{c}
e \\
e \\
-1
\end{array}\right),\left(\begin{array}{c}
e \\
e \\
-1
\end{array}\right)\right] .
\end{aligned}
$$

Hence, the second problem is NP-hard in view of Theorem 1. It is even NP-complete, since for guessed A and b, solvability of $A x \leq b$ can be checked in polynomial time [6].

References

[1] M. E. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979.
[2] W. Gerlach, Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und der Koeffizientenmatrix, Math. Operationsforsch. Stat., Ser. Optimization, 12(1981), pp. 41-43.
[3] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1983.
[4] J. W. Demmel, The componentwise distance to the nearest singular matrix, SIAM J. Matrix Anal. Appl., 13(1992), pp. 10-19.
[5] W. Kahan, Numerical linear algebra, Can. Math. Bull., 9(1966), pp. 757-801.
[6] L. G. Khachiyan, A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR, 244(1979), pp. 1093-1096.
[7] K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Math. Program., 39(1987), pp. 117-129.
[8] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Math. Control Signals Syst., 6(1993), pp. 1-9.
[9] J. Rohn, Linear interval equations: enclosing and nonsingularity, Research report 89-141, KAM Series, Faculty of Mathematics and Physics, Charles University, Prague 1989, 16 p.
[10] J. Rohn, Interval matrices: singularity and real eigenvalues, SIAM J. Matrix Anal. Appl., 14(1993), pp. 82-91.
[11] J. Rohn, Checking positive definiteness or stability of symmetric interval matrices is NP-hard, Commentat. Math. Univ. Carol., 35(1994), pp. 795-797.
[12] J. Rohn and J. Kreslová, Linear interval inequalities, Linear Multilinear Algebra, 38(1994), pp. 79-82.

[^0]: *This work was supported in part by the Czech Republic Grant Agency under grant GAČR 201/95/1484
 ${ }^{\dagger}$ Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (rohn@uivt.cas.cz), and Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic (rohn@kam.ms.mff.cuni.cz)
 ${ }^{1}$ held in Prague, November 1994, and in Leipzig, December 1994

[^1]: ${ }^{2}$ from "maximum cut"; explained in the proof of Proposition 2

[^2]: ${ }^{3}$ another applications of Theorem 2 are given in appendices 2 and 3

