
NP-Hardness Results for Some Linear and
Quadratic Problems∗
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Abstract

Several problems concerning norms, linear inequalities, linear equations, lin-
ear programming and quadratic programming are proved to be NP-hard.
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1 Introduction

The first part of this report (sections 2 to 5) was originally made as a transcript of
transparencies of seminar talks1. Improvements and consequences found shortly after
the transcription had been completed were added as Appendices 1 to 4. In this rather
incoherent form, the main result is Theorem 2, supported by Proposition 2 (already
known in a slightly different setting). Among other consequences, it is shown that
computing ‖A‖∞,1 within accuracy 1

2 is NP-hard (Corollary 9), which in turn implies
that the same is true for computing the maximal value of a convex quadratic program
(Corollary 11) and for one of the two bounds on the optimal value of a linear program
with inexact right-hand side (Corollary 12). Another result (Corollary 3) shows that
checking sensitivity of a system of linear equations is an NP-hard problem.

∗This work was supported in part by the Czech Republic Grant Agency under grant GAČR
201/95/1484

†Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague
(rohn@uivt.cas.cz), and Faculty of Mathematics and Physics, Charles University, Prague, Czech
Republic (rohn@kam.ms.mff.cuni.cz)

1held in Prague, November 1994, and in Leipzig, December 1994
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2 MC-matrices

The following concept will be used as a basic tool throughout this report:

Definition A real symmetric n × n matrix A = (aij) is called an MC-matrix2 if
it is of the form

aij

{
= n if i = j
∈ {0,−1} if i 6= j

(i, j = 1, . . . , n).

Proposition 1 If A is an MC–matrix, then A−1 is nonnegative and symmetric pos-
itive definite.

Proof. By definition, A is of the form

A = nI − A0 = n(I − 1
n

A0)

where A0 ≥ 0 and ‖ 1
n
A0‖∞ ≤ n−1

n
< 1, hence

A−1 =
1
n

∞∑

0

(
1
n

A0)j ≥ 0.

A is symmetric by definition; it is positive definite since for x 6= 0,

xT Ax ≥ n‖x‖2
2 −

∑

i6=j

|xixj| = (n + 1)‖x‖2
2 − ‖x‖2

1 ≥ ‖x‖2
2 > 0.

Hence A−1 is also symmetric and positive definite. 2

The next result is due to Poljak and Rohn [8] (given there in a slightly different
formulation without using the concept of an MC-matrix). We add the proof for
completeness.

Proposition 2 The following decision problem is NP-complete:
Instance. An MC-matrix A and a positive integer L.
Question. Is zT Az ≥ L for some z ∈ {−1, 1}n?

Proof. Let (N,E) be a graph with N = {1, . . . , n}. Let A = (aij) be given by

aij =





n if i = j
0 if {i, j} /∈ E, i 6= j
−1 if {i, j} ∈ E, i 6= j

2from ”maximum cut”; explained in the proof of Proposition 2
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then A is an MC–matrix. For S ⊆ N , define a cut by

c(S) = Card{{i, j} ∈ E; exactly one of i, j is in S}.

If z is given by

zk =

{
1 if k ∈ S
−1 if k /∈ S

then

c(S) =
1
4

(zT Az + 2Card(E)− n2),

hence
c(S) ≥ L

if and only if
zT Az ≥ 4L− 2Card(E) + n2.

Since the problem
”c(S) ≥ L”

(maximum cut in a graph) is NP-complete (Garey and Johnson [1]), the current prob-
lem is NP-hard. It is obviously in the class NP, since a guessed solution z can be
verified in polynomial time; hence it is NP-complete. 2

3 The result

Theorem 1 below forms a common basis for several NP-hardness results listed in the
next section.

Proposition 3 Let A be an MC–matrix and L a positive integer. Then

zT Az ≥ L

holds for some z ∈ {−1, 1}n if and only if the system

−e ≤ LA−1x ≤ e

has a solution satisfying
‖x‖1 ≥ 1

(where e = (1, 1, . . . , 1)T and ‖x‖1 =
∑

i |x|i).

Proof. ⇒: Let zT Az ≥ L. Put

x =
Az

zT Az
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then

|LA−1x| =
∣∣∣∣

Lz

zT Az

∣∣∣∣ ≤ |z| = e

and

‖x‖1 =
eT |Az|
zT Az

=
zT Az

zT Az
= 1.

⇐: If |LA−1x| ≤ e and ‖x‖1 ≥ 1, then for z given by zi = 1 if xi ≥ 0 and zi = −1
otherwise we have

L ≤ L‖x‖1 = LzT x = LzT AA−1x ≤ |zT A|e = zT Az.

2

Theorem 1 The following decision problem is NP–complete:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Does the system

−e ≤ Ax ≤ e

(where e = (1, 1, . . . , 1)T ) have a solution satisfying
‖x‖1 ≥ 1 ?

Proof. According to Propositions 2 and 3, the NP-complete problem

”zT Az ≥ L”

can be polynomially reduced to this one (if A is an MC–matrix, then LA−1 is non-
negative symmetric positive definite), hence the current problem is NP-hard.

If the problem has a solution, then it also has a rational solution of the form

x =
Az

zT Az

(proof of Proposition 3) which can be checked in polynomial time; thus the problem
belongs to the class NP, hence it is NP-complete. 2

4 Corollaries

The following five corollaries are direct consequences of Theorem 1. The instances are
always assumed to be rational without further notice.

Corollary 1 The following problem is NP-hard:
Instance. A ∈ Rm×n, b ∈ Rm, m ≥ 2n, L positive integer.
Question. Does each solution of the system

Ax ≤ b

satisfy
‖x‖1 < L ?
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Corollary 2 The following problem is NP-hard:
Instance. A,B ∈ Rn×n, b ∈ Rn.
Question. Does the system

Ax + B|x| ≤ b

have a solution?

Corollary 3 The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite A ∈ Rn×n, b ∈ Rn, δ > 0,
ε > 0; denote x = A−1b.
Question. Does the solution of each Ax′ = b′ with ‖b′ − b‖∞ < δ satisfy ‖x′ − x‖1

< ε ?

Corollary 4 For A ∈ Rm×n, b ∈ Rm, c ∈ Rn, m ≥ 2n, it is NP-hard to compute

max{cT |x|; Ax ≤ b}.
Note A linear programming problem with objective cT x can be solved in polynomial
time (Khachiyan [6]).

Corollary 5 For a symmetric positive definite A ∈ Rn×n and a, b ∈ Rn, it is NP-hard
to compute the optimal value of the quadratic programming problem

max{xT Ax; a ≤ x ≤ b}.
Note NP-hardness of quadratic programming with indefinite matrices was proved by
Murty and Kabadi [7].
The proofs follow directly from Theorem 1 and Proposition 2.

5 Nearness to singularity

Let us use the norm (Golub and van Loan [3])

‖A‖1,∞ = max
i,j

|aij|.

The number
d(A) = min{‖A− A′‖1,∞; A′ singular}

is called the componentwise distance to the nearest singular matrix (Demmel [4]). If
A is rational, then d(A) is rational [8].

Corollary 6 Suppose there exists a polynomial-time algorithm which for each n × n
nonnegative symmetric positive definite rational matrix A computes a rational approx-
imation d′(A) of d(A) satisfying

|d′(A)− d(A)| < 1
12n4

Then P=NP.

5



Proof. A direct computation shows that for an MC-matrix A we have

1
12n4

≤ d2(A−1)
d(A−1) + 2

hence

|d′(A−1)− d(A−1)| < d2(A−1)
d(A−1) + 2

which implies that
zT Az ≥ L

holds for some z ∈ {−1, 1}n if and only if
[

1
d′(A−1)

+
1
2

]
≥ L.

Hence, if such a polynomial-time algorithm exists, then P=NP. 2

6 Appendix 1: ‖A‖∞,1

The material of this appendix was found later, when the previous part had been
already written. In my view, Theorem 2 below forms the core of this report, as it
clarifies the relationship between Proposition 2, Theorem 1, Corollary 5 and Corollary
6, and offers a deeper insight into the matter3. We shall use the norm

‖A‖∞,1 = max{‖Ax‖1; ‖x‖∞ = 1}
(see [3, p. 15]; ‖x‖∞ = maxi |xi|).
Theorem 2 For an MC-matrix A we have

‖A‖∞,1 = max{zT Az; z ∈ {−1, 1}n}
= max{xT Ax; −e ≤ x ≤ e}
= max{‖x‖1; −e ≤ A−1x ≤ e}
=

1
min{xT A−1x; ‖x‖1 = 1}

=
1

d(A−1)
.

Proof. 1) If ‖x‖∞ = 1, then x belongs to the unit cube [−1, 1]n and therefore
can be expressed as a convex combination of its vertices which are just the points in
{−1, 1}n. Hence from convexity of the norm we have

‖A‖∞,1 = max{‖Az‖1; z ∈ {−1, 1}n} = max{zT Az; z ∈ {−1, 1}n}
3another applications of Theorem 2 are given in appendices 2 and 3
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(since ‖Az‖1 = eT |Az| = zT Az for an MC-matrix A and z ∈ {−1, 1}n).
2) xT Ax is convex (since A is positive definite), hence its maximum value over the

cube {x; −e ≤ x ≤ e} is achieved at some of its vertices, implying

max{xT Ax; −e ≤ x ≤ e} = max{zT Az; z ∈ {−1, 1}n} = ‖A‖∞,1.

3) Since an MC-matrix A is nonsingular, we have

max{‖x‖1; −e ≤ A−1x ≤ e} = max{‖Ay‖1; −e ≤ y ≤ e} =

max{‖Ay‖1; ‖y‖∞ ≤ 1} = max{‖Ay‖1; ‖y‖∞ = 1} = ‖A‖∞,1.

4) For a positive real number λ,

‖A‖∞,1 ≥ λ

holds iff |A−1 − A′| ≤ 1
λ
eeT for some A′ which is not positive definite [11, proof,

equivalence 0) ⇔ 1)] iff x′T A−1x′ − 1
λ
|x′|T eeT |x′| = x′T A−1x′ − 1

λ
‖x′‖2

1 ≤ 0 for some
x′ 6= 0 iff xT A−1x ≤ 1

λ
for some x with ‖x‖1 = 1 iff

1
min{xT A−1x; ‖x‖1 = 1} ≥ λ,

which gives

‖A‖∞,1 =
1

min{xT A−1x; ‖x‖1 = 1} .

5) By Kahan’s theorem [5, p. 775],

‖A‖∞,1 =
1

min{‖A−1 − A′‖1,∞; A′ singular} =
1

d(A−1)
.

2

Corollary 7 Computing ‖A‖∞,1 is NP-hard for MC-matrices.

Proof. From Proposition 2 and Theorem 2. 2

Corollary 8 The following problem is NP-hard:
Instance. A symmetric rational M-matrix A.
Question. Is ‖A‖∞,1 ≥ 1 ?

Proof. For an MC-matrix A, zT Az ≥ L holds if and only if ‖ 1
L
A‖∞,1 ≥ 1, where

1
L
A is an M -matrix. Hence the problem of Proposition 2 can be polynomially reduced

to this one. 2

The NP-hardness part of Theorem 1 follows from this result and from Theorem 2.
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Corollary 9 Suppose there exists a polynomial-time algorithm which for each MC-
matrix A computes a rational number ν(A) satisfying

|ν(A)− ‖A‖∞,1| < 1
2
.

Then P=NP.

Proof. If such an algorithm exists, then ‖A‖∞,1 = [ν(A) + 1
2 ] (since ‖A‖∞,1 is

integer for an MC-matrix A), hence the NP-hard problem of Corollary 7 can be
solved in polynomial time, implying P=NP. 2

In the next corollary we present a problem whose complexity depends on the norm
used:

Corollary 10 The decision problem
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is xT Ax ≤ 1 for some x with ‖x‖ = 1 ?

is NP-complete if the norm ‖ · ‖1 is used and is solvable in polynomial time for ‖ · ‖2.

Proof. NP-hardness of the problem for ‖·‖1 follows from Proposition 2 and Theorem
2. The fact that it belongs to NP is proved via a similar construction as in Proposition
3 (see [11]). xT Ax ≤ 1 for some x with ‖x‖2 = 1 holds if and only if xT (A− I)x ≤ 0
for some x 6= 0, which is the case if and only if A − I is not positive definite. Since
A− I is symmetric, the latter fact can be verified in polynomial time using Sylvester
determinant criterion and Gaussian elimination. 2

The last result shows that the norm ‖A‖∞,1 has nontrivial properties and is worth
further studying. It is preceded by a ”theorem on the alternative” which may be of
independent interest:

Proposition 4 Let A,B ∈ Rn×n, A nonsingular, B ≥ 0. Then exactly one of the two
alternatives holds:

(i) the inequality B|Ax| ≥ |x| has a nonzero solution,

(ii) the inequality B|Ax| < |x| has a solution in each orthant.

Proof. 1) B|Ax| ≥ |x| for some x 6= 0 iff B|x′| ≥ |A−1x′| for some x′ 6= 0 iff

|A′ − A−1| ≤ B

for some singular A′ [10, Lemma 2.1].
2) B|Ax| < |x| has a solution in each orthant iff each A′ satisfying

|A′ − A−1| ≤ B

is nonsingular [9, Thm. 3].
Clearly, exactly one of the two possibilities occurs. 2

8



Proposition 5 A nonsingular matrix A satisfies ‖A‖∞,1 < 1 if and only if in each
orthant there exists an x satisfying ‖Ax‖1 < 1 and |x| ≥ e.

Proof. For B = eeT , B|Ax| ≥ |x| is equivalent to ‖Ax‖1 ≥ ‖x‖∞, hence B|Ax| ≥
|x| has a nonzero solution iff ‖A‖∞,1 ≥ 1. Thus ‖A‖∞,1 < 1 holds iff

‖Ax′‖1e < |x′|

has a solution in each orthant. Setting x = x′
mini |x′i|

, we see that this is equivalent to
the fact that

‖Ax‖1 < 1

|x| ≥ e

has a solution in each orthant. 2

7 Appendix 2: Approximate quadratic program-
ming is NP-hard

The results of the previous section enable us to strengthen the formulation of Corol-
lary 5:

Corollary 11 Suppose there exists a polynomial-time algorithm which for each inte-
ger data A, b, c, A symmetric positive definite, computes a rational number ν(A, b, c)
satisfying

|ν(A, b, c)−max{xT Ax + cT x; 0 ≤ x ≤ b}| < 1
2
.

Then P=NP.

Proof. Due to Theorem 2, for an MC-matrix A we have

‖A‖∞,1 = max{xT Ax; −e ≤ x ≤ e} = max{yT Ay − 2(Ae)T y; 0 ≤ y ≤ 2e}+ eT Ae,

hence

|ν(A, 2e,−2Ae) + eT Ae− ‖A‖∞,1| < 1
2

and the conclusion follows from Corollary 9. 2

8 Appendix 3: Linear programming with inexact
right-hand side is NP-hard

For a linear programming problem

minimize cT x

9



subject to
Ax = b,

x ≥ 0,

denote
f(A, b, c) = inf{cT x; Ax = b, x ≥ 0}

(so that f = −∞ if the problem is unbounded and f = ∞ if it is infeasible). Consider
the problem with the right-hand side ranging within the bounds b and b (component-
wise). With A and c fixed, define

f = inf{f(A, b, c); b ≤ b ≤ b}

f = sup{f(A, b, c); b ≤ b ≤ b}.
Obviously,

f = inf{cT x; b ≤ Ax ≤ b, x ≥ 0},
hence f can be determined by solving an LP problem, which can be done in polynomial
time [6]. But the case of f is different:

Corollary 12 Computing f within accuracy 1
2 is NP-hard for rational data A, b, b, c

and for a finite value of f .

Proof. For an MC-matrix A, consider the problem

min{eT x1 + eT x2; (A−1)T x1 − (A−1)T x2 = b, x1 ≥ 0, x2 ≥ 0}

with
−e ≤ b ≤ e.

From the duality theorem and Theorem 2 we have

f = sup
−e≤b≤e

max{bT y; −e ≤ A−1y ≤ e} = max{eT |y|; −e ≤ A−1y ≤ e} = ‖A‖∞,1

and it suffices to apply Corollary 9. 2

Note A linear programming problem with the right-hand side satisfying b ≤ b ≤ b can
be also viewed as a parametric linear programming problem with fully parametrized
right-hand side. Hence this problem is also NP-hard.
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9 Appendix 4: Complexity of solving linear inter-
val inequalities

Under a system of linear interval inequalities AIx ≤ bI we understand the family of
systems of linear inequalities

Ax ≤ b,

A ∈ AI , b ∈ bI ,

where AI = {A; A ≤ A ≤ A} is an m×n interval matrix and bI = {b; b ≤ b ≤ b} is an
interval m-vector. There are two basic problems concerning solvability of such families
of systems: first, whether each system Ax ≤ b with data satisfying A ∈ AI , b ∈ bI has
a solution; second, whether some of such systems has a solution.

The first problem was solved by Rohn and Kreslová [12]: each system Ax ≤ b, A ∈
AI , b ∈ bI has a solution if and only if the system of linear inequalities

Ax1 − Ax2 ≤ b

x1 ≥ 0, x2 ≥ 0

has a solution. Since this can be checked by solving an associated linear programming
problem, the first problem can be solved in polynomial time [6].

Rather surprisingly, it turns out that the second problem is more involved. For a
square matrix A,

−e ≤ Ax ≤ e,

‖x‖1 ≥ 1

is equivalent to 


A
−A
0T


 x−




0
0
eT


 |x| ≤




e
e
−1




which, due to the theorem by Gerlach [2], is the case if and only if x solves

A′x ≤ b′

for some A′ ∈ AI , b′ ∈ bI , where

AI =







A
−A
−eT


 ,




A
−A
eT





 ,

bI =







e
e
−1


 ,




e
e
−1





 .

Hence, the second problem is NP-hard in view of Theorem 1. It is even NP-complete,
since for guessed A and b, solvability of Ax ≤ b can be checked in polynomial time [6].
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