NP-Hardness Results for Some Linear and
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Abstract

Several problems concerning norms, linear inequalities, linear equations, lin-
ear programming and quadratic programming are proved to be NP-hard.
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1 Introduction

The first part of this report (sections 2 to 5) was originally made as a transcript of
transparencies of seminar talks'. Improvements and consequences found shortly after
the transcription had been completed were added as Appendices 1 to 4. In this rather
incoherent form, the main result is Theorem 2, supported by Proposition 2 (already
known in a slightly different setting). Among other consequences, it is shown that
computing ||A||«,1 within accuracy 3 is NP-hard (Corollary 9), which in turn implies
that the same is true for computing the maximal value of a convex quadratic program
(Corollary 11) and for one of the two bounds on the optimal value of a linear program
with inexact right-hand side (Corollary 12). Another result (Corollary 3) shows that
checking sensitivity of a system of linear equations is an NP-hard problem.
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2 M(C-matrices

The following concept will be used as a basic tool throughout this report:

Definition A real symmetric n x n matrix A = (a;;) is called an MC-matrix? if
it is of the form
{ =n if i=j
[

€{0,—1} if i#j
(1,7=1,...,n).

Proposition 1 If A is an MC-matriz, then A~! is nonnegative and symmetric pos-
itive definite.

Proof. By definition, A is of the form
1
A=nl—Ay=n(I——A)
n

where Ay > 0 and ||t Agl|e < %=+ < 1, hence

0

A is symmetric by definition; it is positive definite since for x # 0,

vt Az > nllzl; = Dl = (n+ D2z — 2l > ] > 0.
i

Hence A~! is also symmetric and positive definite. O

The next result is due to Poljak and Rohn [8] (given there in a slightly different
formulation without using the concept of an MC-matrix). We add the proof for
completeness.

Proposition 2 The following decision problem is NP-complete:
Instance. An MC-matriz A and a positive integer L.
Question. Is 2T Az > L for some z € {—1,1}"?

Proof. Let (N, E) be a graph with N = {1,...,n}. Let A= (a;;) be given by
n ifi=y

2from ”maximum cut”; explained in the proof of Proposition 2




then A is an M C—matrix. For S C N, define a cut by
c(S) = Card{{i, j} € E; exactly one of 4,j is in S}.

If z is given by
1 ifkeS
*FTY -1 ifkés

then

c(9) = i(zTAz + 2Card(E) — n?),

hence
c(S)>1L

if and only if
2TAz > AL — 2Card(F) + n?.

Since the problem
”C(S) Z L’

(maximum cut in a graph) is NP-complete (Garey and Johnson [1]), the current prob-
lem is NP-hard. It is obviously in the class NP, since a guessed solution z can be
verified in polynomial time; hence it is NP-complete. O

3 The result

Theorem 1 below forms a common basis for several NP-hardness results listed in the
next section.

Proposition 3 Let A be an MC-matriz and L a positive integer. Then
TAz> L
holds for some z € {—1,1}" if and only if the system
—e< LA 'z <e

has a solution satisfying
zfly =1

(where e = (1,1,..., )T and ||z|, = X, |z]:)-

Proof. =: Let 27 Az > L. Put




then
Lz

2T Az

|LA™ x| = <|zl=e

and

eT|Az|  2TAz 1
2TAz  2TAz
«: If [LA7'z| < e and ||z]|; > 1, then for z given by z; = 1 if z; > 0 and z; = —1
otherwise we have

el =

L< Lzl = L' = LT AA 2 < |27 Ale = 2T Az.

Theorem 1 The following decision problem is NP—complete:
Instance. A nonnegative symmetric positive definite rational matriz A.
Question. Does the system
—e< Az <e

(where e = (1,1,...,1)T) have a solution satisfying
[zl =17
Proof. According to Propositions 2 and 3, the NP-complete problem
9 ZTAZ Z L’

can be polynomially reduced to this one (if A is an MC-matrix, then LA™! is non-
negative symmetric positive definite), hence the current problem is NP-hard.
If the problem has a solution, then it also has a rational solution of the form

Az
Tr =
2T Az
(proof of Proposition 3) which can be checked in polynomial time; thus the problem
belongs to the class NP, hence it is NP-complete. O

4 Corollaries

The following five corollaries are direct consequences of Theorem 1. The instances are
always assumed to be rational without further notice.

Corollary 1 The following problem is NP-hard:
Instance. A € R™ ™, be R™, m > 2n, L positive integer.
Question. Does each solution of the system

Az <b

satisfy
|lz|l1 <L 2
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Corollary 2 The following problem s NP-hard:
Instance. A, B € R"™", be R".
Question. Does the system

Az + Blz| <b
have a solution?

Corollary 3 The following problem is NP-hard:
Instance. A nonnegative symmetric positive definite A € R™", b€ R", § > 0,
e > 0; denote v = A~'h.
Question. Does the solution of each Az’ =" with ||/ — bl|s < 9 satisfy ||2" — x|
<e?

Corollary 4 For A€ R™", be R™, ce€ R", m > 2n, it is NP-hard to compute
max{c’|z|; Az < b}.

Note A linear programming problem with objective ¢’z can be solved in polynomial
time (Khachiyan [6]).

Corollary 5 For a symmetric positive definite A € R"™" and a,b € R", it is NP-hard
to compute the optimal value of the quadratic programming problem

max{r’ Az; a <z < b}

Note NP-hardness of quadratic programming with indefinite matrices was proved by
Murty and Kabadi [7].
The proofs follow directly from Theorem 1 and Proposition 2.

5 Nearness to singularity

Let us use the norm (Golub and van Loan [3])
1All1,00 = max |ag].

The number
d(A) = min{||A — A'||;.o; A’ singular}

is called the componentwise distance to the nearest singular matrix (Demmel [4]). If
A is rational, then d(A) is rational [8].

Corollary 6 Suppose there exists a polynomial-time algorithm which for each n X n
nonnegative symmetric positive definite rational matriz A computes a rational approz-
imation d'(A) of d(A) satisfying

1

@(4) — d(A)| < -5

Then P=NP.



Proof. A direct computation shows that for an M C-matrix A we have
1 < d*(A™1)
12n* = d(A1) 4+ 2

hence 24
d(A™1) —d(A™! _—
AT =) <
which implies that
TA2> L
holds for some z € {—1,1}" if and only if
1 1
—— + | > L.
Ee R

Hence, if such a polynomial-time algorithm exists, then P=NP. O

6 Appendix 1: ||A|c1

The material of this appendix was found later, when the previous part had been
already written. In my view, Theorem 2 below forms the core of this report, as it
clarifies the relationship between Proposition 2, Theorem 1, Corollary 5 and Corollary
6, and offers a deeper insight into the matters. We shall use the norm

[A]loo1 = max{[|Az|[1; [lz]lc =1}
(see [3, p. 15]; ||z]|co = max; |x;]).
Theorem 2 For an MC-matriz A we have
|Allos = max{z'Az; z¢€ {-1,1}"}

= max{xTAx; —e<z<e}

= max{||z|y; —e< Az <e}

1
~ min{2TA lz; ||z|, =1}
B 1
Cd(ATY)’

Proof. 1) If |||l = 1, then = belongs to the unit cube [—1,1]" and therefore
can be expressed as a convex combination of its vertices which are just the points in
{—1,1}". Hence from convexity of the norm we have

|Al|oo,1 = max{||Az|l;; z € {-1,1}"} = max{zTAz; ze{-1,1}"}

3another applications of Theorem 2 are given in appendices 2 and 3
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(since ||Az||; = eT|Az| = 2T Az for an M C-matrix A and z € {—1,1}").
2) z¥ Az is convex (since A is positive definite), hence its maximum value over the
cube {z; —e < x < e} is achieved at some of its vertices, implying

max{r’ Ar; —e < <e} =max{zAz; z € {~1,1}"} = || A vo1-
3) Since an M C-matrix A is nonsingular, we have

max{||z||;; —e < A7'z <e} = max{||Ay|l;; —e <y <e} =
max{[|Ay([s; |yllec <1} =max{[[Aylls; [[yllec =1} = [[Allcos-
4) For a positive real number A,
[Alloc1 = A
holds iff |A™' — A’| < fee” for some A’ which is not positive definite [11, proof,
equivalence 0) < 1)] iff #7A 2" — f|o/[Tee”|2’| = 2T A7 2! — 1||2/||7 < 0 for some
o' #0iff 2T A~z < for some z with ||z]j; = 1 iff

: >\
min{zTA-1x; ||z]|, =1} =

which gives
1

min{azTA-tz; ||z|, =1}

5) By Kahan’s theorem [5, p. 775,

HAHOO,l =

Al = : -
T min{[|A=T — A||1.00; A singular}  d(A-1)
g
Corollary 7 Computing || A||ee1 is NP-hard for MC-matrices.
Proof. From Proposition 2 and Theorem 2. O

Corollary 8 The following problem is NP-hard:
Instance. A symmetric rational M -matriz A.
Question. Is ||Aljoc1 >1 ¢

Proof. For an MC-matrix A, z' Az > L holds if and only if || Allw,1 > 1, where

%A is an M-matrix. Hence the problem of Proposition 2 can be polynomially reduced
to this one. O

The NP-hardness part of Theorem 1 follows from this result and from Theorem 2.



Corollary 9 Suppose there exists a polynomial-time algorithm which for each MC'-
matriz A computes a rational number v(A) satisfying

1
< .

V(4) = | Alloa] <

Then P=NP.

Proof. If such an algorithm exists, then ||Allw1 = [V(A) + 3] (since [|Aflo is
integer for an MC-matrix A), hence the NP-hard problem of Corollary 7 can be

solved in polynomial time, implying P=NP. O

In the next corollary we present a problem whose complexity depends on the norm
used:

Corollary 10 The decision problem
Instance. A nonnegative symmetric positive definite rational matriz A.
Question. Is 27 Ax < 1 for some x with ||z|| =1 ?
is NP-complete if the norm || - ||1 is used and is solvable in polynomial time for || - 2.

Proof. NP-hardness of the problem for ||-||; follows from Proposition 2 and Theorem
2. The fact that it belongs to NP is proved via a similar construction as in Proposition
3 (see [11]). 7 Az < 1 for some z with ||z]|; = 1 holds if and only if 27 (A — Iz < 0
for some x # 0, which is the case if and only if A — I is not positive definite. Since
A — I is symmetric, the latter fact can be verified in polynomial time using Sylvester
determinant criterion and Gaussian elimination. O

The last result shows that the norm ||A||~ 1 has nontrivial properties and is worth
further studying. It is preceded by a ”"theorem on the alternative” which may be of
independent interest:

Proposition 4 Let A, B € R"*", A nonsingular, B > 0. Then ezactly one of the two
alternatives holds:

(i) the inequality B|Ax| > |z| has a nonzero solution,
(ii) the inequality B|Az| < |x| has a solution in each orthant.
Proof. 1) B|Azx| > |z| for some x # 0 iff B|z'| > |A™'2/| for some 2’ # 0 iff
A=A <B

for some singular A’ [10, Lemma 2.1].
2) B|Az| < |z| has a solution in each orthant iff each A’ satisfying

A — A7 < B

is nonsingular [9, Thm. 3].
Clearly, exactly one of the two possibilities occurs. O
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Proposition 5 A nonsingular matriz A satisfies ||Al|1 < 1 if and only if in each
orthant there ezists an x satisfying ||Az|y <1 and |z| > e.

Proof. For B = eel', B|Ax| > |z| is equivalent to ||Az||; > ||2|ls, hence B|Ax| >
|z| has a nonzero solution iff ||A||oc1 > 1. Thus ||A|«1 < 1 holds iff

[Az'||1e < |2]
has a solution in each orthant. Setting z = ﬁlr’\’ we see that this is equivalent to
the fact that
|Az|; < 1
x| > e
has a solution in each orthant. O

7 Appendix 2: Approximate quadratic program-
ming is NP-hard

The results of the previous section enable us to strengthen the formulation of Corol-
lary 5:

Corollary 11 Suppose there exists a polynomial-time algorithm which for each inte-
ger data A,b,c, A symmetric positive definite, computes a rational number v(A,b, c)
satisfying

lv(A, b, c) — max{z’ Ar + cTz; 0 <2 <b}| < ;
Then P=NP.
Proof. Due to Theorem 2, for an M C-matrix A we have
|Allsos = max{z’ Az; —e <z < e} = max{y’ Ay — 2(4e)’y; 0 <y < 2e} + e’ Ae,

hence 1
[V(A,2e, =24¢€) + €' Ae — [|Aflooa| < 5

and the conclusion follows from Corollary 9. O

8 Appendix 3: Linear programming with inexact
right-hand side is NP-hard

For a linear programming problem

minimize ¢’ x



subject to

Ax =b,
x>0,

denote
f(A,b,c) =inf{c'z; Ax =b,z >0}

(so that f = —oc if the problem is unbounded and f = oo if it is infeasilgle). Consider
the problem with the right-hand side ranging within the bounds b and b (component-
wise). With A and c fixed, define

[ =inf{f(A,b,c); b<b<b}

? = Sup{f(A7bv C); b < b < B}

Obviously,
f=inf{c"z; b< Az < b,z > 0},

hence f can be determined by solving an LP problem, which can be done in polynomial
time [6]. But the case of f is different:

Corollary 12 Computing f within accuracy % is NP-hard for rational data A,b,b,c
and for a finite value of f.

Proof. For an M C-matrix A, consider the problem
min{e’z; + elay; (A 'z — (A 0y = b, 21 > 0,25 > 0}

with
—e<b<e.

From the duality theorem and Theorem 2 we have

J= s max{b'y; —e < A7y < e} =max{e’|yl; —e < A7y < e} = [[Al|oon
—e<b<e

and it suffices to apply Corollary 9. O
Note A linear programming problem with the right-hand side satisfying b < b < b can

be also viewed as a parametric linear programming problem with fully parametrized
right-hand side. Hence this problem is also NP-hard.
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9 Appendix 4: Complexity of solving linear inter-
val inequalities

Under a system of linear interval inequalities A’z < b’ we understand the family of
systems of linear inequalities

Ax <b,
Aec Al bed,

where Al = {A; A < A < A} is an m X n interval matrix and b/ = {b; b < b < b} is an
interval m-vector. There are two basic problems concerning solvability of such families
of systems: first, whether each system Az < b with data satisfying A € A?,b € b! has
a solution; second, whether some of such systems has a solution.

The first problem was solved by Rohn and Kreslova [12]: each system Az < b, A €
Al b € b! has a solution if and only if the system of linear inequalities

Azy — Aze <)

2120, 29 >0

has a solution. Since this can be checked by solving an associated linear programming
problem, the first problem can be solved in polynomial time [6].

Rather surprisingly, it turns out that the second problem is more involved. For a
square matrix A,

—e < Ax < e,
][y = 1
is equivalent to
A 0 e
—Alxz—| 0 ||z|<| e
0T el -1

which, due to the theorem by Gerlach [2], is the case if and only if x solves

Az <V
for some A’ € AL, b € b, where
A A
Al = —A |, | -A|],

—eT el

e

I , e

-1 -1

Hence, the second problem is NP-hard in view of Theorem 1. It is even NP-complete,
since for guessed A and b, solvability of Az < b can be checked in polynomial time [6].
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