Linear Interval Equations: Computing Sufficiently Accurate Enclosures is NP-Hard*

Jiří Rohn ${ }^{\dagger}$

Abstract

It is proved that if there exists a polynomial-time algorithm which for each system of linear interval equations with a strongly regular $n \times n$ interval matrix computes an enclosure of the solution set with absolute accuracy better than $\frac{1}{4 n^{4}}$, then $\mathrm{P}=\mathrm{NP}$.

Key words. Linear interval equations, enclosure, NP-hardness

1 Introduction

This report is partly a transcript of a poster ${ }^{1}$. The main result (Theorem 1) shows that one of the basic problems in validated computations is more difficult than expected.

2 Enclosures

For a system of linear interval equations

$$
\begin{equation*}
A^{I} x=b^{I} \tag{1}
\end{equation*}
$$

(A^{I} square), enclosure is defined as an interval vector $[\underline{y}, \bar{y}]$ satisfying

$$
X \subseteq[\underline{y}, \bar{y}]
$$

[^0]where X is the solution set:
$$
X=\left\{x ; A x=b \text { for some } A \in A^{I}, b \in b^{I}\right\}
$$

If A^{I} is regular, then there exists the narrowest (or: optimal) enclosure $[\underline{x}, \bar{x}]$ given by

$$
\begin{aligned}
& \underline{x}_{i}=\min _{X} x_{i}, \\
& \bar{x}_{i}=\max _{X} x_{i}
\end{aligned}
$$

for each i. Computing $[\underline{x}, \bar{x}]$ was proved to be NP-hard (Rohn and Kreinovich [5]). But it turns out that the same is true for computing "sufficiently accurate" enclosures:

3 The result

Theorem 1 Suppose there exists a polynomial-time algorithm which for each strongly regular $n \times n$ interval matrix A^{I} and each b^{I} (both with rational bounds) computes a rational enclosure $[\underline{y}, \bar{y}]$ of X satisfying

$$
\begin{equation*}
\bar{x}_{i} \leq \bar{y}_{i} \leq \bar{x}_{i}+\frac{1}{4 n^{4}} \tag{2}
\end{equation*}
$$

for each i. Then $P=N P$.

4 Comments

$A^{I}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ is called strongly regular if $\varrho\left(\left|A_{c}^{-1}\right| \Delta\right)<1$ (a well-known sufficient regularity condition).

P and NP are the well-known complexity classes. The conjecture that $\mathrm{P} \neq \mathrm{NP}$, although unproved, is widely believed to be true (Garey and Johnson [1]).

Hence, the problem of computing sufficiently accurate enclosures is by far more difficult than previously believed: an existence of a polynomial-time algorithm yielding the accuracy (2) would imply polynomial-time solvability of all problems in the class NP, thereby making an enormous breakthrough in theoretical computer science.

5 Proof

1) Denote $e=(1,1, \ldots, 1)^{T} \in R^{n}$ and $Z=\left\{z \in R^{n} ;|z|=e\right\}$, so that Z is the set of all ± 1-vectors. We shall use matrix norms

$$
\|A\|_{s}=e^{T}|A| e=\sum_{i} \sum_{j}\left|a_{i j}\right|
$$

and

$$
\begin{equation*}
\|A\|_{\infty, 1}=\max \left\{\|A z\|_{1} ; z \in Z\right\} \tag{3}
\end{equation*}
$$

(where $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$;cf. [2]). [α] denotes the integer part of a real number α.
2) A real symmetric $n \times n$ matrix $A=\left(a_{i j}\right)$ is called an $M C$-matrix if it is of the form

$$
a_{i j}\left\{\begin{array}{lll}
=n & \text { if } & i=j \\
\in\{0,-1\} & \text { if } & i \neq j
\end{array}\right.
$$

$(i, j=1, \ldots, n)$. For an $M C$-matrix A we obviously have

$$
\begin{equation*}
n \leq e^{T} A e \leq\|A\|_{\infty, 1} \leq\|A\|_{s} \leq n(2 n-1) \tag{4}
\end{equation*}
$$

Also,

$$
\begin{equation*}
z_{i}(A z)_{i}>0 \tag{5}
\end{equation*}
$$

holds for each $z \in Z$ and each $i \in\{1, \ldots, n\}$. We shall essentially use the fact that computing $\|A\|_{\infty, 1}$ is NP-hard for $M C$-matrices [3, Thm. 2.6]. In the sequel we shall construct, for a given $n \times n M C$-matrix A, a linear interval system with interval matrix of size $3 n \times 3 n$ such that if \bar{y}_{i} satisfies (2), then

$$
\|A\|_{\infty, 1}=\left[\|A\|_{s}+2-\frac{1}{\bar{y}_{i}}\right] .
$$

Hence, if such a \bar{y}_{i} can be computed in polynomial time, then $\|A\|_{\infty, 1}$ can also be computed in polynomial time and since this is an NP-hard problem, $\mathrm{P}=\mathrm{NP}$ will follow.
3) For a given $n \times n M C$-matrix A (which is diagonally dominant and therefore nonsingular), consider a linear interval system

$$
\begin{equation*}
A^{I} x=b^{I} \tag{6}
\end{equation*}
$$

with $A^{I}=\left[A_{c}-\Delta, A_{c}+\Delta\right], b^{I}=\left[b_{c}-\delta, b_{c}+\delta\right]$ given by

$$
\begin{aligned}
A_{c} & =\left(\begin{array}{ccc}
0 & -I & 0 \\
-I & 0 & A^{-1} \\
0 & A^{-1} & A^{-1}
\end{array}\right), \\
\Delta & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \beta e e^{T}
\end{array}\right)
\end{aligned}
$$

(all the blocks are $n \times n, I$ is the unit matrix),

$$
b_{c}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$$
\delta=\left(\begin{array}{c}
0 \\
0 \\
\beta e
\end{array}\right)
$$

(all the blocks are $n \times 1$) and

$$
\begin{equation*}
\beta=\frac{1}{\|A\|_{s}+2} . \tag{7}
\end{equation*}
$$

We shall first prove that A^{I} is strongly regular. Since

$$
A_{c}^{-1}=\left(\begin{array}{ccc}
A^{-1} & -I & I \\
-I & 0 & 0 \\
I & 0 & A
\end{array}\right)
$$

(as it can be easily verified), we have

$$
\left|A_{c}^{-1}\right| \Delta=\left(\begin{array}{ccc}
0 & 0 & \beta e e^{T} \\
0 & 0 & 0 \\
0 & 0 & \beta|A| e e^{T}
\end{array}\right)
$$

This matrix has eigenvalues $\lambda=0$ (multiple) and $\lambda=\beta\|A\|_{s}$. Hence $\varrho\left(\left|A_{c}^{-1}\right| \Delta\right)=$ $\beta\|A\|_{s}<1$ due to (7), and A^{I} is strongly regular.
4) For the linear interval system (6), consider a solution x satisfying $\tilde{A} x=\tilde{b}$ for some $\tilde{A} \in A^{I}, \tilde{b} \in b^{I}$. If we decompose x as

$$
x=\left(\begin{array}{l}
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right)
$$

then we have

$$
\begin{aligned}
x^{2} & =0 \\
x^{1} & =A^{-1} x^{3} \\
A^{\prime} x^{3} & =b^{\prime}
\end{aligned}
$$

for some A^{\prime}, b^{\prime} satisfying $\left|A^{-1}-A^{\prime}\right| \leq \beta e e^{T}$ and $\left|b^{\prime}\right| \leq \beta e$, hence x^{3} is a solution of the linear interval system

$$
\begin{equation*}
\left[A^{-1}-\beta e e^{T}, A^{-1}+\beta e e^{T}\right] x^{\prime}=[-\beta e, \beta e] \tag{8}
\end{equation*}
$$

whose matrix is obviously again strongly regular. From [4, Thm. 2.2] we have that for each $z \in Z$ the equation

$$
\begin{equation*}
A^{-1} x=\beta\left(\|x\|_{1}+1\right) z \tag{9}
\end{equation*}
$$

has a unique solution x_{z}. A direct substitution shows that the solution has the form

$$
x_{z}=\frac{\beta}{1-\beta\|A z\|_{1}} A z
$$

Now, from the same Theorem 2.2 in [4] we have that each solution of (8) belongs to the convex hull of the x_{z} 's, hence also

$$
x^{3} \in \operatorname{Conv}\left\{\frac{\beta}{1-\beta\|A z\|_{1}} A z ; z \in Z\right\}
$$

which implies

$$
x^{1}=A^{-1} x^{3} \in \operatorname{Conv}\left\{\frac{\beta}{1-\beta\|A z\|_{1}} z ; z \in Z\right\} .
$$

Thus for each $i \in\{1, \ldots, n\}$ we have

$$
x_{i}^{1} \leq \frac{\beta}{1-\beta \max \left\{\|A z\|_{1} ; z \in Z\right\}}=\frac{\beta}{1-\beta\|A\|_{\infty, 1}}
$$

and the upper bound is obviously achieved at some x_{z} which, due to (9) and (5), solves the equation

$$
\begin{equation*}
\left(A^{-1}-\beta z z^{T}\right) x_{z}=\beta z \tag{10}
\end{equation*}
$$

Hence for the $3 n$-dimensional solution x of (6) we have

$$
\begin{equation*}
\bar{x}_{i}=\bar{x}_{i}^{1}=\frac{\beta}{1-\beta\|A\|_{\infty, 1}} \tag{11}
\end{equation*}
$$

for each $i \in\{1, \ldots, n\}$ (cf. [5]).
5) Let $i \in\{1, \ldots, n\}$. Due to (11), (7) and (4) we have $\bar{x}_{i} \in(0,1)$ and

$$
\beta \geq \frac{1}{n(2 n-1)+2}=\frac{1}{2 n^{2}-n+2}
$$

hence

$$
\bar{x}_{i} \geq \frac{\beta}{1-\beta n} \geq \frac{\frac{1}{2 n^{2}-n+2}}{1-\frac{n}{2 n^{2}-n+2}}=\frac{1}{2 n^{2}-2 n+2}
$$

Since the real function $\frac{\xi^{2}}{1-\xi}$ is increasing in $(0,1)$, we have

$$
\frac{\bar{x}_{i}^{2}}{1-\bar{x}_{i}} \geq \frac{\frac{1}{\left(2 n^{2}-2 n+2\right)^{2}}}{1-\frac{1}{2 n^{2}-2 n+2}}=\frac{1}{\left(2 n^{2}-2 n+2\right)\left(2 n^{2}-2 n+1\right)}>\frac{1}{4 n^{4}} .
$$

Hence, if \bar{y}_{i} satisfies (2), then

$$
0 \leq \bar{y}_{i}-\bar{x}_{i}<\frac{\bar{x}_{i}^{2}}{1-\bar{x}_{i}}
$$

which implies

$$
0 \leq \bar{y}_{i}-\bar{x}_{i}<\bar{x}_{i} \bar{y}_{i}
$$

and

$$
\begin{equation*}
0 \leq \frac{1}{\bar{x}_{i}}-\frac{1}{\bar{y}_{i}}<1 \tag{12}
\end{equation*}
$$

Now, from (11) we have

$$
\|A\|_{\infty, 1}=\frac{1}{\beta}-\frac{1}{\bar{x}_{i}}
$$

and adding this to (12), we obtain

$$
\|A\|_{\infty, 1} \leq \frac{1}{\beta}-\frac{1}{\bar{y}_{i}}<\|A\|_{\infty, 1}+1
$$

Since $\|A\|_{\infty, 1}$ is integer for an $M C$-matrix A (due to (3)), the last result implies

$$
\|A\|_{\infty, 1}=\left[\frac{1}{\beta}-\frac{1}{\bar{y}_{i}}\right]=\left[\|A\|_{s}+2-\frac{1}{\bar{y}_{i}}\right] .
$$

Thus, if \bar{y}_{i} satisfying (2) can be computed by a polynomial-time algorithm, then the same is true for $\|A\|_{\infty, 1}$ and since computing $\|A\|_{\infty, 1}$ is NP-hard for $M C$-matrices [3], $\mathrm{P}=\mathrm{NP}$ follows.

6 The symmetric case

Let $A^{I}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ be a symmetric interval matrix (i.e., the bounds $A_{c}-\Delta$ and $A_{c}+\Delta$ are symmetric) and let X^{s} be the set of solutions of (1) corresponding to systems with symmetric matrices only:

$$
X^{s}=\left\{x ; A x=b \text { for some } A \in A^{I}, b \in b^{I}, A \text { symmetric }\right\}
$$

Again, $[y, \bar{y}]$ is called an enclosure of X^{s} if $X^{s} \subseteq[y, \bar{y}]$ holds. The narrowest enclosure is $\left[\underline{x}^{s}, \bar{x}^{s}\right]$, where

$$
\begin{aligned}
& \underline{x}_{i}^{s}=\min _{X^{s}} x_{i}, \\
& \bar{x}_{i}^{s}=\max _{X^{s}} x_{i}
\end{aligned}
$$

for each i. We have an analogous result:
Theorem 2 Suppose there exists a polynomial-time algorithm which for each strongly regular symmetric $n \times n$ interval matrix A^{I} and each b^{I} (both with rational bounds) computes a rational enclosure $[\underline{y}, \bar{y}]$ of X^{s} satisfying

$$
\bar{x}_{i}^{s} \leq \bar{y}_{i} \leq \bar{x}_{i}^{s}+\frac{1}{4 n^{4}}
$$

for each i. Then $P=N P$.

Proof. The system (6) constructed in the proof of Theorem 1 has a symmetric interval matrix A^{I} and each $\bar{x}_{i}, i=1, \ldots, n$, is achieved at the solution of a system whose matrix is of the form

$$
\left(\begin{array}{ccc}
0 & -I & 0 \\
-I & 0 & A^{-1} \\
0 & A^{-1} & A^{-1}-\beta z z^{T}
\end{array}\right)
$$

(eq. (10)), hence it is symmetric (since an $M C$-matrix A is symmetric). Thus we have

$$
\bar{x}_{i}=\bar{x}_{i}^{s}
$$

for $i=1, \ldots, n$, and the proof of Theorem 1 applies to this case as well.

References

[1] M. E. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco 1979
[2] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore 1983
[3] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Math. Control Signals Syst. 6(1993), 1-9
[4] J. Rohn, Systems of linear interval equations, Lin. Alg. Appls. 126(1989), 39-78
[5] J. Rohn and V. Kreinovich, Computing exact componentwise bounds on solutions of linear systems with interval data is NP-hard, SIAM J. Matr. Anal. Appl. 16(1995), 415-420

[^0]: *This work was supported in part by the Czech Republic Grant Agency under grant GAČR 201/93/0429
 ${ }^{\dagger}$ Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (rohn@uivt.cas.cz), and Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic (rohn@kam.ms.mff.cuni.cz)
 ${ }^{1}$ presented at the international workshop Applications of Interval Computations, El Paso, Texas, February 1995 (sections 2 to 4)

