
Linear Interval Equations: Computing
Sufficiently Accurate Enclosures is NP-Hard∗
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Abstract

It is proved that if there exists a polynomial-time algorithm which
for each system of linear interval equations with a strongly regular n×n
interval matrix computes an enclosure of the solution set with absolute
accuracy better than 1

4n4 , then P=NP.
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1 Introduction

This report is partly a transcript of a poster1. The main result (Theorem 1)
shows that one of the basic problems in validated computations is more difficult
than expected.

2 Enclosures

For a system of linear interval equations

AIx = bI (1)

(AI square), enclosure is defined as an interval vector [y, y] satisfying

X ⊆ [y, y]
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where X is the solution set:

X = {x; Ax = b for some A ∈ AI , b ∈ bI}.
If AI is regular, then there exists the narrowest (or: optimal) enclosure [x, x]
given by

xi = min
X

xi,

xi = max
X

xi

for each i. Computing [x, x] was proved to be NP-hard (Rohn and Kreinovich
[5]). But it turns out that the same is true for computing ”sufficiently accurate”
enclosures:

3 The result

Theorem 1 Suppose there exists a polynomial-time algorithm which for each
strongly regular n×n interval matrix AI and each bI (both with rational bounds)
computes a rational enclosure [y, y] of X satisfying

xi ≤ yi ≤ xi +
1

4n4
(2)

for each i. Then P=NP.

4 Comments

AI = [Ac−∆, Ac +∆] is called strongly regular if %(|A−1
c |∆) < 1 (a well-known

sufficient regularity condition).

P and NP are the well-known complexity classes. The conjecture that P 6=NP,
although unproved, is widely believed to be true (Garey and Johnson [1]).

Hence, the problem of computing sufficiently accurate enclosures is by far
more difficult than previously believed: an existence of a polynomial-time al-
gorithm yielding the accuracy (2) would imply polynomial-time solvability of
all problems in the class NP, thereby making an enormous breakthrough in
theoretical computer science.

5 Proof

1) Denote e = (1, 1, . . . , 1)T ∈ Rn and Z = {z ∈ Rn; |z| = e}, so that Z is
the set of all ±1-vectors. We shall use matrix norms

‖A‖s = eT |A|e =
∑

i

∑

j

|aij|
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and
‖A‖∞,1 = max{‖Az‖1; z ∈ Z} (3)

(where ‖x‖1 =
∑

i |xi|; cf. [2]). [α] denotes the integer part of a real number α.
2) A real symmetric n× n matrix A = (aij) is called an MC-matrix if it is

of the form

aij

{
= n if i = j
∈ {0,−1} if i 6= j

(i, j = 1, . . . , n). For an MC-matrix A we obviously have

n ≤ eT Ae ≤ ‖A‖∞,1 ≤ ‖A‖s ≤ n(2n− 1). (4)

Also,
zi(Az)i > 0 (5)

holds for each z ∈ Z and each i ∈ {1, . . . , n}. We shall essentially use the fact
that computing ‖A‖∞,1 is NP-hard for MC-matrices [3, Thm. 2.6]. In the
sequel we shall construct, for a given n × n MC-matrix A, a linear interval
system with interval matrix of size 3n× 3n such that if yi satisfies (2), then

‖A‖∞,1 = [‖A‖s + 2− 1
yi

].

Hence, if such a yi can be computed in polynomial time, then ‖A‖∞,1 can also
be computed in polynomial time and since this is an NP-hard problem, P=NP
will follow.

3) For a given n × n MC-matrix A (which is diagonally dominant and
therefore nonsingular), consider a linear interval system

AIx = bI (6)

with AI = [Ac −∆, Ac + ∆], bI = [bc − δ, bc + δ] given by

Ac =




0 −I 0
−I 0 A−1

0 A−1 A−1


 ,

∆ =




0 0 0
0 0 0
0 0 βeeT




(all the blocks are n× n, I is the unit matrix),

bc =




0
0
0


 ,
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δ =




0
0
βe




(all the blocks are n× 1) and

β =
1

‖A‖s + 2
. (7)

We shall first prove that AI is strongly regular. Since

A−1
c =




A−1 −I I
−I 0 0
I 0 A




(as it can be easily verified), we have

|A−1
c |∆ =




0 0 βeeT

0 0 0
0 0 β|A|eeT


 .

This matrix has eigenvalues λ = 0 (multiple) and λ = β‖A‖s. Hence %(|A−1
c |∆) =

β‖A‖s < 1 due to (7), and AI is strongly regular.
4) For the linear interval system (6), consider a solution x satisfying Ãx = b̃

for some Ã ∈ AI , b̃ ∈ bI . If we decompose x as

x =




x1

x2

x3


 ,

then we have

x2 = 0

x1 = A−1x3

A′x3 = b′

for some A′, b′ satisfying |A−1−A′| ≤ βeeT and |b′| ≤ βe, hence x3 is a solution
of the linear interval system

[A−1 − βeeT , A−1 + βeeT ]x′ = [−βe, βe] (8)

whose matrix is obviously again strongly regular. From [4, Thm. 2.2] we have
that for each z ∈ Z the equation

A−1x = β(‖x‖1 + 1)z (9)
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has a unique solution xz. A direct substitution shows that the solution has the
form

xz =
β

1− β‖Az‖1
Az.

Now, from the same Theorem 2.2 in [4] we have that each solution of (8)
belongs to the convex hull of the xz’s, hence also

x3 ∈ Conv{ β

1− β‖Az‖1
Az; z ∈ Z}

which implies

x1 = A−1x3 ∈ Conv{ β

1− β‖Az‖1
z; z ∈ Z}.

Thus for each i ∈ {1, . . . , n} we have

x1
i ≤

β

1− β max{‖Az‖1; z ∈ Z} =
β

1− β‖A‖∞,1

and the upper bound is obviously achieved at some xz which, due to (9) and
(5), solves the equation

(A−1 − βzzT )xz = βz. (10)

Hence for the 3n-dimensional solution x of (6) we have

xi = x1
i =

β

1− β‖A‖∞,1
(11)

for each i ∈ {1, . . . , n} (cf. [5]).
5) Let i ∈ {1, . . . , n}. Due to (11), (7) and (4) we have xi ∈ (0, 1) and

β ≥ 1
n(2n− 1) + 2

=
1

2n2 − n + 2
,

hence

xi ≥ β

1− βn
≥

1
2n2−n+2

1− n
2n2−n+2

=
1

2n2 − 2n + 2
.

Since the real function ξ2

1−ξ
is increasing in (0, 1), we have

x2
i

1− xi

≥
1

(2n2−2n+2)2

1− 1
2n2−2n+2

=
1

(2n2 − 2n + 2)(2n2 − 2n + 1)
>

1
4n4

.

Hence, if yi satisfies (2), then

0 ≤ yi − xi <
x2

i

1− xi
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which implies
0 ≤ yi − xi < xiyi

and

0 ≤ 1
xi

− 1
yi

< 1. (12)

Now, from (11) we have

‖A‖∞,1 =
1
β
− 1

xi

and adding this to (12), we obtain

‖A‖∞,1 ≤ 1
β
− 1

yi

< ‖A‖∞,1 + 1.

Since ‖A‖∞,1 is integer for an MC-matrix A (due to (3)), the last result implies

‖A‖∞,1 = [
1
β
− 1

yi

] = [‖A‖s + 2− 1
yi

].

Thus, if yi satisfying (2) can be computed by a polynomial-time algorithm,
then the same is true for ‖A‖∞,1 and since computing ‖A‖∞,1 is NP-hard for
MC-matrices [3], P=NP follows. 2

6 The symmetric case

Let AI = [Ac − ∆, Ac + ∆] be a symmetric interval matrix (i.e., the bounds
Ac − ∆ and Ac + ∆ are symmetric) and let Xs be the set of solutions of (1)
corresponding to systems with symmetric matrices only:

Xs = {x; Ax = b for some A ∈ AI , b ∈ bI , A symmetric}.
Again, [y, y] is called an enclosure of Xs if Xs ⊆ [y, y] holds. The narrowest
enclosure is [xs, xs], where

xs
i = min

Xs
xi,

xs
i = max

Xs
xi

for each i. We have an analogous result:

Theorem 2 Suppose there exists a polynomial-time algorithm which for each
strongly regular symmetric n × n interval matrix AI and each bI (both with
rational bounds) computes a rational enclosure [y, y] of Xs satisfying

xs
i ≤ yi ≤ xs

i +
1

4n4

for each i. Then P=NP.
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Proof. The system (6) constructed in the proof of Theorem 1 has a sym-
metric interval matrix AI and each xi, i = 1, . . . , n, is achieved at the solution
of a system whose matrix is of the form




0 −I 0
−I 0 A−1

0 A−1 A−1 − βzzT




(eq. (10)), hence it is symmetric (since an MC-matrix A is symmetric). Thus
we have

xi = xs
i

for i = 1, . . . , n, and the proof of Theorem 1 applies to this case as well. 2
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