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Validated Solutions of Nonlinear Equations

We give an existence and uniqueness check for systems of nonlinear equations together with an iterative method
which yields a validated enclosure of the solution at each iteration.

1. The result

We consider here a system of n nonlinear equations in n unknowns of the form

x = F (x) (1)

over an n-dimensional hyperrectangle [x̂−d, x̂+d] = {x′; x̂−d ≤ x′ ≤ x̂+d}. Existence theorems for (1) were given
by Miranda, Kantorovich, Smale and others (see the recent paper by Alefeld, Gienger and Potra [1] for
a survey and a list of references). The following theorem gives an existence and uniqueness check and an iterative
method which yields a validated enclosure of the solution of (1) at each iteration:

T h e o r e m 1: Let F map a hyperrectangle [x̂ − d, x̂ + d] ⊂ IRn into IRn, and let there exist a nonnegative
matrix H with the following properties:

(i) |F (x′)− F (x′′)| ≤ H|x′ − x′′| for each x′, x′′ ∈ [x̂− d, x̂ + d],

(ii) |x̂− F (x̂)| < (I −H)d.

Then the equation (1) has a unique solution x∗ in [x̂− d, x̂ + d], and the sequences {xj}∞j=0 and {dj}∞j=0 given by
xj+1 = F (xj), (2)

dj+1 = Hdj (3)
(j = 0, 1, . . .), x0 = x̂, d0 = d, satisfy xj → x∗, dj ↘ 0 and

x∗ ∈ [xj − dj , xj + dj ] (4)

for each j. Moreover, the sequence

{[xj − dj , xj + dj ]}∞j=0 (5)

is nested.

Proof: 1) Since H is nonnegative, from (ii) we have Hd < d and d > 0, hence %(H) < 1, (I −H)−1 ≥ 0, and
Hj → 0 (Neumaier [2], sect. 3.2), thus also dj = Hjd → 0.

2) We shall prove by induction that

xj ∈ [x̂− d, x̂ + d] (6)

for each j (hence the sequence {xj} is well defined by (2)) and

|xj − xj+1| ≤ dj − dj+1 (7)

for each j. For j = 0 we obviously have x0 = x̂ ∈ [x̂− d, x̂ + d] and |x0 − x1| = |x̂−F (x̂)| < (I −H)d = d0 − d1 due
to (ii). Assume that (6) and (7) hold for j = 0, . . . , k− 1. Then |x̂− xk| = |∑k−1

j=0 (xj − xj+1)| ≤ ∑k−1
j=0 |xj − xj+1| ≤∑k−1

j=0 (dj − dj+1) = d0− dk ≤ d0 = d (since dk ≥ 0 due to (3)), hence xk ∈ [x̂− d, x̂ + d]. Next, by (i) and by (7) for
j = k− 1 we obtain |xk − xk+1| = |F (xk−1)−F (xk)| ≤ H|xk−1− xk| ≤ H(dk−1− dk) = dk − dk+1, which concludes
the inductive proof of (6) and (7). Since {dj} is decreasing by (7) and dj → 0 (cf. 1)), we have that dj ↘ 0.



3) For each j ≥ 0 and m ≥ 1, from (7) we have |xj − xj+m| ≤
∑j+m−1

k=j |xk − xk+1| ≤
∑j+m−1

k=j (dk − dk+1) =
dj − dj+m, hence

|xj − xj+m| ≤ dj − dj+m. (8)

Since {dj} is convergent, for each positive vector ε > 0 there exists a j ≥ 0 such that |dj − dj+m| = dj − dj+m < ε
for each m ≥ 1. Then (8) gives that |xj − xj+m| < ε, hence {xj} is Cauchian, so that xj → x∗, and (6) implies that
x∗ ∈ [x̂− d, x̂ + d].

4) Since F is continuous in [x̂ − d, x̂ + d] due to (i), taking j → ∞ in (2), we obtain x∗ = F (x∗). Let x̃
be any other solution to (1) in [x̂ − d, x̂ + d]. Then from |x̃ − x∗| = |F (x̃) − F (x∗)| ≤ H|x̃ − x∗| (due to (i)) we
have (I −H)|x̃ − x∗| ≤ 0, and premultiplying this inequality by the nonnegative matrix (I −H)−1 (cf. 1)) yields
|x̃− x∗| ≤ 0, hence x̃ = x∗. Thus x∗ is the unique solution of (1) in [x̂− d, x̂ + d].

5) For each j ≥ 0, taking m →∞ in (8), we obtain |xj − x∗| ≤ dj , hence x∗ ∈ [xj − dj , xj + dj ], which proves
(4). From (7) it follows that xj − dj ≤ xj+1 − dj+1 and xj+1 + dj+1 ≤ xj + dj for each j, hence the sequence of
hyperrectangles (5) is nested. This completes the proof.

In practice, the original problem is usually given in the form f(x) = 0, which is brought to the form (1) by
employing a mapping F (x) = x − Rf(x), where R is some nonsingular matrix. The second theorem shows that
under mild assumptions the conditions (i), (ii) imposed on F in Theorem 1 are satisfied in a neighbourhood of the
solution x∗. The Jacobian matrices of f and F are denoted by Jf , JF , respectively, and % is the spectral radius:

T h e o r e m 2: Let f(x∗) = 0 and let f have continuous partial derivatives in a neighbourhood of x∗. Then
for each n× n matrix R satisfying

%(|I −RJf (x∗)|) < 1 (9)

there exists a d > 0 such that the mapping

F (x) = x−Rf(x) (10)

satisfies the assumptions (i), (ii) of Theorem 1 in [x∗ − d, x∗ + d].

Proof: First, the mapping F given by (10) obviously satisfies JF (x) = I−RJf (x), hence (9) gives %(|JF (x∗)|) <

1. Let d̃ > 0 be such that f has continuous partial derivatives in [x∗ − d̃, x∗ + d̃]. For each d′ satisfying 0 ≤ d′ ≤ d̃
define a matrix H(d′) = (hij(d′)) by

hij(d′) = max

{∣∣∣∣
∂Fi

∂xj
(x)

∣∣∣∣ ; x ∈ [x∗ − d′, x∗ + d′]
}

(11)

(i, j = 1, . . . , n). Then H(0) = |JF (x∗)| and %(H(0)) = %(|JF (x∗)|) < 1, hence in view of continuity of the spectral
radius there exists a d′ > 0 with d′ ≤ d̃ such that %(H(d′)) < 1. Since H(d′) is nonnegative, there exists a
vector d′′ > 0 satisfying H(d′)d′′ < d′′ (Neumaier [2]). Take a sufficiently small real number α > 0 such that
αd′′ ≤ d′, and put d = αd′′, H = H(d′). Then d ≤ d′ implies H(d) ≤ H by (11), and from H(d′)d′′ < d′′ we
have Hd < d. Hence for each x′, x′′ ∈ [x∗ − d, x∗ + d] we have by the mean-value theorem and by (11) that
|F (x′)−F (x′′)| ≤ H(d)|x′ − x′′| ≤ H|x′ − x′′| and |x∗ −F (x∗)| = 0 < (I −H)d hold, hence the assumptions (i) and
(ii) of Theorem 1 are satisfied in [x∗ − d, x∗ + d].
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