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Abstract

A method for enclosing solutions of overdetermined systems of linear interval
equations is described. Several aspects of the problem (algorithm, enclosure
improvement, optimal enclosure) are studied.

0 Introduction

In this paper we consider the following problem. Given an overdetermined system of
linear interval equations

AIx = bI (1)

with an m× n interval matrix

AI = {A; Ac −∆ ≤ A ≤ Ac + ∆}
where m ≥ n (in practice: m is essentially greater than n, see [3]), and an interval
m-vector

bI = {b; bc − δ ≤ b ≤ bc + δ}
(componentwise inequalities), find an interval vector [x, x] satisfying

X ⊆ [x, x], (2)

where
X = {x; Ax = b for some A ∈ AI , b ∈ bI}

is the so–called solution set of (1) (the possibility of X = ∅ is not excluded). An
interval vector [x, x] satisfying (2) is called an enclosure of X.

This problem has been extensively studied for the square case m = n (see Neumaier [4]
for a survey of methods), but little seems to be known for the general case of overde-
termined systems (m ≥ n). In our main result (Theorem 1) we give a simple method
for constructing an enclosure of X, based on solving an auxiliary linear inequality.
Next we describe an algorithm for solving this inequality and we give a necessary and
sufficient condition for its finite termination (Theorem 2). The algorithm may be run
repeatedly with randomly chosen parameters to obtain a sharper result as an inter-
section of all the enclosures computed. This gives a new method for the square case
as well.
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1 Enclosure theorem

The following theorem is the main result of this paper.

Theorem 1 Let R be an arbitrary n ×m matrix1 and let x0 and d > 0 be arbitrary
n-vectors such that

Gd + g < d (3)

holds, where
G = |I −RAc|+ |R|∆

and
g = |R(Acx0 − bc)|+ |R|(∆|x0|+ δ).

Then
X ⊆ [x0 − d, x0 + d]. (4)

Comments. The result is formulated in this way (using R and x0) in order to be
able to get a verified enclosure (4) even with rounded inputs. We recommend to take

R ≈ (AT
c Ac)−1AT

c (5)

(an approximation of the Moore–Penrose inverse of Ac; cf. Proposition 1 below) and

x0 ≈ Rbc.

Then G and g can be computed from the initial data and from R, x0 (I is the unit
matrix), hence the problem reduces to solving the inequality (3). Since Ac, ∆ are
m× n and R is n×m, the matrix G is a square matrix of size n× n, where n is the
lower of the two dimensions m, n.

Proof. Let x ∈ X, so that Ax = b for some A ∈ AI , b ∈ bI . Then x = x+R(−Ax+b) =
(I −RA)x + Rb, which implies

x− x0 = (I −RA)(x− x0) + R(b−Ax0)

= (I −RAc)(x− x0) + R(Ac −A)(x− x0) + R(bc −Acx0)

+R(Ac −A)x0 + R(b− bc)

and taking absolute values, we have

|x− x0| ≤ |I −RAc| · |x− x0|+ |R|∆|x− x0|
+|R(bc −Acx0)|+ |R|∆|x0|+ |R|δ

= G|x− x0|+ g.

1notice the transposed size



Overdetermined Systems of Linear Interval Equations 3

Thus for a d satisfying (3) we obtain

(I −G)|x− x0| ≤ g < (I −G)d. (6)

Since g ≥ 0, (3) implies Gd < d, which in view of G ≥ 0 and d > 0 gives %(G) < 1 (cf.
Neumaier [4, sect. 3.2]), hence (I − G)−1 ≥ 0. Premultiplying (6) by (I − G)−1, we
obtain |x− x0| < d, which proves x ∈ [x0 − d, x0 + d]. Hence X ⊆ [x0 − d, x0 + d]. 2

The inequality m ≥ n has not been used in the proof. Therefore the proof may create
an impression that the result is valid for arbitrary m, n. This is not the case, as the
next proposition shows: if (3) holds (which implies Gd < d since g ≥ 0), then it must
be m ≥ n; hence this inequality is implicitly contained in (3).

Proposition 1 If Gd < d holds for some R and d > 0, then each A ∈ AI has linearly
independent columns. In particular, (AT A)−1 exists for each A ∈ AI .

Proof. Assume to the contrary that Ax = 0 for some A ∈ AI , x 6= 0. Then RAx = 0,
hence x = x−RAx = (I −RAc)x + R(Ac −A)x, which implies

|x| ≤ |I −RAc| · |x|+ |R|∆|x| = G|x|
and consequently

(I −G)|x| ≤ 0, (7)

but from the proof of Theorem 1 we know that existence of a positive solution to
Gd < d implies (I −G)−1 ≥ 0, hence premultiplying (7) by this matrix yields |x| ≤ 0,
thus x = 0, which is a contradiction. Hence, each A ∈ AI has linearly independent
columns; the rest is obvious. 2

2 Algorithm

The inequality (3) can be solved as an equation

d = Gd + g + f

where f is some positive vector. This observation suggests the following algorithm for
solving (3):

f := a (small) positive vector;
d′ := 0;
repeat

d := d′;
d′ := Gd + g + f

until |d′ − d| < f
{then d is a positive solution to (3)}.
First we give a necessary and sufficient condition for finite termination of the algorithm.
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Theorem 2 The following conditions are equivalent:

(i) %(G) < 1,

(ii) the algorithm terminates in a finite number of steps for some f > 0,

(iii) the algorithm terminates in a finite number of steps for each f > 0.

Proof. (i) ⇒ (iii): if %(G) < 1, then for each f > 0 the sequence dj+1 = Gdj + g + f
generated by the algorithm is Cauchian, hence convergent. Thus dj+1−dj → 0, hence
|dj+1−dj | < f for some j. (iii) ⇒ (ii) is obvious. (ii) ⇒ (i): if the algorithm terminates
for some f > 0, then from |d′ − d| < f we obtain d′ = Gd + g + f < d + f , hence
Gd ≤ Gd + g < d and since d > 0, we have %(G) < 1. 2

Hence, finite termination is independent of the choice of f (which, however, may
influence the number of steps). For practical purposes it is recommendable to change
the stopping rule of the algorithm to

. . . k := k + 1 until (|d′ − d| < f or k > kmax)

where k is an iteration counter and kmax is a prescribed maximum number of steps.
If k > kmax, then existence of a positive solution to (3) has not been proved.

Since R and x0 in Theorem 1 can be chosen arbitrarily, we may try to sharpen the
enclosure obtained by a repeated use of Theorem 1:

compute an initial enclosure xI ;
for j := 1 to jmax do begin

generate randomly A ∈ AI , b ∈ bI ;
R ≈ (AT A)−1AT ;
x0 ≈ Rb;
compute a d > 0 satisfying (3) by the algorithm;
xI := xI ∩ [x0 − d, x0 + d]

end
{then X ⊆ xI}.

3 Optimal enclosure

Once an enclosure xI = [x, x] has been found, we may use the information contained
therein to compute the optimal (narrowest) enclosure of X. Define

Z = {z ∈ IRn; zj = 1 if xj > 0, zj = −1 if xj < 0, |zj | = 1 otherwise}

and for each z ∈ Z let Tz denote the diagonal matrix with diagonal vector z. As
a consequence of the Oettli–Prager theorem [4], if we solve the linear programming
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problems

xz
i = inf{xi; bc − δ ≤ (Ac + ∆Tz)x, (Ac −∆Tz)x ≤ bc + δ, Tzx ≥ 0},

xz
i = sup{xi; bc − δ ≤ (Ac + ∆Tz)x, (Ac −∆Tz)x ≤ bc + δ, Tzx ≥ 0}

for each z ∈ Z and each i ∈ {1, . . . , n} (we employ the convention inf ∅ = ∞, sup ∅ =
−∞), then for x

i
, xi given by

x
i

= min{xz
i ; z ∈ Z},

xi = max{xz
i ; z ∈ Z} (i = 1, . . . , n)

we have that X 6= ∅ if and only if x
i
≤ xi for each i. If this is the case, then [x, x]

is the optimal enclosure of X. This procedure requires solving 2n · card(Z) linear
programming problems. Therefore it can be recommended only if the cardinality of Z
is moderate.

Final remark. In particular, all the results apply to the square case (m = n). Some
related issues are briefly mentioned in [5].
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