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Abstract

We investigate complexity of checking various properties of interval matrices. The
properties in question are regularity, positive definiteness, P–property, stability and
Schur stability, all of which are shown to be NP–hard to check even in the class of
interval matrices with uniform coefficient tolerances. Two additional sections handle
complexity of computing eigenvalues and determinants. The common basis for all
these results is the NP–hardness of computing the norm ‖A‖∞,1. In most cases we
also present finitely verifiable necessary and sufficient conditions to demonstrate the
exponentiality inherent in all these problems. Several verifiable sufficient conditions
are added to give some hints on how to proceed in solving practical examples.
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In this chapter we investigate complexity of checking various properties of interval
matrices; an interval matrix is a set of matrices whose coefficients range independently
of each other within prescribed bounds. The properties in question are regularity,
positive definiteness, P–property, stability and Schur stability, all of which are shown
to be NP–hard to check even in the class of interval matrices with uniform coefficient
tolerances. Two additional sections handle complexity of computing eigenvalues and
determinants. The common basis for all these results is the NP–hardness of computing
the norm ‖A‖∞,1, established in the first section. We have not restricted ourselves to
proving the complexity results only, but in most cases we also present finitely verifiable
necessary and sufficient conditions to demonstrate the exponentiality inherent in all
these problems. In several cases we also add verifiable sufficient conditions to give
some hints on how to proceed in solving practical examples.

We shall use the following notations. For two matrices A,B of the same size, in-
equalities like A ≤ B or A < B are understood componentwise. A is called nonnegative
if A ≥ 0 and symmetric if AT = A (AT is the transpose of A). The absolute value
of a matrix A = (aij) is defined by |A| = (|aij|); properties like |A + B| ≤ |A| + |B|
or |AB| ≤ |A||B| are easy to prove. The same notations also apply to vectors that
are always considered one–column matrices. In particular, for a = (ai) and b = (bi),
aT b =

∑
i aibi is the scalar product whereas abT is the matrix (aibj). λmin(A), λmax(A)

denote the minimal and maximal eigenvalue of a symmetric matrix A, respectively.
As is well known, λmin(A) = min‖x‖2=1 xT Ax and λmax(A) = max‖x‖2=1 xT Ax hold.
σmin(A), σmax(A) denote the minimal and maximal singular value of A, and %(A) is
the spectral radius of A. I denotes the unit matrix, ej is the jth column of I and
e = (1, . . . , 1)T is the vector of all ones. Z denotes the set of all ±1 vectors, i.e.,
Z = {z ∈ Rn; |z| = e}.

1 The norm ‖A‖∞,1

In this section we introduce the subordinate matrix norm ‖A‖∞,1 and we prove that
its computation is NP–hard. For the purposes of various applications to be given later,
the result is presented in several different settings (Theorems 3 through 6).

1.1 Subordinate norms

Given two vector norms ‖x‖α in Rn and ‖x‖β in Rm, a subordinate matrix norm in
Rm×n is defined by

‖A‖α,β = max
‖x‖α=1

‖Ax‖β

(see Golub and van Loan [18] or Higham [20]). ‖A‖α,β is a matrix norm, i.e., it
possesses the three usual properties: 1) ‖A‖α,β ≥ 0 and ‖A‖α,β = 0 if and only if
A = 0, 2) ‖A + B‖α,β ≤ ‖A‖α,β + ‖B‖α,β, 3) ‖λA‖α,β = |λ| · ‖A‖α,β. However,
generally it does not possess the property ‖AB‖α,β ≤ ‖A‖α,β‖B‖α,β (it does e.g. if
α = β).

2



By combining the three most frequently used norms

‖x‖1 =
∑

i

|xi|,

‖x‖2 =
√

xT x,

‖x‖∞ = max
i
|xi|,

we get nine subordinate norms, including the three usual norms

‖A‖1 := ‖A‖1,1 = max
j

∑

i

|aij|,

‖A‖2 := ‖A‖2,2 =
√

λmax(AT A),

‖A‖∞ := ‖A‖∞,∞ = max
i

∑

j

|aij|.

Yet it turns out that one of these nine norms has an exceptional behavior in the sense
that it is much more difficult to compute than the other ones: namely, the norm

‖A‖∞,1 = max
‖x‖∞=1

‖Ax‖1.

This norm can be computed by a finite formula which, however, involves maximization
over the set Z of all ±1–vectors (whose cardinality is 2n):

Proposition 1 For each A ∈ Rm×n we have

‖A‖∞,1 = max
z∈Z

‖Az‖1 (1)

where
Z = {z ∈ Rn; zj ∈ {−1, 1} for each j}. (2)

Moreover, if A is symmetric positive semidefinite, then

‖A‖∞,1 = max
z∈Z

zT Az. (3)

Proof. 1) If ‖x‖∞ = 1, then x belongs to the unit cube {x; −e ≤ x ≤ e}, which
is a convex polyhedron, therefore x can be expressed as a convex combination of its
vertices which are exactly the points in Z:

x =
∑

z∈Z

λzz, (4)

where λz ≥ 0 for each z ∈ Z and
∑

z∈Z λz = 1. From (4) we have

‖Ax‖1 = ‖∑

z∈Z

λzAz‖1 ≤ max
z∈Z

‖Az‖1,
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hence
max
‖x‖∞=1

‖Ax‖1 ≤ max
z∈Z

‖Az‖1 ≤ max
‖x‖∞=1

‖Ax‖1

(since ‖z‖∞ = 1 for each z ∈ Z) and (1) follows.
2) Let A be symmetric positive semidefinite and let z ∈ Z. Define y ∈ Z by yj = 1

if (Az)j ≥ 0 and yj = −1 if (Az)j < 0 (j = 1, . . . , n), then

‖Az‖1 = yT Az.

Since A is symmetric positive semidefinite, we have

(y − z)T A(y − z) ≥ 0,

which implies
2yT Az ≤ yT Ay + zT Az ≤ 2 max

z∈Z
zT Az,

hence
‖Az‖1 = yT Az ≤ max

z∈Z
zT Az

and
‖A‖∞,1 = max

z∈Z
‖Az‖1 ≤ max

z∈Z
zT Az. (5)

Conversely, for each z ∈ Z we have

zT Az ≤ |z|T · |Az| = ‖Az‖1 ≤ max
z∈Z

‖Az‖1 = ‖A‖∞,1,

hence
max
z∈Z

zT Az ≤ ‖A‖∞,1,

which together with (5) gives (3).

In the next subsection we shall prove that computing ‖A‖∞,1 is NP–hard. This will
imply that unless P=NP, the formula (1) cannot be essentially simplified.

3

1.2 Computing ‖A‖∞,1 is NP–hard

In order to prove the NP–hardness for a possibly narrow class of matrices, we introduce
the following concept (first formulated in [40]):

Definition A real symmetric n × n matrix A = (aij) is called an MC–matrix1 if
it is of the form

aij

{
= n if i = j
∈ {0,−1} if i 6= j

(i, j = 1, . . . , n).
Since an MC–matrix is symmetric by definition, there are altogether 2n(n−1)/2 MC–

matrices of size n. The basic properties of MC–matrices are summed up in the fol-
lowing proposition:

1from “maximum cut” (see the proof of Theorem 3 below)
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Proposition 2 An MC–matrix A ∈ Rn×n is symmetric positive definite, nonneg-
ative invertible and satisfies

‖A‖∞,1 = max
z∈Z

zT Az, (6)

n ≤ ‖A‖∞,1 ≤ n(2n− 1) (7)

and
‖A−1‖1 ≤ 1.

Proof. A is symmetric by definition; it is positive definite since for x 6= 0,

xT Ax ≥ n‖x‖2
2 −

∑

i 6=j

|xixj| = (n + 1)‖x‖2
2 − ‖x‖2

1 ≥ ‖x‖2
2 > 0

(‖x‖1 ≤
√

n‖x‖2 by Cauchy–Schwartz inequality [18]). Hence (6) holds by Proposition
1. Since |aij| ≤ 1 for i 6= j, for each z ∈ Z and i ∈ {1, . . . , n} we have

zi(Az)i = n +
∑

j 6=i

aijzizj ∈ [1, 2n− 1],

hence
n ≤ zT Az ≤ n(2n− 1)

for each z ∈ Z, and (6) implies (7). By definition, A is of the form

A = nI − A0 = n(I − 1
n

A0)

where A0 = nI − A ≥ 0 and ‖ 1
n
A0‖1 ≤ n−1

n
< 1, hence

A−1 =
1
n

∞∑

0

(
1
n

A0)j ≥ 0

and

‖A−1‖1 ≤ 1
n− ‖A0‖1

≤ 1.

The following basic result is due to Poljak and Rohn [33] (given there in a slightly
different formulation without using the concept of an MC-matrix).

Theorem 3 The following decision problem is NP-complete:
Instance. An MC-matrix A and a positive integer `.
Question. Is zT Az ≥ ` for some z ∈ Z?
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Proof. Let (N, E) be a graph with N = {1, . . . , n}. Let A = (aij) be given by
aij = n if i = j, aij = −1 if i 6= j and the nodes i, j are connected by an edge, and
aij = 0 if i 6= j and i, j are not connected. Then A is an MC–matrix. For S ⊆ N ,
define the cut c(S) as the number of edges in E whose one endpoint belongs to S and
the other one to N \ S. We shall prove that

‖A‖∞,1 = 4 max
S⊆N

c(S)− 2Card(E) + n2 (8)

holds. Given a S ⊆ N , define a z ∈ Z by

zi =

{
1 if i ∈ S

−1 if i /∈ S.

Then we have

zT Az =
∑

i,j

aijzizj =
∑

i 6=j

aijzizj + n2

=
∑

i6=j

[−1
2
aij(zi − zj)

2 + aij] + n2

= −1
2

∑

zizj=−1

aij(zi − zj)
2 +

∑

i6=j

aij + n2

= −1
2

∑

zizj=−1

4aij +
∑

i6=j

aij + n2,

hence
zT Az = 4c(S)− 2Card(E) + n2. (9)

Conversely, given a z ∈ Z, then for S = {i ∈ N ; zi = 1} the same reasoning implies
(9). Taking maximum on both sides of (9), we obtain (8) in view of (6).

Hence, given a positive integer L, we have

c(S) ≥ L (10)

for some S ⊆ N if and only if

zT Az ≥ 4L− 2Card(E) + n2

for some z ∈ Z. Since the decision problem (10) is NP–complete (“simple max–cut
problem”, Garey, Johnson and Stockmeyer [17]), we obtain that the decision problem

zT Az ≥ ` (11)

(` positive integer) is NP–hard. It is NP–complete since for a guessed solution z ∈ Z
the validity of (11) can be checked in polynomial time.

In this way, we have also proved the following result:
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Theorem 4 Computing ‖A‖∞,1 is NP–hard for MC–matrices.

In a sharp contrast with this result, the norm ‖A‖1,∞ (with indices swapped) can
be computed in polynomial time:

‖A‖1,∞ = max
i,j

|aij| (12)

(Higham [20]).
To facilitate formulations of some subsequent results, it is advantageous to remove

the integer parameter ` from the formulation of Theorem 3. This can be done by
using M–matrices instead of MC–matrices. Let us recall that A = (aij) is called an
M–matrix if aij ≤ 0 for i 6= j and A−1 ≥ 0 (a number of equivalent formulations
may be found in Berman and Plemmons [5]); hence each MC–matrix is an M–matrix
(Proposition 2). Since a symmetric M–matrix is positive definite [5], this property is
not explicitly mentioned in the following theorem:

Theorem 5 The following decision problem is NP-hard:
Instance. An n× n symmetric rational M-matrix A with ‖A‖1 ≤ 2n− 1.
Question. Is ‖A‖∞,1 ≥ 1?

Proof. Given an MC–matrix A and a positive integer `, the assertion

zT Az ≥ ` for some z ∈ Z

is equivalent to ‖A‖∞,1 ≥ ` and thereby also to
∥∥∥∥

1
`
A

∥∥∥∥∞,1
≥ 1,

where 1
`
A is a symmetric rational M–matrix with ‖1

`
A‖1 ≤ ‖A‖1 ≤ 2n− 1. Hence the

decision problem of Theorem 3 can be reduced in polynomial time to the current one,
which is then NP–hard.

Finally we shall show that even computing a sufficiently close approximation of
‖A‖∞,1 is NP–hard:

Theorem 6 Suppose there exists a polynomial–time algorithm which for each MC–
matrix A computes a rational number ν(A) satisfying

|ν(A)− ‖A‖∞,1| < 1
2
.

Then P=NP.

Proof. If such an algorithm exists, then ‖A‖∞,1 < ν(A) + 1
2 < ‖A‖∞,1 + 1, hence

‖A‖∞,1 =
⌊
ν(A) +

1
2

⌋

(since ‖A‖∞,1 is integer for an MC–matrix A, see (6)), hence the NP–hard problem
of Theorem 4 can be solved in polynomial time, 3implying P=NP.
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2 Regularity

In the rest of this chapter we shall investigate complexity of checking various properties
of square interval matrices. An interval matrix AI is a set of matrices of the form

AI = [A,A] = {A; A ≤ A ≤ A}, (13)

where the inequalities are understood componentwise and A ≤ A. Introducing the
center matrix

Ac =
1
2

(A + A)

and the nonnegative radius matrix

∆ =
1
2

(A− A),

we can also write the interval matrix (13) in the form

AI = [Ac −∆, Ac + ∆] (14)

which in many contexts turns out to be more useful than (13)2.
A square interval matrix AI is said to be regular if each A ∈ AI is nonsingular, and it

is called singular otherwise (i.e., if it contains a singular matrix). Regularity of interval
matrices plays an important role in theory of linear interval equations (Neumaier [30]),
but it is also useful in some other respects since checking several properties of interval
matrices (studied in the subsequent sections) can be reduced to checking regularity.

This section is devoted to the problem of checking regularity of interval matrices.
We prove that the problem is NP–hard (Theorem 9) and describe some necessary
and/or sufficient regularity conditions (subsection 2.2). In the last subsection it is
proved that computing (even approximately) the radius of nonsingularity is NP–hard.

2.1 Checking regularity is NP–hard

Let us introduce the matrix of all ones

E = eeT =




1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1




.

The basic relationship of the current problem to the contents of the previous section
is provided by the following equivalence:

2the “I” in AI is an abbreviation of the word “interval” and has nothing to do with the unit
matrix I
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Proposition 7 For a symmetric positive definite matrix A, the following assertions
are equivalent:

(i) ‖A‖∞,1 ≥ 1,

(ii) the interval matrix
[A−1 − E, A−1 + E] (15)

is singular,

(iii) the interval matrix (15) contains a symmetric singular matrix A′ of the form

A′ = A−1 − zzT

zT Az
(16)

for some z ∈ Z.

Proof. (i)⇒(iii): Due to Proposition 1, if (i) holds, then

‖A‖∞,1 = max
z∈Z

zT Az ≥ 1,

hence zT Az ≥ 1 for some z ∈ Z. Since
∣∣∣∣∣

zzT

zT Az

∣∣∣∣∣ ≤ E,

the matrix A′ defined by (16) belongs to [A−1 − E, A−1 + E] and satisfies

A′Az = z − z(zT Az)
zT Az

= 0,

where Az 6= 0 (A is nonsingular since it is positive definite), hence A′ is singular, and
obviously also symmetric.

(iii)⇒(ii) is obvious.
(ii)⇒(i): Let A′′x = 0 for some A′′ ∈ [A−1 − E, A−1 + E] and x 6= 0. Define z ∈ Z

by zj = 1 if xj ≥ 0 and zj = −1 otherwise (j = 1, . . . , n). Then we have

eT |x| = zT x = zT A(A−1 − A′′)x ≤ |zT A(A−1 − A′′)x| ≤ |zT A|eeT |x|,

hence
1 ≤ |zT A|e = ‖Az‖1 ≤ ‖A‖∞,1,

which is (i).

The next result was published by Poljak and Rohn in a report form [32] in 1988
and in a journal form [33] in 1993:
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Theorem 8 The following problem is NP–complete:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is [A− E, A + E] singular?

Proof. For a symmetric rational M–matrix A (which is positive definite [5]),

‖A‖∞,1 ≥ 1 (17)

is according to Proposition 7 equivalent to singularity of

[A−1 − E, A−1 + E],

where A−1 is rational, nonnegative and symmetric positive definite. Since computing
A−1 can be done by Gaussian elimination in polynomial time (Edmonds [14]), we have
a polynomial–time reduction of the NP–hard problem (17) (Theorem 5) to the current
problem, which is thus also NP–hard.

If [A−E, A + E] is singular, then it contains a rational singular matrix of the form

A− zzT

zT A−1z

for some z ∈ Z (Proposition 7, (ii)⇔(iii)) which can be guessed (generated by a nonde-
terministic polynomial–time algorithm) and then checked for singularity by Gaussian
elimination in polynomial time [14]. Thus the problem is in the class NP, hence it it
NP–complete.

The result immediately implies NP–hardness of checking regularity:

Theorem 9 The following problem is NP–hard:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is [A− E, A + E] regular?

This result was proved independently, also in 1993, by Nemirovskii [28] who employed
a different approach based on another subclass of interval matrices.

As a by–product of the equivalence (ii)⇔(iii) of Proposition 7 we obtain that the
problem of checking regularity of all symmetric matrices contained in [A− E,A + E]
is also NP–hard.

2.2 Necessary and/or sufficient conditions

In view of the NP–hardness result of Theorem 9, no easily verifiable necessary and
sufficient regularity conditions may be expected. Indeed, 13 such conditions are proved
in Theorem 5.1 in [37], all of which exhibit exponential behaviour. Probably the
most easily implementable criterion is that one by Baumann [3] (Theorem 11 below)
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which employs matrices Ayz, y, z ∈ Rn, defined for an n × n interval matrix AI =
[Ac −∆, Ac + ∆] = [A,A] by

(Ayz)ij = (Ac)ij −∆ijyizj (18)

(i, j = 1, . . . , n). If y, z ∈ Z, then we have

(Ayz)ij =

{
Aij if yizj = −1,
Aij if yizj = 1

(19)

for each i, j, hence Ayz ∈ AI in this case. We shall first formulate an auxiliary result
which will form a basis for proofs of the other results in this subsection. It is a
consequence of the Oettli–Prager theorem [31].

Proposition 10 An interval matrix AI = [Ac −∆, Ac + ∆] is singular if and only
if the inequality

|Acx| ≤ ∆|x| (20)

has a nontrivial solution.

Proof. If AI contains a singular matrix A, then Ax = 0 for some x 6= 0, which
implies

|Acx| = |(Ac − A)x| ≤ ∆|x|.
Conversely, let (20) hold for some x 6= 0. Define y ∈ Rn and z ∈ Z by

yi =

{
(Acx)i/(∆|x|)i if (∆|x|)i > 0,
1 if (∆|x|)i = 0

and

zj =

{
1 if xj ≥ 0,

−1 if xj < 0

(i, j = 1, . . . , n). Then for the matrix Ayz given by (18) we have

(Ayzx)i = (Acx)i − yi(∆|x|)i = 0

for each i, hence Ayz is singular, and since |yi| ≤ 1 for each i due to (20), from (18) it
follows that Ayz ∈ AI , hence AI is singular.

Baumann’s criterion employs a finite set of test matrices Ayz for y, z ∈ Z (of cardi-
nality at most 22n−1 since A−y,−z = Ayz).

Theorem 11 An interval matrix AI is regular if and only if determinants of all
the matrices Ayz, y, z ∈ Z are nonzero and of the same sign.
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Proof. Let AI be regular and assume that

(det Ayz)(det Ay′z′) ≤ 0

holds for some y, z, y′, z′ ∈ Z. Define a real function ϕ of one real variable by

ϕ(t) = det(Ayz + t(Ay′z′ − Ayz)), t ∈ [0, 1].

Then ϕ(0)ϕ(1) ≤ 0, hence there exists a τ ∈ [0, 1] with ϕ(τ) = 0. Thus the matrix
Ayz + τ(Ay′z′ − Ayz) is singular and belongs to AI (due to its convexity), which is a
contradiction. Hence

(det Ayz)(det Ay′z′) > 0

holds for each y, z, y′, z′ ∈ Z.
Conversely, let AI be singular. From the proof of Proposition 10 we know that there

exists a singular matrix of the form Ayz for some |y| ≤ e, z ∈ Z. Let us introduce the
function

f(s) = det Asz

for s ∈ Rn, and define a vector y = (yj) ∈ Z componentwise by induction on j =
1, . . . , n as follows: if the function of one real variable

f(y1, . . . , yj−1, t, yj+1, . . . , yn) (21)

is increasing in t, set yj := 1, otherwise set yj := −1. Since the function (21) is linear
in t due to (18), we have

f(y1, . . . , yj−1, yj, yj+1, . . . , yn) ≤ f(y1, . . . , yj−1, yj, yj+1, . . . , yn)

for each j, and by induction

0 = det Ayz = f(y1, . . . , yn) ≤ f(y1, . . . , yn) = det Ayz,

hence 0 ≤ det Ayz, y, z ∈ Z. In an analogous way we may construct a y ∈ Z satisfying
det Ayz ≤ 0. Hence

(det Ayz)(det Ayz) ≤ 0

for some y, y, z ∈ Z, which concludes the proof of the second implication.

In view of the exponentiality inherent in the necessary and sufficient conditions, in
practical computations we must resort to verifiable sufficient conditions. We survey
the most useful ones in the next theorem:

Theorem 12 Each of the two conditions implies regularity of [Ac −∆, Ac + ∆]:

(i) %(|A−1
c |∆) < 1,

(ii) σmax(∆) < σmin(Ac).
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Furthermore, each of the following two conditions implies singularity of [Ac−∆, Ac +
∆]:

(iii) maxj(∆|A−1
c |)jj ≥ 1,

(iv) (∆− |Ac|)−1 ≥ 0.

Proof. (i) Assume to the contrary that AI is singular, then

|Acx| ≤ ∆|x| (22)

for some x 6= 0 (Proposition 10), hence

|x′| ≤ ∆|A−1
c x′| ≤ ∆|A−1

c ||x′|
holds for x′ = Acx 6= 0, which implies

1 ≤ %(∆|A−1
c |) = %(|A−1

c |∆)

(Neumaier [30]), a contradiction.
(ii) Again assuming to the contrary that AI is singular, we have that (22) holds for

some x 6= 0 which may be normalized so that ‖x‖2 = 1, hence also

|Acx|T |Acx| ≤ (∆|x|)T (∆|x|),
which implies

σ2
min(Ac) = λmin(AT

c Ac) = min
‖x‖2=1

xT AT
c Acx ≤ (Acx)T (Acx)

≤ |Acx|T |Acx| ≤ (∆|x|)T (∆|x|) = |x|T ∆T ∆|x|
≤ max

‖x‖2=1
xT ∆T ∆x = λmax(∆T ∆) = σ2

max(∆),

hence
σmin(Ac) ≤ σmax(∆),

which is a contradiction.
(iii) Let (∆|A−1

c |)jj ≥ 1 for some j and let ej denote the jth column of the unit
matrix I. Then

ej ≤ ∆|A−1
c |ej = ∆|A−1

c ej|
holds, hence for x = A−1

c ej 6= 0 we have

|Acx| ≤ ∆|x|
and AI is singular due to Proposition 10.

(iv) Let (∆ − |Ac|)−1 ≥ 0. Then for x = (∆ − |Ac|)−1e we have x > 0 and
(∆− |Ac|)x = e > 0, hence

|Acx| ≤ |Ac|x < ∆x = ∆|x|
and Proposition 10 implies singularity of AI .

The condition (i), which is most frequently used, is due to Beeck [4]; an interval matrix
satisfying (i) is called strongly regular (Neumaier [30]). The second condition is due
to Rump [44]. The condition (iii) is proved in [37], and (iv) comes from [42].
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2.3 Radius of nonsingularity

Given an n× n matrix A and a nonnegative “directional” n× n matrix ∆, the radius
of nonsingularity is defined by

d(A, ∆) = inf{ε ≥ 0; [A− ε∆, A + ε∆] is singular} (23)

(i.e., d(A, ∆) = ∞ if no such ε exists; if d(A, ∆) < ∞, then the infimum is achieved
as minimum). This notion was seemingly first formulated by Neumaier [29] and was
since studied by Poljak and Rohn [32], [33], Demmel [12], Rohn [38] and Rump [46],
[45] (Demmel and Rump use the term “componentwise distance to the nearest singular
matrix”). A general formula for d(A, ∆) was given in [33]:

d(A, ∆) =
1

max{%0(A−1T1∆T2); |T1| = |T2| = I} , (24)

with convention 1
0 = ∞. Here %0 denotes the real spectral radius defined by %0(A) =

max{|λ|; λ is a real eigenvalue of A} and %0(A) = 0 if no real eigenvalue exists. A
matrix T satisfying |T | = I is obviously a diagonal matrix with ±1 entries on the
diagonal. There are 2n such matrices, hence the formula (24) is finite.

Consider the special case of ∆ = E and denote

d(A) := d(A,E).

d(A) is always finite and d(A) = 0 if and only if A is singular. We have this result
[33]:

Proposition 13 For each nonsingular A there holds

d(A) =
1

‖A−1‖∞,1
. (25)

Proof. Since ‖A‖1,∞ = maxij |aij| (see (12)), Kahan’s theorem [22] gives

d(A) = min{ε ≥ 0; [A− εE, A + εE] is singular}
= min{‖A− A′‖1,∞; A′ is singular}
=

1
‖A−1‖∞,1

.

The formula (25) implies this complexity result:

Proposition 14 The following problem is NP–hard:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is d(A) ≤ 1?

14



Proof. For a symmetric M–matrix A,

‖A‖∞,1 ≥ 1

is according to (25) equivalent to

d(A−1) ≤ 1,

where A−1 is rational, nonnegative symmetric positive definite, hence the NP–hard
problem of Theorem 5 can be reduced in polynomial time to the current one, which is
thus NP–hard as well.

As an immediate consequence we obtain [33]:

Theorem 15 Computing the radius of nonsingularity is NP–hard (even in the spe-
cial case ∆ = E).

In the next theorem we prove that even computing a sufficiently close approximation
of the radius of nonsingularity is NP–hard.

Theorem 16 Suppose there exists a polynomial–time algorithm which for each
nonnegative symmetric positive definite rational matrix A computes a rational ap-
proximation d′(A) of d(A) satisfying

∣∣∣∣∣
d′(A)− d(A)

d(A)

∣∣∣∣∣ ≤
1

4n2
,

where n is the size of A. Then P=NP.

Proof. Let A be an n×n MC–matrix, then A−1 is rational nonnegative symmetric
positive definite, hence we have

∣∣∣∣∣
d′(A−1)− d(A−1)

d(A−1)

∣∣∣∣∣ ≤
1

4n2
.

Since ‖A‖∞,1 ≤ n(2n− 1) by Proposition 2, there holds 2‖A‖∞,1 + 1 ≤ 4n2− 2n + 1 <
4n2, hence ∣∣∣∣∣

d′(A−1)
d(A−1)

− 1

∣∣∣∣∣ ≤
1

4n2
<

1
2‖A‖∞,1 + 1

<
1

2‖A‖∞,1 − 1
,

which implies

2‖A‖∞,1

2‖A‖∞,1 + 1
= 1− 1

2‖A‖∞,1 + 1
<

d′(A−1)
d(A−1)

< 1 +
1

2‖A‖∞,1 − 1
=

2‖A‖∞,1

2‖A‖∞,1 − 1

and by (25),
2

2‖A‖∞,1 + 1
< d′(A−1) <

2
2‖A‖∞,1 − 1

15



and ∣∣∣∣∣
1

d′(A−1)
− ‖A‖∞,1

∣∣∣∣∣ <
1
2
.

Hence we have a polynomial–time algorithm for computing ‖A‖∞,1 with accuracy bet-
ter than 1

2 , which according to Theorem 6 implies that P=NP.

Bounds on the radius of nonsingularity can be derived from sufficient regularity or
singularity conditions. E.g., from Theorem 12 we have

1
%(|A−1|∆)

≤ d(A, ∆) ≤ 1
maxj(∆|A−1|)jj

.

Using a sophisticated reasoning, Rump [46], [45] recently proved a “symmetric” esti-
mation

1
%(|A−1|∆)

≤ d(A, ∆) ≤ 6n

%(|A−1|∆)
.

R3elated to the radius of nonsingularity is the structured singular value introduced
by Doyle [13]. The NP–hardness of its computation was proved by Braatz, Young,
Doyle and Morari [8] and independently by Coxson and DeMarco [10].

3 Positive definiteness

A square matrix A (not necessarily symmetric) is called positive definite if xT Ax > 0
for each x 6= 0. Since for the symmetric matrix

As =
1
2

(A + AT )

there holds xT Ax = xT Asx for each x, we have that A is positive definite if and only
if As is positive definite, and positive definiteness of a symmetric matrix As may be
checked by Sylvester determinant criterion [27] using Gaussian elimination, hence it
can be done in polynomial time [14].

An interval matrix AI is said to be positive definite if each A ∈ AI is positive
definite. In this section we show that due to a close relationship between positive
definiteness and regularity (Theorem 17), the results of the previous section may be
applied to prove that checking positive definiteness is NP–hard even for symmetric
interval matrices (Theorem 20). In the last subsection we again give some necessary
and/or sufficient conditions for positive definiteness of interval matrices.

3.1 Positive definiteness and regularity

For a square interval matrix
AI = [A, A], (26)
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define

AI
s = [

1
2

(A + AT ),
1
2

(A + A
T

)]. (27)

Hence, A ∈ AI implies 1
2(A + AT ) ∈ AI

s, and (AI
s)s = AI

s. An interval matrix (26)
is called symmetric if AI = AI

s. It can be easily seen that (26) is symmetric if and
only if the bounds A and A are symmetric. Similarly, an interval matrix in the form
[Ac −∆, Ac + ∆] is symmetric if and only if both Ac and ∆ are symmetric. Hence, a
symmetric interval matrix may contain nonsymmetric matrices (indeed, it is the case
if and only if Aij < Aij for some i 6= j).

In the next theorem we show that positive definiteness of interval matrices is closely
related to regularity [39]:

Theorem 17 An interval matrix AI is positive definite if and only if AI
s is regular

and contains at least one positive definite matrix.

Proof. Let AI = [Ac −∆, Ac + ∆], so that AI
s = [A′

c −∆′, A′
c + ∆′], where

A′
c =

1
2

(Ac + AT
c )

and

∆′ =
1
2

(∆ + ∆T ).

We shall first prove that if AI is positive definite, then AI
s is also positive definite.

Assume to the contrary that AI
s is not positive definite, so that xT A′x ≤ 0 for some

A′ ∈ AI
s and x 6= 0. Since |xT (A′ − A′

c)x| ≤ |x|T ∆′|x|, we have

xT Acx− |x|T ∆|x| = xT A′
cx− |x|T ∆′|x| ≤ xT A′

cx + xT (A′ − A′
c)x = xT A′x ≤ 0. (28)

Define a diagonal matrix T by Tjj = 1 if xj ≥ 0 and Tjj = −1 otherwise. Then
|x| = Tx, and from (28) we have

xT (Ac − T∆T )x ≤ 0,

where |T∆T | = ∆, hence the matrix Ac − T∆T belongs to AI and is not positive
definite. This contradiction shows that positive definiteness of AI implies positive
definiteness of AI

s, and thereby also regularity of AI
s.

Conversely, let AI
s be regular and contain a positive definite matrix A0. Assume to

the contrary that some A1 ∈ AI is not positive definite. Let Ã0 = 1
2(A0 + AT

0 ), Ã1 =
1
2(A1 + AT

1 ), hence both Ã0 and Ã1 are symmetric and belong to AI
s, Ã0 is positive

definite whereas Ã1 is not. Put

τ = sup{t ∈ [0, 1]; Ã0 + t(Ã1 − Ã0) is positive definite}.
Then τ ∈ (0, 1], hence the matrix

A∗ = Ã0 + τ(Ã1 − Ã0)

17



belongs to AI
s (due to its convexity) and is symmetric positive semidefinite, but not

positive definite, hence λmin(A∗) = 0, which shows that A∗ is singular contrary to the
assumed regularity of AI

s. Hence AI is positive definite, which completes the proof.

In the introduction of this section we mentioned that a real matrix A is positive
definite if and only if As is positive definite. Theorem 17 now implies that the same
relationship holds for interval matrices:

Proposition 18 AI is positive definite if and only if AI
s is positive definite.

Proof. According to Theorem 17, AI is positive definite if and only if AI
s is reg-

ular and contains a positive definite matrix. If we apply the same theorem to AI
s

instead of AI , in view of the obvious fact that (AI
s)s = AI

s we obtain that AI
s is posi-

tive definite if and only if AI
s is regular and contains a positive definite matrix. These

two equivalences show that AI is positive definite if and only if AI
s is positive definite.

In the next subsection we shall employ the relationship between positive definiteness
and regularity established in Theorem 17 to prove NP–hardness of checking positive
definiteness.

3.2 Checking positive definiteness is NP–hard

Taking again into consideration the class of interval matrices of the form [A−E, A+E],
we arrive at this property:

Proposition 19 Let A be a symmetric positive definite matrix. Then the interval
matrix [A− E,A + E] is positive definite if and only if it is regular.

Proof. Under the assumption, the interval matrix AI = [A − E,A + E] satisfies
AI

s = AI and contains a symmetric positive definite matrix A. Hence according to
Theorem 17, AI is positive definite if and only if it is regular.

As a direct consequence we prove NP–hardness of checking positive definiteness [40]:

Theorem 20 The following problem is NP–hard:
Instance. A nonnegative symmetric positive definite rational matrix A.
Question. Is [A− E, A + E] positive definite?

Proof. In view of Proposition 19, such an interval matrix is positive definite if and
only if it is regular. Checking regularity was proved to be NP–hard for this class of
interval matrices in Theorem 9. H3ence the same is true for checking positive definite-
ness.

An interval matrix AI is said to be positive semidefinite if each A ∈ AI is posi-
tive semidefinite. NP–hardness of checking positive semidefiniteness was proved by
Nemirovskii [28] by another means.
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3.3 Necessary and/or sufficient conditions

A finite characterization of positive definiteness of interval matrices was seemingly first
given by Shi and Gao [47] who proved that a symmetric AI = [A,A] is positive definite
if and only if each symmetric matrix A ∈ AI of the form Aii = Aii, Aij ∈ {Aij, Aij}
for i 6= j, is positive definite. There are 2n(n−1)/2 such matrices. In [39] it was shown
that the number of test matrices may be reduced down to 2n−1 if we employ instead
the set of matrices Azz defined for z ∈ Z by

(Azz)ij =

{
Aij if zizj = −1,
Aij if zizj = 1

(29)

(i, j = 1, . . . , n). These are exactly the matrices Ayz (see (19)) used in the Bau-
mann regularity criterion (Theorem 11), with y = z. Each Azz is symmetric if AI is
symmetric.

Theorem 21 AI is positive definite if and only if each Azz, z ∈ Z is positive
definite.

Proof. The “only if” part is obvious since Azz ∈ AI for each z ∈ Z. The “if” part
was proved in the first part of the proof of Theorem 17 (a matrix Ac − T∆T is of the
form Azz where z is the diagonal vector of T ).

In practical computations we may use the following sufficient condition [39] (where
λmin denotes the minimal eigenvalue of a symmetric matrix and % is the spectral
radius):

Theorem 22 An interval matrix AI = [Ac −∆, Ac + ∆] is positive definite if

%(∆′) < λmin(A′
c)

holds, where A′
c = 1

2(Ac + AT
c ) and ∆′ = 1

2(∆ + ∆T ).

Proof. For each A ∈ AI and x with ‖x‖2 = 1 we have

xT Ax = xT Acx + xT (A− Ac)x ≥ xT Acx− |x|T ∆|x| = xT A′
cx− |x|T ∆′|x|

≥ λmin(A′
c)− λmax(∆′) = λmin(A′

c)− %(∆′) > 0,

hence AI is positive definite.
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4 P–property

An n × n matrix A is said to be a P–matrix (or, to have the P–property) if all its
principal minors are positive; principal minors are determinants of square submatrices
formed from rows and columns with the same indices (there are 2n− 1 of them). This
definition is due to Fiedler and Pták who also proved the following characterization
[15]: A is a P–matrix if and only if for each x 6= 0 there exists an i ∈ {1, . . . , n} such
that xi(Ax)i > 0. P–matrices play important role in several areas, e.g. in the linear
complementarity theory since they guarantee existence and uniqueness of the solution
of a linear complementarity problem (see Murty [27]).

A symmetric matrix A is a P–matrix if and only if it is positive definite (Wilkinson
[51]), hence it can be checked in polynomial time. However, the problem of checking
nonsymmetric matrices for P–property is NP–hard, as it was proved by Coxson [9]
(the proof of his result is added as an appendix in section 9).

An interval matrix AI is called a P–matrix if each A ∈ AI is a P–matrix. In this
section we show that due to a close relationship between P–property and positive
definiteness (Proposition 24), the problem of checking P–property of interval matrices
is NP–hard even in the symmetric case (Theorem 25).

4.1 Necessary and sufficient condition

First we give a characterization similar to that of Theorem 21. We shall again employ
the matrices Azz, z ∈ Z defined in (29). The following theorem is due to Bia las and
Garloff [7], reformulation using matrices Azz comes from Rohn and Rex [43].

Theorem 23 AI is a P–matrix if and only if each Azz, z ∈ Z is a P–matrix.

Proof. If AI is a P–matrix, then each Azz is a P–matrix since Azz ∈ AI , z ∈ Z.
Conversely, let each Azz, z ∈ Z be a P–matrix. Take A ∈ AI , x 6= 0, and let z ∈ Z
be defined by zj = 1 if xj ≥ 0 and zj = −1 otherwise (j = 1, . . . , n). Since Azz is a
P–matrix, according to the Fiedler–Pták theorem there exists an i ∈ {1, . . . , n} such
that xi(Azzx)i > 0. Then we have

xi(Ax)i =
∑

j

(Ac)ijxixj +
∑

j

(A− Ac)ijxixj ≥
∑

j

(Ac)ijxixj −
∑

j

∆ij|xi||xj|

=
∑

j

((Ac)ij −∆ijzizj)xixj = xi(Azzx)i > 0,

hence A is a P–matrix by the Fiedler–Pták theorem. This proves that AI is a P–
matrix.
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4.2 P–property and positive definiteness

As quoted above, a symmetric matrix A is a P–matrix if and only if it is positive
definite. The following result [43], although it sounds verbally alike, is not a triv-
ial consequence of the previous statement since here nonsymmetric matrices may be
involved.

Proposition 24 A symmetric interval matrix AI is a P–matrix if and only if it is
positive definite.

Proof. All the matrices Azz, z ∈ Z defined by (29) are symmetric for a symmetric
interval matrix AI . Hence, AI is a P–matrix if and only if each Azz, z ∈ Z is a P–
matrix, which is the case if and only if each Azz, z ∈ Z is positive definite, and this is
equivalent to positive definiteness of AI (Theorem 21).

4.3 Checking P–property is NP–hard

In the introduction to this section we explained that checking a symmetric matrix for
P–property can be performed in polynomial time. Unless P 6=NP, this is not more true
for symmetric interval matrices (Rohn and Rex [43]):

Theorem 25 The following problem is NP–hard:
Instance. A nonnegative symmetric rational P–matrix A.
Question. Is [A− E, A + E] a P–matrix?

Proof. Since A is symmetric positive definite, [A−E,A + E] is a P–matrix if and
only if it is positive definite (Proposition 24). Checking positive definiteness of this
class of interval matrices was proved to be NP–hard in Theorem 20.

5 Stability

A square matrix A is called stable (sometimes, Hurwitz stable) if Re λ < 0 for each
eigenvalue λ of A. For symmetric matrices, this is equivalent to λmax(A) < 0. An
interval matrix AI is called stable if each A ∈ AI is stable.

Stability of interval matrices has been extensively studied in control theory due to
its close connection to the problem of stability of the solution of a linear time invariant
system ẋ(t) = Ax(t) under data perturbations. Due to this fact, a number of sufficient
stability conditions exist. We shall not make an attempt to survey them here, referring
an interested reader to the survey paper by Mansour [26]. We shall focus our attention
on the problem of stability of symmetric interval matrices since they admit a finite
characterization (Theorem 27) and are a sufficient tool for proving NP–hardness of
checking stability (Theorem 29) and Schur stability (Theorem 31).
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5.1 Necessary and/or sufficient conditions

The following proposition [39] establishes a link to our previous results.

Proposition 26 A symmetric interval matrix

AI = [A, A]

is stable if and only if the symmetric interval matrix

−AI := [−A,−A]

is positive definite.

Proof. First notice that A ∈ AI if and only if −A ∈ −AI . Let AI be stable, and
consider a symmetric matrix A ∈ −AI . Then −A ∈ AI is symmetric and stable,
hence λmax(−A) = −λmin(A) < 0, so that λmin(A) > 0, which means that A is positive
definite. Hence each symmetric A ∈ −AI is positive definite, which in view of Theorem
21 implies that −AI is positive definite.

Conversely, let −AI be positive definite. Then a similar argument shows that each
symmetric matrix in AI is stable, and from Bendixson’s theorem (see Stoer and Bu-
lirsch [49]) we have that each eigenvalue λ of each A ∈ AI satisfies

Re λ ≤ λmax(
1
2

(A + AT )) < 0

(since 1
2(A + AT ) ∈ AI), hence AI is stable.

Consider now the matrices Ayz defined by (19) with y = −z, i.e. the matrices
satisfying

(A−z,z)ij =

{
Aij if zizj = 1,
Aij if zizj = −1

(i, j = 1, . . . , n). Each A−z,z is symmetric for a symmetric AI .

Theorem 27 A symmetric AI is stable if and only if each A−z,z, z ∈ Z is stable.

Proof. AI is stable if and only if −AI is positive definite which in view of Theorem
21 is the case if and only if each −A−z,z, z ∈ Z is positive definite, and this is equiva-
lent to stability of all A−z,z, z ∈ Z.

Each matrix A−z,z, z ∈ Z is a so–called vertex matrix, i.e., it satisfies (A−z,z)ij ∈
{Aij, Aij} for each i, j. The first attempt to use vertex matrices for characterization
of stability was made by Bia las [6] who showed that a general interval matrix AI is
stable if and only if all the vertex matrices are stable. His result, however, was shown
to be erroneous by Karl, Greschak and Verghese [23] and by Barmish and Hollot [2],
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see also Barmish, Fu and Saleh [1]. Soh proved later [48] that a symmetric interval
matrix is stable if and only if all the 2n(n+1)/2 symmetric vertex matrices are stable.
Theorem 27, where the number of vertex matrices to be tested is reduced to 2n−1

(since A−z,z = Az,−z), was proved in another form by Hertz [19] and Wang and Michel
[50], in the present form in [39]. A branch–and–bound algorithm for checking stability
of symmetric interval matrices, based on Theorem 27, was given in [41].

For practical purposes we may use the following sufficient condition valid for the
nonsymmetric case [39], [11]:

Theorem 28 An interval matrix [Ac −∆, Ac + ∆] is stable if

λmax(A′
c) + %(∆′) < 0 (30)

holds, where A′
c = 1

2(Ac + AT
c ) and ∆′ = 1

2(∆ + ∆T ).

Proof. If (30) holds, then %(∆′) < λmin(−A′
c), hence [−A′

c−∆′,−A′
c+∆′] is positive

definite by Theorem 22 and [A′
c−∆′, A′

c + ∆′] is stable by Proposition 26. Stability of
[Ac −∆, Ac + ∆] then follows by using Bendixson’s theorem as in the proof of Propo-
sition 26.

5.2 Checking stability is NP–hard

NP–hardness of checking stability now follows obviously [40]:

Theorem 29 The following problem is NP–hard:
Instance. A nonpositive symmetric stable rational matrix A.
Question. Is [A− E, A + E] stable?

Proof. By Proposition 26, [A−E, A + E] is stable if and only if [−A−E,−A + E]
is positive definite, where −A is a nonnegative symmetric positive definite rational
matrix. Hence the result follows from Theorem 20.

Nemirovskii [28] proved NP–hardness of checking stability for general (nonsymmetric)
interval matrices.

5.3 Schur stability

A square matrix A is called Schur stable if %(A) < 1 (where % denotes the spectral
radius). In order to avoid difficulties caused by complex eigenvalues, we define Schur
stability only for symmetric interval matrices in this way: a symmetric AI is said to
be Schur stable if each symmetric A ∈ AI is Schur stable. Hence, we do not take into
account the nonsymmetric matrices contained in AI . This definition is in accordance
with the approach employed in [48] and [19]. Then we have this equivalence:
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Proposition 30 A symmetric interval matrix [A, A] is stable if and only if the
symmetric interval matrix

[I + αA, I + αA]

is Schur stable, where

α =
2

‖A‖1 + ‖A− A‖1 + 2
. (31)

Proof. Let [A,A] be stable. Then for each symmetric A′ ∈ [I + αA, I + αA] we
have A′ = I +αA for some symmetric A ∈ [A,A], hence λmax(A′) = 1+αλmax(A) < 1.
Furthermore, from

|λmin(A)| ≤ %(A) ≤ ‖A‖1 ≤ ‖A‖1 + ‖A− A‖1 <
2
α

we have
λmin(A′) = 1 + αλmin(A) > −1,

hence A′ is Schur stable and thereby [I + αA, I + αA] is Schur stable.
Conversely, if [I + αA, I + αA] is Schur stable, then each symmetric A ∈ [A, A]

is of the form A = 1
α

(A′ − I) for some symmetric A′ ∈ [I + αA, I + αA], hence
λmax(A) = 1

α
(λmax(A′) − 1) < 0, and A is stable. Stability of all symmetric matrices

in [A,A] implies stability of [A,A] due to Theorem 27.

5.4 Checking Schur stability is NP–hard

As a consequence of Proposition 30 we obtain this NP–hardness result [40].

Theorem 31 The following problem is NP–hard:
Instance. A symmetric Schur stable rational matrix A with A ≤ I, and a rational

number α ∈ [0, 1].
Question. Is [A− αE, A + αE] Schur stable?

Proof. For a nonpositive symmetric stable rational matrix A, the symmetric inter-
val matrix [A−E, A+E] is stable if and only if [(I +αA)−αE, (I +αA)+αE] is Schur
stable, where α is given by (31). Here I + αA is a symmetric Schur stable rational
matrix with I + αA ≤ I, and α ∈ [0, 1]. Hence we have a polynomial–time reduction
of the NP–hard problem of Theorem 29 to the current problem, which shows that it
is NP–hard as well.

This result differs from those of previous sections where NP–hardness was established
for the class of interval matrices of the form [A−E, A+E]. This is explained by the fact
that regularity, positive definiteness and stability are invariant under multiplication
by a positive parameter whereas Schur stability is not.
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5.5 Radius of stability

Similarly to the radius of nonsingularity d(A, ∆) introduced in subsection 2.3, we may
define radius of stability by

s(A, ∆) = inf{ε ≥ 0; [A− ε∆, A + ε∆] is unstable}.

Hence, [A− ε∆, A + ε∆] is stable if 0 ≤ ε < s(A, ∆) and unstable if ε ≥ s(A, ∆).

Proposition 32 Let A be symmetric stable and ∆ symmetric nonnegative. Then
we have

s(A, ∆) = d(A, ∆).

Proof. [A−ε∆, A+ε∆] is stable if and only if [−A−ε∆,−A+ε∆] is positive definite
(Proposition 26) if and only if [−A−ε∆,−A+ε∆] is regular (Theorem 17) if and only
if [A−ε∆, A+ε∆] is regular. Therefore the values of s(A, ∆) and d(A, ∆) are equal.

Hence, we may apply the results of subsection 2.3 to the radius of stability. In
particular, for a symmetric stable matrix A we have

s(A,E) =
1

‖A−1‖∞,1

(Proposition 13) and computing s(A,E) is NP–hard (Theorem 15), even approximately
(Theorem 16).

6 Eigenvalues

Since regularity, positive definiteness and stability can be formulated in terms of eigen-
values, the results of the previous sections may be applied to obtain some results
regarding the eigenvalue problem for interval matrices.

6.1 Checking eigenvalues is NP–hard

Theorem 33 The following problem is NP–hard:
Instance. A nonnegative symmetric positive definite rational matrix A and a

rational number λ.
Question. Is λ an eigenvalue of some symmetric matrix in [A− E, A + E]?

Proof. [A−E, A+E] is singular if and only if 0 is an eigenvalue of some symmetric
matrix in [A−E, A + E] (Proposition 7). Hence the NP–hard problem of Theorem 9
can be reduced in polynomial time to the current problem, which is thereby NP–hard.

It is interesting that rational eigenvectors can be checked in polynomial time, see [38].
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6.2 Computing the maximal eigenvalue is NP–hard

For an interval matrix AI define

λ(AI) = max{Re λ; λ is an eigenvalue of some A ∈ AI}.
If AI is symmetric, then an obvious reasoning based on Bendixson’s theorem as in
section 5 shows that

λ(AI) = max{λmax(A); A symmetric, A ∈ AI}.
We shall show that computing λ(AI) approximately with relative error less than 1 is
NP–hard already for symmetric interval matrices:

Theorem 34 Suppose there exists a polynomial–time algorithm which for each in-
terval matrix of the form AI = [A − E, A + E], A rational nonpositive symmetric
stable, computes a rational number λ̃(AI) satisfying

∣∣∣∣∣
λ̃(AI)− λ(AI)

λ(AI)

∣∣∣∣∣ < 1

if λ(AI) 6= 0 and λ̃(AI) ≥ 0 otherwise. Then P=NP.

Proof. Under the assumptions, λ̃(AI) < 0 if and only if λ(AI) < 0, and this is
equivalent to stability of AI . Hence we have a polynomial–time algorithm for solving
the NP–hard problem of Theorem 29, which implies P=NP.

6.3 Checking enclosures is NP–hard

Before formulating the result, we prove an auxiliary statement concerning the set of
maximal eigenvalues of all symmetric matrices in AI .

Proposition 35 For a symmetric interval matrix AI , the set

λI
max(AI) := {λmax(A); A symmetric, A ∈ AI}

is a compact interval.

Proof. Let

λ(AI) = min{λmax(A); A symmetric, A ∈ AI},
λ(AI) = max{λmax(A); A symmetric, A ∈ AI}.

By continuity argument, both bounds are achieved, hence

λ(AI) = λmax(A1),

λ(AI) = λmax(A2)

26



for some symmetric A1, A2 ∈ AI . Define a real function ϕ of one real variable by

ϕ(t) = f(A1 + t(A2 − A1)), t ∈ [0, 1],

where
f(A) = max

‖x‖2=1
xT Ax.

ϕ is continuous since f(A) is continuous [39], and ϕ(0) = f(A1) = λmax(A1) =
λ(AI), ϕ(1) = f(A2) = λmax(A2) = λ(AI), hence for each λ ∈ [λ(AI), λ(AI)] there
exists a tλ ∈ [0, 1] such that

λ = ϕ(tλ) = f(A1 + tλ(A2 − A1)) = λmax(A1 + tλ(A2 − A1)).

Hence each λ ∈ [λ(AI), λ(AI)] is the maximal eigenvalue of some symmetric matrix in
AI , and we have

λI
max(AI) = [λ(AI), λ(AI)].

In the last result of this section we show that checking enclosures of λI
max(AI) is

NP–hard:

Theorem 36 The following problem is NP–hard:
Instance. A nonpositive symmetric stable rational matrix A, and rational num-

bers a, b, a < b.
Question. Is λI

max([A− E, A + E]) ⊂ (a, b)?

Proof. For each symmetric A′ ∈ [A− E, A + E] we have

|λmax(A′)| ≤ %(A′) ≤ ‖A′‖1 ≤ ‖A‖1 + ‖E‖1 = ‖A‖1 + n < α := ‖A‖1 + n + 1.

Hence due to Theorem 27, [A− E, A + E] is stable if and only if

λI
max([A− E, A + E]) ⊂ (−α, 0)

holds. This shows that the NP–hard problem of checking stability of [A − E, A + E]
(Theorem 29) can be reduced in polynomial time to the current problem, which is thus
NP–hard.

7 Determinants

Determinants of interval matrices have been scarcely studied in the literature so far.
We include here some results that might be of interest.
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7.1 Edge theorem

The following theorem was proved in [35]:

Theorem 37 Let AI = [A, A] be an interval matrix. Then for each A ∈ AI there
exists an A′ ∈ AI of the form

A′
ij ∈

{
{Aij, Aij} if (i, j) 6= (k, m),
[Aij, Aij] if (i, j) = (k, m)

(32)

for some (k, m) such that
det A = det A′.

Proof. For each Ã ∈ AI denote by h(Ã) the number of entries with Ãij /∈ {Aij, Aij},
i, j = 1, . . . , n. Given an A ∈ AI , let A′ be a matrix satisfying A′ ∈ AI , det A′ = det A
and

h(A′) = min{h(Ã); Ã ∈ AI , det Ã = det A}. (33)

If h(A′) ≥ 2, then there exist indices (p, q), (r, s), (p, q) 6= (r, s) such that A′
pq ∈

(Apq, Apq), A′
rs ∈ (Ars, Ars). Then we can move these two entries within their inter-

vals in such a way that at least one achieves its bound, and the determinant is kept
unchanged. Then the resulting matrix A′′ satisfies h(A′′) < h(A′), which is a contra-
diction. Hence A′ defined by (33) satisfies h(A′) ≤ 1, which shows that it is of the
form (32), and det A = det A′ holds.

A matrix of the form (32) belongs to an edge of the interval matrix AI considered
a hyperrectangle in Rn2

. Hence the theorem says that the range of the determinant
over AI is equal to its range over the edges of AI . In particular, for zero values of the
determinant we have this “normal form” theorem [37].

Theorem 38 If AI is singular, then it contains a singular matrix of the form (32).

As a consequence we obtain that real eigenvalues of matrices in AI are achieved at the
edge matrices of AI .

Theorem 39 If a real number λ is an eigenvalue of some A ∈ AI , then it is also
an eigenvalue of some matrix of the form (32).

Proof. If λ is a real eigenvalue of some A ∈ AI = [A,A], then A− λI is a singular
matrix belonging to [A − λI, A − λI], which is thus singular, hence by Theorem 38
it contains a singular matrix A′ − λI, where A′ is of the form (32). Then λ is an
eigenvalue of A′.

A general “edge theorem” for complex eigenvalues was proved by Hollot and Bartlett
in [21].
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7.2 Computing extremal values of determinants is NP–hard

For an interval matrix AI , consider the extremal values of the determinant over AI

given by

det(AI) = max{det A; A ∈ AI},
det(AI) = min{det A; A ∈ AI}.

Since the determinant is linear in each entry, Theorem 37 implies that the extremal
values are achieved at some of the 2n2

vertex matrices, i.e. matrices of the form

Aij ∈ {Aij, Aij}, i, j = 1, . . . , n.

We have this result:

Theorem 40 Computing det(AI), det(AI) is NP–hard for the class of interval ma-
trices of the form AI = [A− E,A + E], A rational nonnegative.

Proof. For an interval matrix of the form AI = [A − E, A + E], where A is a
nonnegative symmetric positive definite rational matrix, singularity of AI is equivalent
to

det(AI
0) ≥ 0, (34)

where AI
0 = AI if det A ≤ 0 and AI

0 is constructed by swapping the first two rows of AI

otherwise (which changes the sign of the determinant). Here AI
0 = [A0 − E,A0 + E],

where A0 is a nonnegative rational matrix. Hence the NP–hard problem of checking
regularity (Theorem 9) can be reduced in polynomial time to the decision problem (34)
which shows that computing det(AI) is NP–hard in this class of interval matrices. The
proof for det(AI) is analogous.

8 Nonnegative invertibility and M–matrices

So far we have shown a number of properties of interval matrices that are NP–hard
to check. Finally we present two useful properties whose checking may be done in
polynomial time.

8.1 Nonnegative invertibility

An interval matrix is said to be nonnegative invertible if A−1 ≥ 0 for each A ∈ AI .
The following result is due to Kuttler [25]; we use here the elementary proof from [36].

Theorem 41 An interval matrix AI = [A,A] is nonnegative invertible if and only
if A−1 ≥ 0 and A

−1 ≥ 0.
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Proof. The “only if” part is obvious. To prove the “if” part, denote D0 = A
−1

(A−
A), then D0 ≥ 0 and

(I −D0)−1 = (A
−1

A)−1 = A−1A = I + A−1(A− A) ≥ 0,

hence %(D0) < 1. Then for each A ∈ AI we have %(A
−1

(A − A)) ≤ %(D0) < 1, and
from the identity

A = A(I − A
−1

(A− A))

we obtain

A−1 =
∞∑

j=0

(A
−1

(A− A))jA
−1 ≥ 0.

Hence, checking nonnegative invertibility of an interval matrix AI with rational bounds
can be performed in polynomial time [14].

8.2 M–matrices

An interval matrix AI is called an M–matrix if each A ∈ AI is an M–matrix (i.e.,
Aij ≤ 0 for i 6= j and A−1 ≥ 0). As a consequence of Kuttler’s theorem we have this
characterization:

Theorem 42 An interval matrix AI = [A,A] is an M–matrix if and only if A and
A are M–matrices.

Proof. The “only if” part is obvious. Conversely, if both A and A are M–matrices,
then A−1 ≥ 0 and A

−1 ≥ 0, hence each A ∈ AI satisfies A−1 ≥ 0 (Theorem 41) and
Aij ≤ Aij ≤ 0 for i 6= j, i.e. A is an M–matrix.

9 Appendix: Regularity and P–property

In section 4 we mentioned Coxson’s NP–hardness result for checking P–property of real
(noninterval) matrices. We add the result here as an appendix since it is of independent
interest and is based on a nice equivalence of regularity of interval matrices with P–
property of associated real matrices, which is also due to Coxson [9].

9.1 Regularity and P–property I

Consider an n × n interval matrix AI = [A,A] which we shall write in the form
AI = [A,A + 2∆], where ∆ = 1

2(A− A) as before. Assuming nonsingularity of A, for
each i, j ∈ {1, . . . , n} define the vector

cij = 2(∆i1A
−1
1j , ∆i2A

−1
2j , . . . , ∆inA

−1
nj )T
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(where we write A−1
kj for (A−1)kj), and the matrix

Cij = cije
T ,

where e is the n–vector of all ones. Hence, Cij is an n × n matrix whose all columns
are identical and equal to the vector cij. Finally, define the real matrix

C(AI) =




I 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 0 . . . I




+




C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn




whose all blocks are n× n matrices, hence C(AI) is of size n2× n2. For each y, z ∈ Z,
let us define the yz–minor of C(AI) as the determinant of the principal submatrix of
C(AI) consisting of rows and columns with indices (i − 1)n + j, where yizj = −1.
The equivalence (i)⇔(ii) of the following theorem is due to Coxson [9], equivalence
(i)⇔(iii) is added here as a consequence of the Baumann theorem 11 to show that the
number of determinants to be checked for positivity can be decreased from 2n2 − 1 to
22n−1 − 1. The specific feature of this result consists in the fact that regularity of an
n × n interval matrix AI is characterized in terms of an n2 × n2 real matrix C(AI).
Nevertheless, the number of operations involved still remains exponential in n.

Theorem 43 For an interval matrix AI , the following conditions are equivalent:

(i) AI is regular,

(ii) A is nonsingular and C(AI) is a P–matrix,

(iii) A is nonsingular and each yz–minor of C(AI) is positive, y, z ∈ Z.

Proof. (i)⇔(ii): Put

F =




e3T 0T . . . 0T

0T eT . . . 0T

...
...

. . .
...

0T 0T . . . eT




,

where all the blocks are n–dimensional vectors, hence F is of size n× n2, and

G =




∆11e1 ∆12e2 . . . ∆1nen

∆21e1 ∆22e2 . . . ∆2nen
...

...
. . .

...
∆n1e1 ∆n2e2 . . . ∆nnen




,

where ej denotes the jth column of the n× n unit matrix I, hence G is of size n2× n.
Consider any vertex matrix A of AI , i.e. a matrix satisfying

Aij ∈ {Aij, Aij}, i, j = 1, . . . , n.
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A straightforward computation shows that A can be written in the form

A = A + 2FDG,

where D is the n2 × n2 diagonal matrix satisfying

D(i−1)n+j,(i−1)n+j =

{
1 if Aij = Aij,
0 if Aij = Aij

(i, j = 1, . . . , n). Then we have

det A = (det A)(det(I + 2A−1FDG)). (35)

Since
det(I + 2A−1FDG) = det(In2 + 2DGA−1F ) (36)

(see Gantmacher [16]; In2 is the n2 × n2 unit matrix), and since

2GA−1F = C(AI)− In2 (37)

(as it can be easily verified), from (35)–(37) we obtain

det A = (det A)(det(In2 + D(C(AI)− In2))), (38)

where
det(In2 + D(C(AI)− In2)) (39)

is obviously the determinant of the principal submatrix formed from rows and columns
of C(AI) with indices (i− 1)n + j for which Aij = Aij.

Now, if AI is regular, then each principal minor of C(AI) can be written in the
form (39) for an appropriately chosen vertex matrix A. Since (det A)(det A) > 0 due
to regularity, (38) implies that (39) is positive. Conversely, if each principal minor of
C(AI) is positive, then (det A)(det A) > 0 for each vertex matrix A of AI due to (38),
which implies that AI is regular (Theorem 11). Hence (i) and (ii) are equivalent.

To prove (i)⇔(iii), notice that each matrix Ayz ∈ AI , y, z ∈ Z defined by (18)
satisfies

(Ayz)ij = Aij + (1− yizj)∆ij, i, j = 1, . . . , n,

hence it can be written as
Ayz = A + FDyzG,

where F and G are as above and Dyz is the n2 × n2 diagonal matrix satisfying

(Dyz)(i−1)n+j,(i−1)n+j = 1− yizj, i, j = 1, . . . , n.

Then we obtain as before that

det Ayz = (det A)(det(In2 +
1
2
Dyz(C(AI)− In2))),
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where

det(In2 +
1
2
Dyz(C(AI)− In2))

is exactly the yz–minor of C(AI) defined earlier in this section. Hence an obvious
reasoning based on Baumann’s theorem 11 leads to the conclusion that AI is regular
if and only if all the yz–minors of C(AI) are positive, y, z ∈ Z.

9.2 Checking P–property is NP–hard for real matrices

Coxson’s result [9] is obtained as an immediate consequence of the previous charac-
terization.

Theorem 44 Checking P–property of real matrices is NP–hard.

Proof. According to the equivalence (i)⇔(ii) of Theorem 43, the problem of check-
ing regularity of an interval matrix AI with rational bounds can be reduced in poly-
nomial time to the problem of checking P–property of a rational matrix C(AI). Since
the former problem is NP–hard (Theorem 9), the same is true for the latter one as
well.

9.3 Regularity and P–property II

It should be noted that there also exists another relationship between regularity and
the P–property, which proved to be a very useful tool for deriving some nontrivial
properties of inverse interval matrices and of systems of linear interval equations. The
following theorem was published in a report form [34] in 1984 and in a journal form
[37] in 1989.

Theorem 45 If AI is regular, then A−1
1 A2 is a P–matrix for each A1, A2 ∈ AI .

Proof. Assume to the contrary that A−1
1 A2 is not a P–matrix for some A1, A2 ∈

AI = [Ac −∆, Ac + ∆]. Then according to the Fiedler–Pták theorem [15] (quoted at
the beginning of section 4) there exists an x 6= 0 such that xi(A

−1
1 A2x)i ≤ 0 for each

i. Put x′ = A−1
1 A2x, then

xix
′
i ≤ 0 (i = 1, . . . , n) (40)

and
x 6= x′ (41)

holds. In fact, since x 6= 0, there exists a j with xj 6= 0; then x2
j > 0 whereas (40)

implies xjx
′
j ≤ 0, hence xj 6= x′j. Now we have

|Ac(x
′ − x)| = |(Ac − A1)x′ + (A2 − Ac)x| ≤ ∆|x′|+ ∆|x| = ∆|x′ − x| (42)
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since |x′| + |x| = |x′ − x| due to (40). Hence Proposition 10 in the light of (42) and
(41) implies that AI is singular, which is a contradiction.

For applications of this result, see [37].
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