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ABSTRACT

It is proved that some classical bounds on solutions of perturbed systems of
linear equations may yield arbitrarily large overestimations for arbitrarily narrow
perturbations. The proofs are constructive.

1. INTRODUCTION

For a system of linear equations

Ax = b (1)

with an n×n nonsingular matrix A, consider a family of perturbed systems

A′x′ = b′ (2)

with data satisfying
|A′ −A| ≤ ∆ (3)
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and
|b′ − b| ≤ δ, (4)

where ∆ ≥ 0 and δ ≥ 0 are n × n perturbation matrix and perturbation
n-vector, respectively. Here, the absolute value of a matrix A = (aij) is
defined by |A| = (|aij |) and the inequalities are understood component-
wise; the same notation applies to vectors as well. The classical numerical
argument using Neumann series shows that if the condition

%(|A−1|∆) < 1 (5)

is met (where % stands for the spectral radius), then each A′ satisfying
(3) is nonsingular and the solution of each system (2) with data (3), (4)
satisfies

|x′ − x| ≤ d, (6)

where d is an n-vector defined by

d = (I − |A−1|∆)−1|A−1|(∆|x|+ δ) (7)

and I is the unit matrix (see Skeel [5] or Rump [4]). To keep the paper
self-contained, we give here another simple proof of this result: for the
solutions x, x′ of (1), (2) under (3), (4) we have

|x′ − x| = |A−1A(x′ − x)|
≤ |A−1| · |(A−A′)(x′ − x) + (A−A′)x + b′ − b|
≤ |A−1|(∆|x′ − x|+ ∆|x|+ δ).

Here, as before, the inequalities hold componentwise. Hence

(I − |A−1|∆)|x′ − x| ≤ |A−1|(∆|x|+ δ),

and premultiplying this inequality by (I−|A−1|∆)−1, which is nonnegative
in view of (5), we obtain (6), where d is given by (7).

The quality of the estimation (6) has been paid little attention in the
literature. Obviously, the bound d is exact if ∆ = 0. In fact, in this case,
for each i ∈ {1, . . . , n}, if we take b′j = bj +δj if (A−1)ij ≥ 0 and b′j = bj−δj

otherwise, then b′ satisfies (4) and for the solution x′ of Ax′ = b′ we have

|x′i − xi| =
∑

j

|A−1|ijδj = di,

hence the bound is achieved. However, this argument fails in the case
∆ 6= 0. In this paper we show that for each n ≥ 4 and for arbitrary positive
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real numbers ε, ζ and α we may construct n × n matrices A, ∆ ≥ 0 and
n-vectors b, δ ≥ 0 such that

‖∆‖1,∞ := max
i,j

|∆ij | = ε,

‖δ‖∞ := max
i
|δi| = ζ

hold and the solution x′ of each system (2) with data (3), (4) satisfies

|x′1 − x1|+ α ≤ d1,

where d is given by (7) (section 2, Theorem 1). Hence, the formula (6) may
yield an arbitrarily large overestimation α for arbitrarily narrow perturba-
tions ε, ζ.

In numerical linear algebra, normwise estimations are preferred to the
componentwise ones. For each absolute norm ‖ · ‖ (i.e., satisfying ‖|x|‖ =
‖x‖ for each x; such a norm has the property |x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖,
see Higham [2]), the componentwise estimation (6) yields the normwise
estimation

‖x′ − x‖ ≤ ‖d‖. (8)

In Theorem 2 of section 3 we prove an analogous result for normwise over-
estimations: for each n ≥ 4 and arbitrary positive real numbers ε, ζ and α
satisfying an additional assumption

1
2
ζ ≤ α

we may construct n×n matrices A, ∆ and n-vectors b, δ satisfying ‖∆‖1,∞ =
ε, ‖δ‖∞ = ζ (in fact, the same data as in the proof of Theorem 1) such
that

‖x′ − x‖1 + α ≤ ‖d‖1,

‖x′ − x‖∞ + α ≤ ‖d‖∞
and

‖x′ − x‖2
2 + α2 ≤ ‖d‖2

2

hold for the solution x′ of each system (2) with data satisfying (3), (4)
(where, as usual, ‖x‖1 =

∑
i |xi|, ‖x‖∞ = maxi |xi| and ‖x‖2 =

√
xT x).

Hence again, an arbitrarily large normwise overestimation may occur for
arbitrarily narrow perturbations.

These results show that formulae (6), (8) should be used with some
care.
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2. COMPONENTWISE OVERESTIMATIONS

For an integer n ≥ 2, denote by I the (n− 1)× (n− 1) unit matrix and
let

E = eeT ,

where e = (1, . . . , 1)T ∈ Rn−1; hence, E is the (n− 1)× (n− 1) matrix of
all ones. For given positive real numbers ε, ζ and α, define n× n matrices
A, ∆ and n-vectors b, δ by

A =

(
εζ
α 0T

0 1
n (I + E)

)
, (9)

∆ =

(
0 εeT

0 0

)
, (10)

b =

(
0
0

)
, (11)

δ =

(
0
ζe

)
. (12)

This definition implies that A, ∆, b and δ are all nonnegative and that

‖∆‖1,∞ = ε, (13)

‖δ‖∞ = ζ (14)

hold. Moreover, we have
%(|A−1|∆) = 0. (15)

In fact, from E2 = (n− 1)E it follows

1
n

(I + E)(nI − E) = I,

hence (
1
n

(I + E)

)−1

= nI − E, (16)

which implies

A−1 =

( α
εζ 0T

0 nI − E

)
,

|A−1| =

( α
εζ 0T

0 (n− 2)I + E

)
(17)
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and

|A−1|∆ =

(
0 α

ζ eT

0 0

)
, (18)

hence (15) holds. The following theorem is our main result for componen-
twise overestimations:

Theorem 1. Let n ≥ 4, let ε, ζ and α be arbitrary positive real num-
bers and let A, ∆, b, δ be given by (9)–(12). Then (13)–(15) hold and for
the solution x′ of each system (2) with data satisfying (3), (4) we have

|x′1 − x1|+ α ≤ d1, (19)

where x is the solution of (1) and d is given by (7).

Proof. Let |A′ − A| ≤ ∆, |b′ − b| ≤ δ. Then the system A′x′ = b′ can
be equivalently written in the form

εζ

α
x′1 + aT x̃ = 0, (20)

− ζe ≤ 1
n

(I + E)x̃ ≤ ζe, (21)

where x̃ = (x′2, . . . , x
′
n)T ∈ Rn−1 and aT = (A′12, . . . , A

′
1n) satisfies |a| ≤ εe.

Hence for the quantity

x1 := max{|x′1|; x′ solves (2) under (3), (4)}

we have from (20), (21) that

x1 =
α

εζ
max{εeT |x̃|; −ζe ≤ 1

n
(I + E)x̃ ≤ ζe}.

Put

x̂ =
1
ζn

(I + E)x̃,

then we have x̃ = ζ(nI − E)x̂ due to (16), hence

x1 = α max{‖(nI − E)x̂‖1; −e ≤ x̂ ≤ e}. (22)

In view of convexity of the norm the maximum in (22) is achieved at some
of the vertices of the hyperrectangle {x̂; −e ≤ x̂ ≤ e}, which are exactly
the points satisfying |x̂| = e (i.e., the ±1-vectors). Hence (22) implies

x1 = α max{‖(nI − E)x̂‖1; |x̂| = e}. (23)
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Now, since each ±1-vector x̂ ∈ Rn−1 satisfies

|eT x̂| ≤ eT e = n− 1,

for each i ∈ {1, . . . , n− 1} we have

x̂i((nI − E)x̂)i = n− x̂i(e
T x̂) ≥ 1 > 0,

hence

‖(nI − E)x̂‖1 =
∑

i

|(nI − E)x̂|i =
∑

i

x̂i((nI − E)x̂)i

= x̂T (nI − E)x̂ = n(n− 1)− (eT x̂)2

and from (23) we get

x1 = αn(n− 1)− α min{(eT x̂)2; |x̂| = e},

hence
x1 = αn(n− 1) (24)

if n is odd and
x1 = α(n(n− 1)− 1) (25)

if n is even, in both cases

x1 ≤ αn(n− 1). (26)

Let us now compute d1. Since

(
1 −α

ζ eT

0 I

)−1

=

(
1 α

ζ eT

0 I

)

and since x = 0 due to b = 0, from (7) using (18), (17) we obtain

d =

(
1 α

ζ eT

0 I

) ( α
εζ 0T

0 (n− 2)I + E

) (
0
ζe

)
(27)

=

(
α(2n− 3)(n− 1)

ζ(2n− 3)e

)
,

hence
d1 = α(2n− 3)(n− 1). (28)
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Since

n(n− 1) + 1 ≤ (2n− 3)(n− 1) (29)

holds for each n ≥ 4 (as it can be easily verified), from (26), (28) and (29)
we finally obtain

x1 + α ≤ d1. (30)

Hence for the solution x′ of each system (2) with data satisfying (3), (4)
we have

|x′1 − x1|+ α = |x′1|+ α ≤ x1 + α ≤ d1,

which is (19) and the proof is complete.

3. NORMWISE OVERESTIMATIONS

In this section we show that the componentwise overestimation result
of Theorem 1 can be given a normwise overestimation form provided any
of the three most frequently used vector norms ‖ ·‖1, ‖ ·‖∞ or ‖ ·‖2 is used.

Theorem 2. Let n ≥ 4, let ε, ζ and α be arbitrary positive real num-
bers satisfying

1
2
ζ ≤ α, (31)

and let A, ∆, b, δ be given by (9)– (12). Then (13)–(15) hold and for the
solution x′ of each system (2) with data satisfying (3), (4) we have

‖x′ − x‖1 + α ≤ ‖d‖1, (32)

‖x′ − x‖∞ + α ≤ ‖d‖∞ (33)

and

‖x′ − x‖2
2 + α2 ≤ ‖d‖2

2, (34)

where x is the solution of (1) and d is given by (7).
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Proof. Define x = (xj) by

xj := max{|x′j |; x′ solves (2) under (3), (4)}

(j = 1, . . . , n). Formulae for x1 were given in (24), (25). For j ≥ 2 we
obtain from (21)

xj = max{x̃j ; −ζe ≤ 1
n

(I + E)x̃ ≤ ζe} (35)

= max{((nI − E)x̂)j ; −ζe ≤ x̂ ≤ ζe} = (2n− 3)ζ.

Since
2n− 3

n2 − n− 1
≤ 1

2

holds for n ≥ 4, we have

xj = (2n− 3)ζ ≤ 1
2

(n2 − n− 1)ζ ≤ α(n2 − n− 1) ≤ x1

for each j ≥ 2 due to (31) and (24), (25), which gives

x1 = max
j

xj . (36)

Next, (27) and (31) imply

dj = (2n− 3)ζ ≤ (2n− 3)2α ≤ (2n− 3)(n− 1)α = d1

for j ≥ 2, hence also
d1 = max

j
dj . (37)

Taking into account the inequality

x1 + α ≤ d1 (38)

established in the previous proof (eq. (30)) and the fact that

xj = dj (39)

holds for j ≥ 2 ((35), (27)), from (36)–(39) we obtain that

‖x‖p + α ≤ ‖d‖p
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is valid for p = 1 or p = ∞. Hence for the solution x′ of each system (2)
with data satisfying (3), (4) we have

‖x′ − x‖p + α = ‖x′‖p + α ≤ ‖x‖p + α ≤ ‖d‖p

for p ∈ {1,∞}, which proves (32) and (33). Next, (38) and (39) imply

‖x‖2
2 + α2 ≤ ‖d‖2

2

and again

‖x′ − x‖2
2 + α2 = ‖x′‖2

2 + α2 ≤ ‖x‖2
2 + α2 ≤ ‖d‖2

2,

which is (34).

4. CONCLUDING REMARKS

We have proved that the classical formulae (6), (8) may yield arbitrarily
large overestimations for arbitrarily narrow perturbations. This, of course,
is a worst-case result relying heavily on the special form of the data (9)–
(12). In particular, perturbations affect zero coefficients only, a situation
which is very unlikely to happen in practical applications. Nevertheless,
the results show that the formulae (6), (8) should be used with some care.
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