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Abstract. Interval Gaussian algorithm is a popular method for enclosing solutions
of linear interval equations. In this note we show that both versions of the method
(with or without preconditioning) may yield large overestimations for arbitrarily
small data widths even in case n = 4.

1. Introduction

As is well known, interval Gaussian algorithm for enclosing solutions
of a system of linear interval equations

AIx = bI (1)

(AI square) consists in solving the system (1) by Gaussian algorithm
performed in interval arithmetic (i.e., with real arithmetic operations
being replaced by interval ones; see Alefeld and Herzberger [1] or Neu-
maier [3]). As in the real case, it is recommendable to use a partial
pivoting strategy, i.e., among all interval coefficients eligible for pivot
to choose that one having the greatest absolute value. If both the for-
ward and backward step of the algorithm can be performed, then the
algorithm (called feasible in this case) yields an enclosure of the solu-
tion set of (1). However, the algorithm may break down at some step
if all the interval coefficients eligible for pivot contain zeros; such a sit-
uation may occur even if the interval matrix AI is regular (Reichmann
[4]).

In an attempt to enhance feasibility, Hansen and Smith [2] proposed
to apply interval Gaussian algorithm to the preconditioned system

(A−1
c ¯AI)x = A−1

c ¯ bI , (2)

where Ac is the midpoint matrix of AI and “¯” denotes the usu-
al matrix multiplication carried out in interval arithmetic. The idea
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behind preconditioning is quite simple: since all diagonal coefficients
of A−1

c ¯ AI contain 1 whereas all nondiagonal ones contain 0, this
structure, provided A−1

c ¯ AI is sufficiently narrow, may enforce fea-
sibility of the interval Gaussian algorithm when applied to (2). Even
more, the enclosure computed in this way is often tighter than that
one obtained by direct application of the algorithm to the original sys-
tem (1). Therefore, the preconditioned form of the interval Gaussian
algorithm is usually preferred and has become a popular method for
solving linear interval equations.

However, it turns out that the method, even if feasible, may be far
from being optimal. In this note we show that already in the case n = 4
there exist examples with arbitrarily small data widths, arbitrarily large
absolute overestimations, and with relative overestimations arbitrarily
close to 1

2 in the preconditioned case and arbitrarily close to 2 if precon-
ditioning is not applied. This shows that interval Gaussian algorithm,
in both its forms, may yield quite unsatisfactory results.

2. The example

For ε > 0, α > 0 and β > 1, consider a linear interval system of the
form 



ε2

α [−ε, ε] [−ε, ε] [−ε, ε]
0 β 1 1
0 1 β 1
0 1 1 β







x1

x2

x3

x4


 =




0
[−ε, ε]
[−ε, ε]
[−ε, ε]


 . (3)

It comprises three parameters: ε is the radius of interval coefficients,
whereas α and β will have to do with absolute and relative overestima-
tions, respectively. Preconditioning (3) by the midpoint inverse

A−1
c =

1
(β − 1)(β + 2)




(β−1)(β+2)α
ε2 0 0 0
0 β + 1 −1 −1
0 −1 β + 1 −1
0 −1 −1 β + 1




yields the system




1 [−α
ε , α

ε ] [−α
ε , α

ε ] [−α
ε , α

ε ]
0 1 0 0
0 0 1 0
0 0 0 1







x1

x2

x3

x4


 =

(β + 3)ε
(β − 1)(β + 2)




0
[−1, 1]
[−1, 1]
[−1, 1]




(4)
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in the form (2). The interval matrix AI of (3), if written as AI =
[Ac −∆, Ac + ∆], satisfies

|A−1
c |∆ =

α

ε




0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


 ,

hence
%(|A−1

c |∆) = 0

(where for A = (aij) the absolute value is defined by |A| = (|aij |), and
%(A) denotes the spectral radius of A), so that AI is strongly regular
[3], with lowest possible value of spectral radius. Yet it turns out that
neither the system (3), nor its preconditioned form (4) is well suited
for solving by the interval Gaussian algorithm.

3. The result

First we derive some explicit formulae.

THEOREM 1. For each ε > 0, α > 0 and β > 1 the system (3) satis-
fies:

(i) the exact upper bound on x1 is

x1 =
(3β + 5)α

(β − 1)(β + 2)
, (5)

(ii) the upper bound on x1 computed by preconditioned interval Gaus-
sian algorithm (with or without partial pivoting) is

x1 =
(3β + 9)α

(β − 1)(β + 2)
(6)

(and is equal to the exact upper bound on x1 for the preconditioned
system (4)),

(iii) the upper bound on x1 computed by interval Gaussian algorithm
without preconditioning (with or without partial pivoting) is

x1 =
(3β2 + 3β + 2)α

β2(β − 1)
. (7)
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Proof. (i) Denote

A =




β 1 1
1 β 1
1 1 β


 ,

then A is nonsingular for β > 1 and satisfies

A−1 =
1

(β − 1)(β + 2)




β + 1 −1 −1
−1 β + 1 −1
−1 −1 β + 1


 . (8)

From the form of (3) it can be easily seen that for the exact bound on
x1 we have (with e = (1, 1, 1)T and ‖x‖1 = eT |x| =

∑
i |xi|)

x1 =
α

ε2 max{εeT |x|; −εe ≤ Ax ≤ εe}
= α max{‖A−1x′‖1; −e ≤ x′ ≤ e},

which in view of convexity of the norm implies

x1 = α max{‖A−1x′‖1; |x′| = e}. (9)

Since A−1 is diagonally dominant for β > 1, for each x′ satisfying
|x′| = e (i.e., a ±1-vector) there holds (A−1x′)i > 0 if x′i = 1 and
(A−1x′)i < 0 if x′i = −1, hence

‖A−1x′‖1 =
∑

i

|A−1x′|i =
∑

i

x′i(A
−1x′)i = (x′)T A−1x′

=
3(β + 2)− (eT x′)2

(β − 1)(β + 2)
≤ 3β + 5

(β − 1)(β + 2)
(10)

since (eT x′)2 ≥ 1 (x′ is a ±1-vector), and (eT x′)2 = 1 e.g. for x′ =
(1, 1,−1)T , hence the bound is achieved and (9), (10) imply (5).

(ii) Interval Gaussian algorithm applied to the preconditioned sys-
tem (4) (which consists of the backward step only) gives the upper
bound (6), which is also the exact upper bound on x1 for (4) since it
is achieved at the system




1 −α
ε −α

ε −α
ε

0 1 0 0
0 0 1 0
0 0 0 1







x1

x2

x3

x4


 =

(β + 3)ε
(β − 1)(β + 2)




0
1
1
1


 .

(iii) The forward step of the interval Gaussian algorithm without
preconditioning (which is the same with or without partial pivoting

paper.tex; 23/06/1997; 9:16; no v.; p.4



INTERVAL GAUSSIAN ALGORITHM 5

due to β > 1) results in the system



ε2

α [−ε, ε] [−ε, ε] [−ε, ε]
0 β 1 1

0 0 β2−1
β

β−1
β

0 0 0 (β−1)(β+2)
β+1







x1

x2

x3

x4


 =




0
[−ε, ε]

[− (β+1)ε
β , (β+1)ε

β ]

[− (β+2)ε
β , (β+2)ε

β ]




,

and the backward step gives (7). 2

Notice that the values of x1, x1, x1 do not depend on ε. As a result,
we obtain:

THEOREM 2. For arbitrary data width ε > 0, for the system (3) we
have:

(i) for each r ∈ (0, 1
2) and K > 0 there exist α > 0 and β > 1 such

that
x1 − x1

x1
> r (11)

and
x1 − x1 > K, (12)

(ii) for each r ∈ (0, 2) and K > 0 there exist α > 0 and β > 1 such
that

x1 − x1

x1
> r

and
x1 − x1 > K.

Proof. (i) According to (5) and (6),

lim
β→1+

x1 − x1

x1
= lim

β→1+

4
3β + 5

=
1
2
,

hence for each r ∈ (0, 1
2) there exists a β > 1 such that (11) holds, and

a choice of

α >
1
4

(β − 1)(β + 2)K

assures (12) to hold.
The proof of (ii) is quite analogous since

lim
β→1+

x1 − x1

x1
= lim

β→1+

4β2 + 8β + 4
3β3 + 5β2 = 2

and the derivative of the rational function is negative at β = 1. 2
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4. Concluding remarks

We have shown that overestimations (11) and (12) may occur for sys-
tems of the form (3). But since x1 is the exact upper bound on the
solution of the preconditioned system (4) (Theorem 1, (ii)), the result
of Theorem 2, (i) also holds true for any method based on solving a
preconditioned linear interval system (2), as e.g. Rump’s method in
[5]. Hence, preconditioning may yield quite unsatisfactory results for
systems with arbitrarily small data widths even in case n = 4. It is not
known to the author whether a similar result may be proved for lower
dimensions.
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