Institute of Computer Science Academy of Sciences of the Czech Republic

An Algorithm for Solving the Absolute Value Equation: An Improvement

Jiríl Rohn

Technical report No. V-1063
20.01.2010

Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Solving the Absolute Value Equation:
 An Improvement

Jirí Rohn ${ }^{1}$

Technical report No. V-1063
20.01.2010

Abstract:
Presented is an algorithm which for each $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ in a finite number of steps either finds a solution of the equation $A x+B|x|=b$, or finds a singular matrix S satisfying $|S-A| \leq|B|$.

Keywords:
Absolute value equation, algorithm, singularity.

[^0]
1 Introduction

In our earlier paper [1] we presented an algorithm (Fig. 3.1 below) which for each $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ in a finite number of steps either finds a solution of the absolute value equation

$$
\begin{equation*}
A x+B|x|=b, \tag{1.1}
\end{equation*}
$$

or states existence of a singular matrix S satisfying

$$
\begin{equation*}
|S-A| \leq|B| \tag{1.2}
\end{equation*}
$$

and, in most cases, also finds such an S. The cases when existence of a matrix S satisfying (1.2) is stated, but S itself is not found, are extremely rare, but they still exist. Among 100,000 randomly generated 5×5 examples, the author has found only one example of such type, namely the one given in Section 5. In this paper we present an improvement of the previous algorithm (Fig. 4.1) which eliminates occurrences of the above-described situations. The improved algorithm for each data $A, B \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n}$ in a finite number of steps either finds an x satisfying (1.1), or finds a singular matrix S satisfying (1.2). As we shall see, an essential redesigning of a part of the algorithm was necessary to achieve this purpose.

We use the following notations. $A_{k \bullet}$ and $A_{\bullet k}$ denote the k th row and the k th column of a matrix A, respectively. Matrix inequalities, as $A \leq B$ or $A<B$, are understood componentwise. The absolute value of a matrix $A=\left(a_{i j}\right)$ is defined by $|A|=\left(\left|a_{i j}\right|\right)$. The same notations also apply to vectors that are considered one-column matrices. I is the unit matrix, e_{k} is the k th column of I, and $e=(1, \ldots, 1)^{T}$ is the vector of all ones. $Y_{n}=\{y| | y \mid=e\}$ is the set of all ± 1-vectors in \mathbb{R}^{n}, so that its cardinality is 2^{n}. For each $x \in \mathbb{R}^{n}$ we define its sign vector $\operatorname{sgn}(x)$ by

$$
(\operatorname{sgn}(x))_{i}=\left\{\begin{array}{rl}
1 & \text { if } x_{i} \geq 0, \\
-1 & \text { if } x_{i}<0
\end{array} \quad(i=1, \ldots, n),\right.
$$

so that $\operatorname{sgn}(x) \in Y_{n}$. For each $y \in \mathbb{R}^{n}$ we denote

$$
T_{y}=\operatorname{diag}\left(y_{1}, \ldots, y_{n}\right)=\left(\begin{array}{cccc}
y_{1} & 0 & \ldots & 0 \\
0 & y_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & y_{n}
\end{array}\right)
$$

2 Auxiliary result

The following result gives an explicit way how to construct a required singular matrix S under circumstances that may occur during the algorithm.

Proposition 1. Let

$$
\left(A+B T_{z^{\prime}}\right) x^{\prime}=\left(A+B T_{z^{\prime \prime}}\right) x^{\prime \prime}
$$

hold for some $z^{\prime}, z^{\prime \prime} \in Y_{n}$ and $x^{\prime} \neq x^{\prime \prime}$ such that for each ℓ, $z_{\ell}^{\prime} z_{\ell}^{\prime \prime}=-1$ implies $x_{\ell}^{\prime} x_{\ell}^{\prime \prime} \leq 0$. Then for $x=x^{\prime}-x^{\prime \prime}$ the matrix

$$
\begin{equation*}
S=A-T_{y}|B| T_{z}, \tag{2.1}
\end{equation*}
$$

where y is given by

$$
y_{j}=\left\{\begin{array}{ll}
(A x)_{j} /\left(\left|B \|||x|)_{j}\right.\right. & \text { if }(|B||x|)_{j}>0, \tag{2.2}\\
1 & \text { if }(|B||x|)_{j}=0
\end{array} \quad(j=1, \ldots, n)\right.
$$

and

$$
\begin{equation*}
z=\operatorname{sgn}(x) \tag{2.3}
\end{equation*}
$$

is a singular matrix satisfying $|S-A| \leq|B|$ and $S x=0$.
Proof. From the proof of Proposition 2.4 in [1] it follows that under our assumptions on $z^{\prime}, x^{\prime}, z^{\prime \prime}, x^{\prime \prime}$ there holds

$$
|A x| \leq|B||x|,
$$

where $x=x^{\prime}-x^{\prime \prime}$, and Corollary 2.3 in [1] implies that the matrix S constructed by (2.1), (2.2) and (2.3) is singular and satisfies $|S-A| \leq|B|$ and $S x=0$.

3 The former algorithm

In [1] we proposed the signaccord algorithm (Fig. 3.1). It was supported there by the following theorem.

Theorem 2. For each $A, B \in \mathbb{R}^{n \times n}$ and each $b \in \mathbb{R}^{n}$, the signaccord algorithm (Fig. 3.1) in a finite number of steps either finds a solution x of the equation (1.1), or states existence of a singular matrix S satisfying (1.2) (and, in most cases, also finds such an S).

As we shall see in Section 5, the possibility of stating existence of a singular matrix without actually finding such a matrix is not excluded. This may happen if the condition

$$
\begin{equation*}
\log _{2} p_{k}>n-k \tag{3.1}
\end{equation*}
$$

is satisfied at some step; then the algorithm terminates in the fourth if ... end statement without having constructed a singular matrix S satisfying $|S-A| \leq|B|$ (although its existence is guaranteed).

```
function \([x, S, f l a g]=\operatorname{signaccord}(A, B, b)\)
\% Finds a solution to \(A x+B|x|=b\), or states
\(\%\) singularity of \([A-|B|, A+|B|]\).
\(x=[] ; S=[] ;\) flag \(=\) 'singular';
if \(A\) is singular, \(S=A\); return, end
\(p=0 \in \mathbb{R}^{n}\);
\(z=\operatorname{sgn}\left(A^{-1} b\right)\);
if \(A+B T_{z}\) is singular, \(S=A+B T_{z}\); return, end
\(x=\left(A+B T_{z}\right)^{-1} b\);
\(C=-\left(A+B T_{z}\right)^{-1} B\);
while \(z_{j} x_{j}<0\) for some \(j\)
    \(k=\min \left\{j \mid z_{j} x_{j}<0\right\}\);
    if \(1+2 z_{k} C_{k k} \leq 0\)
        \(S=A+B\left(T_{z}+\left(1 / C_{k k}\right) e_{k} e_{k}^{T}\right) ;\)
        \(x=[]\)
        return
    end
    \(p_{k}=p_{k}+1 ;\)
    if \(\log _{2} p_{k}>n-k, x=[] ;\) return, end
    \(z_{k}=-z_{k}\);
    \(\alpha=2 z_{k} /\left(1-2 z_{k} C_{k k}\right) ;\)
    \(x=x+\alpha x_{k} C_{\bullet}\);
    \(C=C+\alpha C_{\bullet k} C_{k} ;\)
end
flag = 'solution';
```

Figure 3.1: The former signaccord algorithm from [1].

4 The improved algorithm

Here we describe the improved algorithm absvaleqn (Fig. 4.1) which (in infinite precision arithmetic) gives a result for any data.

Theorem 3. For each $A, B \in \mathbb{R}^{n \times n}$ and each $b \in \mathbb{R}^{n}$, the algorithm absvaleqn (Fig. 4.1) in a finite number of steps either finds a solution x of the equation (1.1), or finds a singular matrix S satisfying (1.2).

The improvement is placed in between the lines (17) and (25) of the algorithm where a previously missing singular matrix S is constructed along the lines of Proposition 1. The newly added variable r provides for finite termination of the algorithm. The proof is omitted here, but it can be inferred from the proof of Theorem 3.1 in [1].

5 Example

The following randomly generated example was mentioned in the Introduction.

```
A =
    78.2134 -31.1765 60.6102 -37.0822 56.8726
        58.2907 43.4605 19.6398
        70.4107 -10.3979 -91.2714 76.0946 63.0426
    -87.0915 -40.7813 43.1212 18.4124 66.3227
    -15.8190 -97.4141 84.0572 -17.1518 
B =
    48.7043 -11.4057 -45.9936 -32.0912 -48.5738
    -17.5735 -30.9182 46.6939 -5.8549 5.7216
        34.4625 4.9679 5.6077 -42.2342 -32.9722
        27.4187 43.0308 8.4773 38.7742 -6.8549
    -45.7192 -18.8891 
b =
        34.9380
        81.5419
    -19.1015
        89.3878
        -5.9995
```

Running the former algorithm in MATLAB, we obtain

```
>> [x,S,flag]=signaccord(A,B,b)
x =
    []
```

S =
[]
flag =
interval matrix singular

The reason for the premature termination is the fact that after the seventh iteration we have $p_{5}=2$, hence the condition (3.1) is satisfied and the algorithm exits the while loop.

On the contrary, the improved algorithm, also after seven iterations, produces a singular matrix.

```
>> [x,S]=absvaleqn(A,B,b)
x =
    []
S =
    29.5091 -19.7708 29.6467 -4.9910 8.2988
    75.8642 
    35.9482 -15.3658 -87.4962 118.3288 30.0704
    -114.5102 -83.8121 48.8282 -20.3618 59.4678
    29.9002 -78.5250 105.8439 -26.4750 56.6785
```

We can check that the computed matrix S satisfies (1.2) (up to rounding errors) and is rank deficient.

```
>> abs(B)-abs(S-A)
ans =
\begin{tabular}{rrrrr}
0 & 0 & 15.0301 & 0 & 0 \\
0.0000 & -0.0000 & 15.2590 & 0 & 0.0000 \\
0 & 0 & 1.8325 & 0 & 0 \\
0 & 0 & 2.7703 & 0 & -0.0000 \\
0 & 0 & 10.5756 & 0 & -0.0000
\end{tabular}
>> rank(S)
ans =
    4
```

```
(01) function \([x, S]=\) absvaleqn \((A, B, b)\)
(02) \% Finds either a solution \(x\) to \(A x+B|x|=b\), or
(03) \% a singular matrix \(S\) satisfying \(|S-A| \leq|B|\).
(04) \(x=[] ; S=[] ; i=0 ; r=0 \in \mathbb{R}^{n} ; X=0 \in \mathbb{R}^{n \times n}\);
(05) if \(A\) is singular, \(S=A\); return, end
(06) \(z=\operatorname{sgn}\left(A^{-1} b\right)\);
(07) if \(A+B T_{z}\) is singular, \(S=A+B T_{z}\); return, end
(08) \(x=\left(A+B T_{z}\right)^{-1} b\);
(09) \(C=-\left(A+B T_{z}\right)^{-1} B\);
(10) while \(z_{j} x_{j}<0\) for some \(j\)
(11) \(\quad i=i+1\);
(12) \(\quad k=\min \left\{j \mid z_{j} x_{j}<0\right\}\);
(13) if \(1+2 z_{k} C_{k k} \leq 0\)
(14)(17)
```

```
(19)
(20)
(21)
(22)

Figure 4.1: The improved algorithm absvaleqn.

\section*{Bibliography}
[1] J. Rohn. An algorithm for solving the absolute value equation. Electronic Journal of Linear Algebra, 18:589-599, 2009.```


[^0]:    ${ }^{1}$ Supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201/08/J020, and by the Institutional Research Plan AV0Z10300504.

