Institute of Computer Science Academy of Sciences of the Czech Republic

An Algorithm for Solving the Absolute Value Inequality

Jiří Rohn

Technical report No. V-1107
21.04.2011

Institute of Computer Science

 Academy of Sciences of the Czech Republic
An Algorithm for Solving the
 Absolute Value Inequality

Jirí Rohn ${ }^{11}$

Technical report No. V-1107
21.04.2011

Abstract:

Described is a not-a-priori-exponential algorithm which in a finite number of steps either finds a nontrivial solution of the inequality $|A x| \leq|B||x|$, or states that no such solution exists.

Keywords:
Absolute value inequality, solution, algorithm.2 ${ }^{2}$

[^0]
1 Introduction

We are interested here in finding a nontrivial solution of the inequality

$$
\begin{equation*}
|A x| \leq|B||x| \tag{1.1}
\end{equation*}
$$

where $A, B \in \mathbb{R}^{n \times n}$ and both the inequality as well as the absolute value are understood entrywise. As evidenced in the software package VERSOFT [4], this inequality, called an absolute value inequality, has numerous applications due to the following fundamental result:

Proposition 1. A vector $x \neq 0$ solves (1.1) if and only if it is a null vector of some singular matrix S satisfying

$$
\begin{equation*}
|S-A| \leq|B| . \tag{1.2}
\end{equation*}
$$

Thus, for instance, an interval matrix $\left[A_{c}-\Delta, A_{c}+\Delta\right]$ is singular if and only if the inequality $\left|A_{c} x\right| \leq \Delta|x|$ has a nontrivial solution. Since the problem of checking singularity of interval matrices is NP-complete [2], it follows that the problem of checking existence of a nontrivial solution of (1.1) is NP-complete as well.

In this report we bring a rather complicated algorithm for finding a nontrivial solution of (1.1), which has two basic advantages. First, it is not-a-priori-exponential; in fact, it is capable of solving even problems with large matrices in acceptable time, depending on the data structure. Second, in infinite precision arithmetic it always produces full answer: it either finds a nontrivial solution to (1.1), or it proves that no such solution exists.

The algorithm is presented in self-contained form (i.e., with all its subalgorithms) in Section [3] In Section 2 we give its overall description and we prove a finite termination theorem.

2 Description

Full description of the algorithm appears in Section 3 (Figs. 3.1 through 3.4). In fact, it is a hierarchy of algorithms working in this way:
absvalineq calls singreg,
singreg calls intervalhull,
intervalhull calls qzmatrix and absvaleqn.
The algorithm singreg is described in [6], intervalhull and qzmatrix in [5] and absvaleqn in [3, [7]. Hence we are left with explanation of the behavior of the main algorithm absvalineq (Fig. 3.1).

Theorem 2. For any pair of matrices $A, B \in \mathbb{R}^{n \times n}$ the algorithm absvalineq (Fig. 3.1) in a finite, but not-a-priori-exponential number of steps either finds a nontrivial solution of the inequality $|A x| \leq|B||x|$ (the case of $x \neq[]$), or states that no such solution exists (the case of $x=[]$).

[^1]Proof. As it can be seen from Fig. 3.1, line (04), the function absvalineq applies the subfunction singreg to the interval matrix $[A-|B|, A+|B|]$. According to the main result in [6], this subfunction in a finite, but not-a-priori-exponential number of steps either finds a singular matrix S satisfying $(\overline{1.2})$ (the case of $S \neq[]$), or proves that no such matrix exists (the case of $S=[]$). The rest follows from Proposition 1 ,

Example. Consider an example with two 500×500 matrices (computation has been performed on a relatively slow netbook):

```
>> tic, n=500; rand('state',1); A=2*rand(n,n)-1; B=2*rand(n,n)-1;
>> x=absvalineq(A,B); toc
Elapsed time is 16.832303 seconds.
>> isempty(x)
ans =
    0
```

Nonemptiness of x (which is too long to be displayed here) indicates that a solution has been found.

```
>> min(abs(B)*abs(x)-abs(A*x))
ans =
    8.0415
```

Positiveness of this number confirms that the vector $|B||x|-|A x|$ is indeed nonnegative (even positive).

3 Algorithm

```
(01) function \(x=\operatorname{absvalineq}(A, B)\)
(02) \(\quad \% x \neq[]: x\) solves \(|A x| \leq|B||x|, x \neq 0\).
(03) \(\quad \% x=[]:|A x| \leq|B||x|, x \neq 0\) has no solution.
(04) \(S=\operatorname{singreg}([A-|B|, A+|B|])\);
(05) if \(S \neq[]\)
(06) find an \(x \neq 0\) satisfying \(S x=0\);
(07) else
(08) \(x=[]\);
(09) end
```

Figure 3.1: An algorithm for solving an absolute value inequality.

```
(01) function \(S=\operatorname{singreg}(\mathbf{A})\)
(02) \(\% S \neq[]: S\) is a singular matrix in \(\mathbf{A}\).
(03) \(\% S=[]:\) no singular matrix in \(\mathbf{A}\) exists.
(04) \(S=[] ; n=\operatorname{size}(\mathbf{A}, 1) ; e=(1, \ldots, 1)^{T} \in \mathbb{R}^{n}\);
(05) if \(A_{c}\) is singular, \(S=A_{c}\); return, end
(06) \(R=A_{c}^{-1} ; D=\Delta|R|\);
(07) if \(D_{k k}=\max _{j} D_{j j} \geq 1\)
(08) \(\quad x=R_{\bullet k}\);
(09) \(\quad\) for \(i=1: n\)
(10) \(\quad\) if \((\Delta|x|)_{i}>0, y_{i}=\left(A_{c} x\right)_{i} /(\Delta|x|)_{i} ;\) else \(y_{i}=1\); end
(11) if \(x_{i} \geq 0, z_{i}=1\); else \(z_{i}=-1\); end
(12) end
(13) \(S=A_{c}-T_{y} \Delta T_{z}\); return
(14) end
(15) if \(\varrho(D)<1\), return, end
(16) \(b=e\);
(17) \(\quad x=R b ; \gamma=\min _{k}\left|x_{k}\right|\);
(18) for \(i=1: n\)
(19) \(\quad\) for \(j=1: n\)
(20) \(\quad x^{\prime}=x-2 b_{j} R_{\bullet j}\);
(21) \(\quad\) if \(\min _{k}\left|x_{k}^{\prime}\right|>\gamma, \gamma=\min _{k}\left|x_{k}^{\prime}\right| ; x=x^{\prime} ; b_{j}=-b_{j} ;\) end
(22) end
(23) end
(24) \([\mathbf{x}, S]=\) intervalhull \((\mathbf{A},[b, b])\);
```

Figure 3.2: An algorithm for finding a singular matrix in an interval matrix.

```
(01) function \([\mathbf{x}, S]=\) intervalhull ( \(\mathbf{A}, \mathbf{b}\) )
(02) \% Computes either the interval hull x
(03) \(\%\) of the solution set of \(\mathbf{A} x=\mathbf{b}\),
(04) \(\%\) or a singular matrix \(S \in \mathbf{A}\).
(05) \(\mathrm{x}=[] ; S=[]\);
(06) if \(A_{c}\) is singular, \(S=A_{c}\); return, end
(07) \(x_{c}=A_{c}^{-1} b_{c} ; z=\operatorname{sgn}\left(x_{c}\right) ; \underline{x}=x_{c} ; \bar{x}=x_{c}\);
(08) \(Z=\{z\} ; D=\emptyset\);
(09) while \(Z \neq \emptyset\)
(10) select \(z \in Z ; Z=Z-\{z\} ; D=D \cup\{z\}\);
(11) \(\left[Q_{z}, S\right]=\) qzmatrix \((\mathbf{A}, z)\);
(12) \(\quad\) if \(S \neq[], \mathrm{x}=[]\); return, end
(13) \(\left[Q_{-z}, S\right]=\) qzmatrix \((\mathbf{A},-z)\);
(14) \(\quad\) if \(S \neq[], \mathbf{x}=[]\); return, end
(15) \(\quad \bar{x}_{z}=Q_{z} b_{c}+\left|Q_{z}\right| \delta\);
(16) \(\underline{x}_{z}=Q_{-z} b_{c}-\left|Q_{-z}\right| \delta\);
(17) if \(\underline{x}_{z} \leq \bar{x}_{z}\)
(18) \(\underline{x}=\min \left(\underline{x}, \underline{x}_{z}\right) ; \bar{x}=\max \left(\bar{x}, \bar{x}_{z}\right)\);
\(\underline{x}-\underline{x}, \bar{x}]\)
(01) function \(\left[Q_{z}, S\right]=\operatorname{qzmatrix}(\mathbf{A}, z)\)
(02) \% Computes either a solution \(Q_{z}\)
(03) \(\%\) of the equation \(Q A_{c}-|Q| \Delta T_{z}=I\),
(04) \(\%\) or a singular matrix \(S \in \mathbf{A}\).
(05) for \(i=1: n\)
(06) \(\quad[x, S]=\operatorname{absvaleqn}\left(A_{c}^{T},-T_{z} \Delta^{T}, e_{i}\right)\);
(07) if \(S \neq[], S=S^{T} ; Q_{z}=[] ;\) return
(08) end
(09) \(\quad\left(Q_{z}\right)_{i \bullet}=x^{T}\);
(10) end
(11) \(S=[]\);
```

Figure 3.3: An algorithm for computing the interval hull.

```
(01) function \([x, S]=\operatorname{absvaleqn}(A, B, b)\)
(02) \% Finds either a solution \(x\) to \(A x+B|x|=b\), or
(03) \% a singular matrix \(S\) satisfying \(|S-A| \leq|B|\).
(04) \(x=[] ; S=[] ; i=0 ; r=0 \in \mathbb{R}^{n} ; X=0 \in \mathbb{R}^{n \times n}\);
(05) if \(A\) is singular, \(S=A\); return, end
(06) \(z=\operatorname{sgn}\left(A^{-1} b\right)\);
(07) if \(A+B T_{z}\) is singular, \(S=A+B T_{z}\); return, end
(08) \(x=\left(A+B T_{z}\right)^{-1} b\);
(09) \(C=-\left(A+B T_{z}\right)^{-1} B\);
(10) while \(z_{j} x_{j}<0\) for some \(j\)
(11) \(\quad i=i+1\);
(12) \(k=\min \left\{j \mid z_{j} x_{j}<0\right\}\);
(13) if \(1+2 z_{k} C_{k k} \leq 0\)
(14) \(S=A+B\left(T_{z}+\left(1 / C_{k k}\right) e_{k} e_{k}^{T}\right)\);
(15) \(\quad x=[]\); return
(16) end
(17) if \(\left(\left(k<n\right.\right.\) and \(\left.r_{k}>\max _{k<j} r_{j}\right)\) or \(\left(k=n\right.\) and \(\left.\left.r_{n}>0\right)\right)\)
(18) \(\quad x=x-X_{\bullet k}\);
(19) \(\quad\) for \(j=1: n\)
(20) \(\quad\) if \((|B||x|)_{j}>0, y_{j}=(A x)_{j} /(|B||x|)_{j}\); else \(y_{j}=1\); end
(21) end
(22) \(z=\operatorname{sgn}(x)\);
(23) \(\quad S=A-T_{y}|B| T_{z}\);
(24) \(x=[]\); return
(25) end
(26) \(\quad r_{k}=i\);
(27) \(\quad X_{\bullet k}=x\);
(28) \(z_{k}=-z_{k}\);
(29) \(\alpha=2 z_{k} /\left(1-2 z_{k} C_{k k}\right)\);
(30) \(\quad x=x+\alpha x_{k} C_{\bullet k}\);
(31) \(\quad C=C+\alpha C_{\bullet} C_{k} \cdot\);
(32)
    end
```

Figure 3.4: An algorithm for solving an absolute value equation.

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125.
[2] S. Poljak and J. Rohn, Checking robust nonsingularity is NP-hard, Mathematics of Control, Signals, and Systems, 6 (1993), pp. 1-9.
[3] J. Rohn, An algorithm for solving the absolute value equation, Electronic Journal of Linear Algebra, 18 (2009), pp. 589-599. http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp589-599.pdf. 2]
[4] J. Rohn, VERSOFT: Verification software in MATLAB/INTLAB, 2009. http://uivtx.cs.cas.cz/~rohn/matlab. 2]
[5] J. Rohn, An algorithm for computing the hull of the solution set of interval linear equations, Technical Report 1074, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, April 2010. http://uivtx.cs.cas.cz/~rohn/publist/intervalhull.pdf. 22
[6] J. Rohn, An algorithm for finding a singular matrix in an interval matrix, Technical Report 1087, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, November 2010. http://uivtx.cs.cas.cz/~rohn/publist/singreg.pdf. 2, [3]
[7] J. Rohn, An algorithm for solving the absolute value equation: An improvement, Technical Report 1063, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, January 2010. http://uivtx.cs.cas.cz/~rohn/publist/absvaleqnreport.pdf. 2]

[^0]: ${ }^{1}$ This work was supported by the Institutional Research Plan AV0Z10300504.
 ${ }^{2}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$ (Barth and Nuding [1])).

[^1]: ${ }^{3}$ It is placed at the rear of the paper in order not to be intertwined with the text.

