
Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Solving the System
−e ≤ Ax ≤ e, ‖x‖1 ≥ 1

Jǐŕı Rohn

Technical report No. V-1149

06.01.2012

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 051 111, fax: +420 286 585 789,
e-mail:rohn@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

An Algorithm for Solving the System
−e ≤ Ax ≤ e, ‖x‖1 ≥ 1

Jǐŕı Rohn1

Technical report No. V-1149

06.01.2012

Abstract:

We describe a not-a-priori-exponential algorithm for solving the system −e ≤ Ax ≤ e, ‖x‖1 ≥ 1.
This system, despite its apparent simplicity, can be considered the basic NP-complete problem
of interval computations.2

Keywords:
Linear inequalities, absolute value, NP-completeness, algorithm.

1This work was supported by the Institutional Research Plan AV0Z10300504.
2Above: logo of interval computations and related areas (depiction of the solution set of the system

[2, 4]x1 + [−2, 1]x2 = [−2, 2], [−1, 2]x1 + [2, 4]x2 = [−2, 2] (Barth and Nuding [1])).

1 Introduction

In this paper we describe an algorithm for solving the system of inequalities

− e ≤ Ax ≤ e, (1.1)

‖x‖1 ≥ 1, (1.2)

where A ∈ Rn×n, e = (1, 1, . . . , 1)T ∈ Rn and ‖x‖1 =
∑

i |xi| = eT |x|, which can also be
written in the equivalent “shorthand” form

|Ax| ≤ e, ‖x‖1 ≥ 1. (1.3)

The choice of the system may seem surprising: why just this system, and why such a specific
form (using e and 1)? There are three reasons for this formulation.

First, in [2], Theorem 2.3 it was proved that the problem of checking solvability of the sys-
tem (1.1), (1.2) is NP-complete for nonnegative symmetric positive definite rational matrices,
and this result was further used there for proving NP-hardness or (co-)NP-completeness of
nine other problems (see Theorems 2.12, 2.15, 2.18, 2.21, 2.30, 2.33, 2.38, 3.15 and 3.17 in
[2]), thus having demonstrated that it is an ideal tool for establishing complexity results for
problems with interval data. This is why this problem was called “the basic NP-complete
problem of interval computations” in [4].

Second, it turns out that one of the basic NP-complete problems termed as such by Garey
and Johnson [3] can be transformed to our problem.

And third – and this the topic of the present paper – there exists a not-a-priori-exponential
algorithm for solving (1.1), (1.2) which, in turn, yields a not-a-priori-exponential algorithm
for solving one of the basic NP-hard problems mentioned in the previous paragraph; formu-
lation of the latter algorithm will possibly appear elsewhere.

The algorithm for solving (1.1), (1.2), which in a finite number of steps either finds a
solution to (1.1), (1.2) or proves its nonexistence, is listed in the form of several intercon-
nected MATLAB-like functions in the last Section 4. The preceding two sections bring the
theoretical background and some examples.

2 Description

In order that the algorithm, whose description stretches over several pages, could be pre-
sented as a whole and not intertwined with the text, it is given in the last Section 4.

Theorem 1. For each square matrix A the algorithm basintnpprob (Fig. 4.1) in a
finite, but not-a-priori-exponential number of steps either finds a solution x of the system
(1.1), (1.2) (the case of x 6= []), or proves that no such a solution exists (the case of x = []).

Proof. As proved in [5], the algorithm singreg (Fig. 4.2), when applied to the interval
matrix [A− eeT , A + eeT] (Fig. 4.1, lines (06)-(07)) in a finite, but not-a-priori-exponential
number of steps either yields a singular matrix S satisfying |A−S| ≤ eeT (the case of S 6= []),
or states that such a singular matrix S does not exist (the case of S = []).

2

In the first case, taking an arbitrary x 6= 0 satisfying Sx = 0 (which exists because S is
singular), we have

|Ax| = |(A− S)x| ≤ |A− S||x| ≤ eeT |x| = ‖x‖1e

so that for x′ = x/‖x‖1 we have |Ax′| ≤ e and ‖x′‖1 = 1, which means that x′ solves (1.3)
(Fig. 4.1, lines (09)-(10)).

In the second case there does not exist a singular matrix S satisfying |A− S| ≤ eeT . We
shall prove that in this case the system (1.3) has no solution. Suppose to the contrary that
(1.3) has a solution x. Then

|Ax| ≤ e ≤ e‖x‖1 = eeT |x|,

so that the interval matrix [A− eeT , A + eeT] is singular, i.e., there exists a singular matrix
S satisfying |A− S| ≤ eeT , a contradiction (Fig. 4.1, line (08)). 2

3 Examples

In this section we give two examples with 100× 100 matrices. In the first one a solution is
found, whereas the second one has no solution.

>> tic, rand(’state’,1); n=100; A=rand(n,n); x=basintnpprob(A);
>> x’, min(ones(n,1)-abs(A*x)), norm(x,1), toc
ans =
Columns 1 through 10

-0.0293 -0.0154 -0.0091 0.0138 0.0099 -0.0185 0.0186 -0.0082 -0.0076 0.0213
Columns 11 through 20
0.0074 -0.0204 -0.0157 0.0054 0.0303 0.0005 0.0155 -0.0003 0.0026 -0.0037
Columns 21 through 30

-0.0023 0.0111 0.0045 -0.0043 0.0043 -0.0027 0.0032 -0.0157 0.0070 -0.0069
Columns 31 through 40

-0.0067 0.0135 0.0097 0.0004 -0.0200 0.0013 0.0137 -0.0030 -0.0003 0.0033
Columns 41 through 50
0.0009 -0.0148 -0.0051 0.0008 0.0059 -0.0047 0.0054 0.0229 -0.0133 0.0294
Columns 51 through 60
0.0103 0.0101 0.0036 0.0028 0.0146 0.0215 -0.0288 -0.0113 0.0229 -0.0021
Columns 61 through 70

-0.0035 -0.0065 0.0161 0.0094 0.0051 -0.0048 0.0053 -0.0094 -0.0082 -0.0002
Columns 71 through 80
0.0046 -0.0094 -0.0128 0.0062 -0.0271 -0.0053 0.0013 -0.0169 0.0014 -0.0203
Columns 81 through 90
0.0225 -0.0145 -0.0092 -0.0110 -0.0008 0.0045 -0.0143 0.0081 0.0115 0.0201
Columns 91 through 100

-0.0168 0.0108 0.0026 0.0143 0.0050 0.0055 -0.0094 -0.0123 -0.0028 -0.0111
ans =
0.9981

3

ans =
1.0000

Elapsed time is 0.804711 seconds.

>> tic, rand(’state’,1); n=100; A=10000*rand(n,n); x=basintnpprob(A);
>> x’, min(ones(n,1)-abs(A*x)), norm(x,1), toc
x =

[]
ans =

[]
ans =

[]
Elapsed time is 0.407147 seconds.

4 The algorithm

(01) function x = basintnpprob (A)
(02) % BASic INTerval NP PROBlem.
(03) % x 6= []: x solves −e ≤ Ax ≤ e, ‖x‖1 ≥ 1.
(04) % x = []: −e ≤ Ax ≤ e, ‖x‖1 ≥ 1 has no solution.
(05) n = size(A, 1); e = ones(n, 1);
(06) A = [A− eeT , A + eeT];
(07) S = singreg (A);
(08) if S = [], x = []; return, end
(09) find an x 6= 0 satisfying Sx = 0;
(10) x = x/‖x‖1;

Figure 4.1: An algorithm for solving the basic interval NP-complete problem.

4

(01) function S = singreg (A)
(02) % S 6= []: S is a singular matrix in A.
(03) % S = []: no singular matrix in A exists.
(04) S = []; n = size(A, 1); e = (1, . . . , 1)T ∈ Rn;
(05) if Ac is singular, S = Ac; return, end
(06) R = A−1

c ; D = ∆|R|;
(07) if Dkk = maxj Djj ≥ 1
(08) x = R•k;
(09) for i = 1 : n
(10) if (∆|x|)i > 0, yi = (Acx)i/(∆|x|)i; else yi = 1; end
(11) if xi ≥ 0, zi = 1; else zi = −1; end
(12) end
(13) S = Ac − Ty∆Tz; return
(14) end
(15) if %(D) < 1, return, end
(16) b = e;
(17) x = Rb; γ = mink |xk|;
(18) for i = 1 : n
(19) for j = 1 : n
(20) x′ = x− 2bjR•j ;
(21) if mink |x′k| > γ, γ = mink |x′k|; x = x′; bj = −bj ; end
(22) end
(23) end
(24) [x, S] = intervalhull (A, [b, b]);

Figure 4.2: An algorithm for finding a singular matrix in an interval matrix.

5

(01) function [x, S] = intervalhull (A,b)
(02) % Computes either the interval hull x
(03) % of the solution set of Ax = b,
(04) % or a singular matrix S ∈ A.
(05) x = []; S = [];
(06) if Ac is singular, S = Ac; return, end
(07) xc = A−1

c bc; z = sgn(xc); x = xc; x = xc;
(08) Z = {z}; D = ∅;
(09) while Z 6= ∅
(10) select z ∈ Z; Z = Z − {z}; D = D ∪ {z};
(11) [Qz, S] = qzmatrix (A, z);
(12) if S 6= [], x = []; return, end
(13) [Q−z, S] = qzmatrix (A,−z);
(14) if S 6= [], x = []; return, end
(15) xz = Qzbc + |Qz|δ;
(16) xz = Q−zbc − |Q−z|δ;
(17) if xz ≤ xz

(18) x = min(x, xz); x = max(x, xz);
(19) for j = 1 : n
(20) z′ = z; z′j = −z′j ;
(21) if ((xz)j(xz)j ≤ 0 and z′ /∈ Z ∪D)
(22) Z = Z ∪ {z′};
(23) end
(24) end
(25) end
(26) end
(27) x = [x, x];
(01) function [Qz, S] = qzmatrix (A, z)
(02) % Computes either a solution Qz

(03) % of the equation QAc − |Q|∆Tz = I,
(04) % or a singular matrix S ∈ A.
(05) for i = 1 : n
(06) [x, S] = absvaleqn (AT

c ,−Tz∆
T , ei);

(07) if S 6= [], S = ST ; Qz = []; return
(08) end
(09) (Qz)i• = xT ;
(10) end
(11) S = [];

Figure 4.3: An algorithm for computing the interval hull.

6

(01) function [x, S] = absvaleqn (A,B, b)
(02) % Finds either a solution x to Ax + B|x| = b, or
(03) % a singular matrix S satisfying |S −A| ≤ |B|.
(04) x = []; S = []; i = 0; r = 0 ∈ Rn; X = 0 ∈ Rn×n;
(05) if A is singular, S = A; return, end
(06) z = sgn(A−1b);
(07) if A + BTz is singular, S = A + BTz; return, end
(08) x = (A + BTz)

−1b;
(09) C = −(A + BTz)

−1B;
(10) while zjxj < 0 for some j
(11) i = i + 1;
(12) k = min{j | zjxj < 0};
(13) if 1 + 2zkCkk ≤ 0
(14) S = A + B(Tz + (1/Ckk)eke

T
k);

(15) x = []; return
(16) end
(17) if ((k < n and rk > max

k<j
rj) or (k = n and rn > 0))

(18) x = x−X•k;
(19) for j = 1 : n
(20) if (|B||x|)j > 0, yj = (Ax)j/(|B||x|)j ; else yj = 1; end
(21) end
(22) z = sgn(x);
(23) S = A− Ty|B|Tz;
(24) x = []; return
(25) end
(26) rk = i;
(27) X•k = x;
(28) zk = −zk;
(29) α = 2zk/(1− 2zkCkk);
(30) x = x + αxkC•k;
(31) C = C + αC•kCk•;
(32) end

Figure 4.4: An algorithm for solving an absolute value equation.

7

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing,
12 (1974), pp. 117–125. 1

[2] M. Fiedler, J. Nedoma, J. Ramı́k, J. Rohn, and K. Zimmermann, Linear Optimization
Problems with Inexact Data, Springer-Verlag, New York, 2006. 2

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, 1979. 2

[4] J. Rohn, VERBASINTNPPROB: Verified solution of the ba-
sic NP-complete problem of interval computations, 2008.
http://uivtx.cs.cas.cz/∼rohn/matlab/verbasintnpprob.html. 2

[5] J. Rohn, An algorithm for finding a singular matrix in an interval matrix, Technical
Report 1087, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, November 2010. http://uivtx.cs.cas.cz/∼rohn/publist/singreg.pdf. 2

8

