Institute of Computer Science Academy of Sciences of the Czech Republic

An Algorithm for Solving the System
 $-e \leq A x \leq e,\|x\|_{1} \geq 1$

Jiří Rohn

Technical report No. V-1149
06.01.2012

Institute of Computer Science

 Academy of Sciences of the Czech Republic
An Algorithm for Solving the System

$-e \leq A x \leq e,\|x\|_{1} \geq 1$
Jirí Rohr ${ }^{11}$

Technical report No. V-1149
06.01.2012

Abstract:

We describe a not-a-priori-exponential algorithm for solving the system $-e \leq A x \leq e,\|x\|_{1} \geq 1$. This system, despite its apparent simplicity, can be considered the basic NP-complete problem of interval computations. ${ }^{2}$

Keywords:
Linear inequalities, absolute value, NP-completeness, algorithm.

[^0]
1 Introduction

In this paper we describe an algorithm for solving the system of inequalities

$$
\begin{gather*}
-e \leq A x \leq e \tag{1.1}\\
\|x\|_{1} \geq 1 \tag{1.2}
\end{gather*}
$$

where $A \in \mathbb{R}^{n \times n}, e=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}$ and $\|x\|_{1}=\sum_{i}\left|x_{i}\right|=e^{T}|x|$, which can also be written in the equivalent "shorthand" form

$$
\begin{equation*}
|A x| \leq e, \quad\|x\|_{1} \geq 1 \tag{1.3}
\end{equation*}
$$

The choice of the system may seem surprising: why just this system, and why such a specific form (using e and 1)? There are three reasons for this formulation.

First, in [2], Theorem 2.3 it was proved that the problem of checking solvability of the system (1.1), (1.2) is NP-complete for nonnegative symmetric positive definite rational matrices, and this result was further used there for proving NP-hardness or (co-)NP-completeness of nine other problems (see Theorems 2.12, 2.15, 2.18, 2.21, 2.30, 2.33, 2.38, 3.15 and 3.17 in [2]), thus having demonstrated that it is an ideal tool for establishing complexity results for problems with interval data. This is why this problem was called "the basic NP-complete problem of interval computations" in 4].

Second, it turns out that one of the basic NP-complete problems termed as such by Garey and Johnson [3] can be transformed to our problem.

And third - and this the topic of the present paper - there exists a not-a-priori-exponential algorithm for solving (1.1), (1.2) which, in turn, yields a not-a-priori-exponential algorithm for solving one of the basic NP-hard problems mentioned in the previous paragraph; formulation of the latter algorithm will possibly appear elsewhere.

The algorithm for solving $(\overline{1.1}),(\overline{1.2})$, which in a finite number of steps either finds a solution to $(\overline{1.1}),(\overline{1.2})$ or proves its nonexistence, is listed in the form of several interconnected MATLAB-like functions in the last Section 4. The preceding two sections bring the theoretical background and some examples.

2 Description

In order that the algorithm, whose description stretches over several pages, could be presented as a whole and not intertwined with the text, it is given in the last Section 4.

Theorem 1. For each square matrix A the algorithm basintnpprob (Fig. 4.1) in a finite, but not-a-priori-exponential number of steps either finds a solution x of the system (1.1), (1.2) (the case of $x \neq[]$), or proves that no such a solution exists (the case of $x=[]$).

Proof. As proved in [5], the algorithm singreg (Fig. 4.2), when applied to the interval matrix $\left[A-e e^{T}, A+e e^{T}\right]$ (Fig. 4.1, lines (06)-(07)) in a finite, but not-a-priori-exponential number of steps either yields a singular matrix S satisfying $|A-S| \leq e e^{T}$ (the case of $S \neq[]$), or states that such a singular matrix S does not exist (the case of $S=[]$).

In the first case, taking an arbitrary $x \neq 0$ satisfying $S x=0$ (which exists because S is singular), we have

$$
|A x|=|(A-S) x| \leq|A-S||x| \leq e e^{T}|x|=\|x\|_{1} e
$$

so that for $x^{\prime}=x /\|x\|_{1}$ we have $\left|A x^{\prime}\right| \leq e$ and $\left\|x^{\prime}\right\|_{1}=1$, which means that x^{\prime} solves (1.3) (Fig. 4.1, lines (09)-(10)).

In the second case there does not exist a singular matrix S satisfying $|A-S| \leq e e^{T}$. We shall prove that in this case the system (1.3) has no solution. Suppose to the contrary that (1.3) has a solution x. Then

$$
|A x| \leq e \leq e\|x\|_{1}=e e^{T}|x|
$$

so that the interval matrix $\left[A-e e^{T}, A+e e^{T}\right]$ is singular, i.e., there exists a singular matrix S satisfying $|A-S| \leq e e^{T}$, a contradiction (Fig. 4.1, line (08)).

3 Examples

In this section we give two examples with 100×100 matrices. In the first one a solution is found, whereas the second one has no solution.

```
>> tic, rand('state',1); n=100; A=rand(n,n); x=basintnpprob(A);
>> x', min(ones(n,1)-abs(A*x)), norm(x,1), toc
ans =
    Columns 1 through 10
    -0.0293-0.0154 -0.0091 0.0138 0.0099 -0.0185 0.0186-0.0082 -0.0076 0.0213
    Columns 11 through 20
    0.0074 -0.0204 -0.0157 0.0054 0.0303 0.0005 0.0155 -0.0003 0.0026-0.0037
    Columns 21 through 30
    -0.0023 0.0111 0.0045 -0.0043 0.0043-0.0027 0.0032 -0.0157 0.0070-0.0069
    Columns 31 through 40
    -0.0067 0.0135 0.0097 0.0004-0.0200 0.0013 0.0137-0.0030-0.0003 0.0033
    Columns 41 through 50
    0.0009 -0.0148-0.0051 0.0008 0.0059 -0.0047 0.0054 0.0229 -0.0133 0.0294
    Columns 51 through 60
    0.0103 0.0101 0.0036 0.0028 0.0146 0.0215 -0.0288 -0.0113 0.0229 -0.0021
    Columns 61 through 70
    -0.0035-0.0065 0.0161 0.0094 0.0051-0.0048 0.0053-0.0094-0.0082-0.0002
    Columns }71\mathrm{ through }8
    0.0046 -0.0094-0.0128 0.0062 -0.0271 -0.0053 0.0013 -0.0169 0.0014 -0.0203
    Columns 81 through 90
    0.0225 -0.0145 -0.0092 -0.0110 -0.0008 0.0045 -0.0143 0.0081 0.0115 0.0201
    Columns }91\mathrm{ through }10
    -0.0168 0.0108 0.0026 0.0143 0.0050 0.0055 -0.0094 -0.0123-0.0028 -0.0111
ans =
    0.9981
```

```
ans =
    1.0000
Elapsed time is 0.804711 seconds.
>> tic, rand('state',1); n=100; A=10000*rand(n,n); x=basintnpprob(A);
>> x', min(ones(n,1)-abs(A*x)), norm(x,1), toc
x =
    []
ans =
    []
ans =
    []
Elapsed time is 0.407147 seconds.
```


4 The algorithm

```
(01) function \(x=\) basintnpprob \((A)\)
(02) \% BASic INTerval NP PROBlem.
(03) \(\% x \neq[]: x\) solves \(-e \leq A x \leq e,\|x\|_{1} \geq 1\).
(04) \(\% x=[]:-e \leq A x \leq e,\|x\|_{1} \geq 1\) has no solution.
(05) \(n=\operatorname{size}(A, 1) ; e=\operatorname{ones}(n, 1)\);
(06) \(\quad \mathbf{A}=\left[A-e e^{T}, A+e e^{T}\right]\);
(07) \(\quad S=\operatorname{singreg}(\mathbf{A})\);
(08) if \(S=[], x=[]\); return, end
(09) find an \(x \neq 0\) satisfying \(S x=0\);
(10) \(\quad x=x /\|x\|_{1} ;\)
```

Figure 4.1: An algorithm for solving the basic interval NP-complete problem.

```
(01) function \(S=\operatorname{singreg}(\mathbf{A})\)
(02) \(\% S \neq[]: S\) is a singular matrix in \(\mathbf{A}\).
(03) \(\% S=[]\) : no singular matrix in \(\mathbf{A}\) exists.
(04) \(S=[] ; n=\operatorname{size}(\mathbf{A}, 1) ; e=(1, \ldots, 1)^{T} \in \mathbb{R}^{n}\);
(05) if \(A_{c}\) is singular, \(S=A_{c}\); return, end
(06) \(\quad R=A_{c}^{-1} ; D=\Delta|R|\);
(07) if \(D_{k k}=\max _{j} D_{j j} \geq 1\)
(08) \(x=R_{\bullet} k\);
(09) \(\quad\) for \(i=1: n\)
(10) if \((\Delta|x|)_{i}>0, y_{i}=\left(A_{c} x\right)_{i} /(\Delta|x|)_{i}\); else \(y_{i}=1\); end
        if \(x_{i} \geq 0, z_{i}=1\); else \(z_{i}=-1\); end
        end
        \(S=A_{c}-T_{y} \Delta T_{z} ;\) return
    end
    if \(\varrho(D)<1\), return, end
    \(b=e\);
    \(x=R b ; \gamma=\min _{k}\left|x_{k}\right| ;\)
    for \(i=1: n\)
        for \(j=1: n\)
            \(x^{\prime}=x-2 b_{j} R_{\bullet} ;\)
        if \(\min _{k}\left|x_{k}^{\prime}\right|>\gamma, \gamma=\min _{k}\left|x_{k}^{\prime}\right| ; x=x^{\prime} ; b_{j}=-b_{j} ;\) end
        end
        end
        \([\mathbf{x}, S]=\) intervalhull \((\mathbf{A},[b, b])\);
```

Figure 4.2: An algorithm for finding a singular matrix in an interval matrix.

```
(01) function \([\mathbf{x}, S]=\) intervalhull ( \(\mathbf{A}, \mathbf{b}\) )
(02) \% Computes either the interval hull x
(03) \(\%\) of the solution set of \(\mathbf{A} x=\mathbf{b}\),
(04) \(\%\) or a singular matrix \(S \in \mathbf{A}\).
(05) \(\mathrm{x}=[] ; S=[]\);
(06) if \(A_{c}\) is singular, \(S=A_{c}\); return, end
(07) \(x_{c}=A_{c}^{-1} b_{c} ; z=\operatorname{sgn}\left(x_{c}\right) ; \underline{x}=x_{c} ; \bar{x}=x_{c}\);
(08) \(Z=\{z\} ; D=\emptyset\);
(09) while \(Z \neq \emptyset\)
(10) select \(z \in Z ; Z=Z-\{z\} ; D=D \cup\{z\}\);
(11) \(\left[Q_{z}, S\right]=\) qzmatrix \((\mathbf{A}, z)\);
(12) \(\quad\) if \(S \neq[], \mathrm{x}=[]\); return, end
(13) \(\left[Q_{-z}, S\right]=\) qzmatrix \((\mathbf{A},-z)\);
(14) \(\quad\) if \(S \neq[], \mathbf{x}=[]\); return, end
(15) \(\quad \bar{x}_{z}=Q_{z} b_{c}+\left|Q_{z}\right| \delta\);
(16) \(\underline{x}_{z}=Q_{-z} b_{c}-\left|Q_{-z}\right| \delta\);
(17) if \(\underline{x}_{z} \leq \bar{x}_{z}\)
(18) \(\underline{x}=\min \left(\underline{x}, \underline{x}_{z}\right) ; \bar{x}=\max \left(\bar{x}, \bar{x}_{z}\right)\);
(19) for \(j=1: n\)
(27)
```

```
x=[\underline{_}
```

x=[_
(01) function $\left[Q_{z}, S\right]=\operatorname{qzmatrix}(\mathbf{A}, z)$
(02) \% Computes either a solution Q_{z}
(03) $\%$ of the equation $Q A_{c}-|Q| \Delta T_{z}=I$,
(04) $\%$ or a singular matrix $S \in \mathbf{A}$.
(05) for $i=1: n$
(06) $\quad[x, S]=$ absvaleqn $\left(A_{c}^{T},-T_{z} \Delta^{T}, e_{i}\right)$;
(07) \quad if $S \neq[], S=S^{T} ; Q_{z}=[] ;$ return
(08) end
(09) $\quad\left(Q_{z}\right)_{i \bullet}=x^{T}$;
(10) end
(11) $S=[]$;

```

Figure 4.3: An algorithm for computing the interval hull.
```

(01) function $[x, S]=\operatorname{absvaleqn}(A, B, b)$
(02) \% Finds either a solution x to $A x+B|x|=b$, or
(03) \% a singular matrix S satisfying $|S-A| \leq|B|$.
(04) $x=[] ; S=[] ; i=0 ; r=0 \in \mathbb{R}^{n} ; X=0 \in \mathbb{R}^{n \times n}$;
(05) if A is singular, $S=A$; return, end
(06) $z=\operatorname{sgn}\left(A^{-1} b\right)$;
(07) if $A+B T_{z}$ is singular, $S=A+B T_{z}$; return, end
(08) $x=\left(A+B T_{z}\right)^{-1} b$;
(09) $C=-\left(A+B T_{z}\right)^{-1} B$;
(10) while $z_{j} x_{j}<0$ for some j
(11) $\quad i=i+1$;
(12) $k=\min \left\{j \mid z_{j} x_{j}<0\right\}$;
(13) if $1+2 z_{k} C_{k k} \leq 0$
(14) $S=A+B\left(T_{z}+\left(1 / C_{k k}\right) e_{k} e_{k}^{T}\right)$;
(15) $\quad x=[]$; return
(16) end
(17) if $\left(\left(k<n\right.\right.$ and $\left.r_{k}>\max _{k<j} r_{j}\right)$ or $\left(k=n\right.$ and $\left.\left.r_{n}>0\right)\right)$
(18) $\quad x=x-X_{\bullet k}$;
(19) \quad for $j=1: n$
(20) \quad if $(|B||x|)_{j}>0, y_{j}=(A x)_{j} /(|B||x|)_{j}$; else $y_{j}=1$; end
(21) end
(22) $z=\operatorname{sgn}(x)$;
(23) $\quad S=A-T_{y}|B| T_{z}$;
(24) $x=[]$; return
(25) end
(26) $\quad r_{k}=i$;
(27) $\quad X_{\bullet k}=x$;
(28) $z_{k}=-z_{k}$;
(29) $\alpha=2 z_{k} /\left(1-2 z_{k} C_{k k}\right)$;
(30) $\quad x=x+\alpha x_{k} C_{\bullet k}$;
(31) $\quad C=C+\alpha C_{\bullet} C_{k} \cdot$;
(32)
end

```

Figure 4.4: An algorithm for solving an absolute value equation.

\section*{Bibliography}
[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125. 1
[2] M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, and K. Zimmermann, Linear Optimization Problems with Inexact Data, Springer-Verlag, New York, 2006. 2
[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979. 2]
[4] J. Rohn, VERBASINTNPPROB: Verified solution of the basic NP-complete problem of interval computations, 2008. http://uivtx.cs.cas.cz/~rohn/matlab/verbasintnpprob.html. 2
[5] J. Rohn, An algorithm for finding a singular matrix in an interval matrix, Technical Report 1087, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, November 2010. http://uivtx.cs.cas.cz/~rohn/publist/singreg.pdf. 2```


[^0]:    ${ }^{1}$ This work was supported by the Institutional Research Plan AV0Z10300504.
    ${ }^{2}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$ (Barth and Nuding [1])).

