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Jǐŕı Rohn∗

Abstract
It is proved that computing the subordinate matrix norm ‖A‖∞,1 is NP-hard.
Even more, existence of a polynomial-time algorithm for computing this norm
with relative accuracy less than 1/(4n2), where n is matrix size, implies P=NP.
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1 Introduction

Given two vector norms ‖x‖α in Rn and ‖x‖β in Rm, a subordinate matrix norm in
Rm×n is defined by

‖A‖α,β = max
‖x‖α=1

‖Ax‖β

(Golub and van Loan [4]). ‖A‖α,β is a matrix norm, i.e., it possesses the three usual
properties: 1) ‖A‖α,β ≥ 0 and ‖A‖α,β = 0 if and only if A = 0, 2) ‖A + B‖α,β ≤
‖A‖α,β + ‖B‖α,β, 3) ‖λA‖α,β = |λ| · ‖A‖α,β. However, generally it does not possess the
property ‖AB‖α,β ≤ ‖A‖α,β‖B‖α,β (it does e.g. if α = β).

By combining the two frequently used norms

‖x‖1 =
∑

i

|xi|,

‖x‖∞ = max
i
|xi|,

we get three well-known easily computable subordinate norms

‖A‖1,1 = max
j

∑

i

|aij|,

‖A‖∞,∞ = max
i

∑

j

|aij|,

‖A‖1,∞ = max
ij
|aij|
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(see Golub and van Loan [4]). It turns out, however, that the fourth norm

‖A‖∞,1 = max
‖x‖∞=1

‖Ax‖1

has an exceptional behavior since it is much more difficult to compute. In this paper
we prove that computing ‖A‖∞,1 is NP-hard. For the purpose of various applications,
the result is presented in several different settings (Theorems 3 to 6).

2 The norm ‖A‖∞,1

This norm can be computed by a finite formula which, however, involves maximization
over the set Z of all ±1-vectors of length n (whose cardinality is 2n):

Proposition 1 For each A ∈ Rm×n we have

‖A‖∞,1 = max
z∈Z

‖Az‖1, (1)

where
Z = {z ∈ Rn; zj ∈ {−1, 1} for each j}.

Moreover, if A is symmetric positive semidefinite, then

‖A‖∞,1 = max
z∈Z

zT Az. (2)

Proof. 1) If ‖x‖∞ = 1, then x belongs to the unit cube {x; −e ≤ x ≤ e}, e =
(1, . . . , 1)T , which is a convex polyhedron, therefore x can be expressed as a convex
combination of its vertices which are exactly the points in Z:

x =
∑

z∈Z

λzz, (3)

where λz ≥ 0 for each z ∈ Z and
∑

z∈Z λz = 1. From (3) we have

‖Ax‖1 = ‖∑

z∈Z

λzAz‖1 ≤ max
z∈Z

‖Az‖1,

hence
max
‖x‖∞=1

‖Ax‖1 ≤ max
z∈Z

‖Az‖1 ≤ max
‖x‖∞=1

‖Ax‖1

(since ‖z‖∞ = 1 for each z ∈ Z), and (1) follows.
2) Let A be symmetric positive semidefinite and let z ∈ Z. Define y ∈ Z by yj = 1

if (Az)j ≥ 0 and yj = −1 if (Az)j < 0 (j = 1, . . . , n), then

‖Az‖1 = yT Az.
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Since A is symmetric positive semidefinite, we have

(y − z)T A(y − z) ≥ 0,

which implies
2yT Az ≤ yT Ay + zT Az ≤ 2 max

z∈Z
zT Az,

hence
‖Az‖1 = yT Az ≤ max

z∈Z
zT Az

and
‖A‖∞,1 = max

z∈Z
‖Az‖1 ≤ max

z∈Z
zT Az. (4)

Conversely, for each z ∈ Z we have

zT Az ≤ |zT Az| ≤ |z|T |Az| = eT |Az| = ‖Az‖1 ≤ max
z∈Z

‖Az‖1 = ‖A‖∞,1,

hence
max
z∈Z

zT Az ≤ ‖A‖∞,1,

which together with (4) gives (2).

A weaker form of (2) (‖A‖∞,1 = max‖x‖∞=1 xT Ax) was given by Tao [8]. In section
4 we shall prove that computing ‖A‖∞,1 is NP-hard. This suggests that unless P=NP,
the formulae (1), (2) cannot be essentially simplified.

3 MC-matrices

In order to prove the NP-hardness for a suitably narrow class of matrices, we introduce
the following concept (first formulated in [7]):

Definition 1 A symmetric n×n matrix A = (aij) is called an MC-matrix1 if it is
of the form

aij

{
= n if i = j,
∈ {0,−1} if i 6= j

(i, j = 1, . . . , n).

Since an MC-matrix is symmetric by definition, there are altogether 2n(n−1)/2 MC-
matrices of size n. The basic properties of MC-matrices are summed up in the follow-
ing proposition (where we denote, as customary, by ‖A‖1 the norm ‖A‖1,1 described
in Section 1):

1from “maximum cut”; see the proof of Theorem 3 below
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Proposition 2 An MC-matrix A ∈ Rn×n is symmetric positive definite, nonnega-
tive invertible and satisfies

‖A‖∞,1 = max
z∈Z

zT Az, (5)

n ≤ ‖A‖∞,1 ≤ n(2n− 1) (6)

and
‖A−1‖1 ≤ 1.

Proof. A is symmetric by definition; it is positive definite since for x 6= 0,

xT Ax ≥ n‖x‖2
2 −

∑

i 6=j

|xixj| = (n + 1)‖x‖2
2 − ‖x‖2

1 ≥ ‖x‖2
2 > 0

(‖x‖1 ≤
√

n‖x‖2 by the Cauchy-Schwarz inequality [4]). Hence (5) holds by Proposi-
tion 1. Since |aij| ≤ 1 for i 6= j, for each z ∈ Z and each i ∈ {1, . . . , n} we have

zi(Az)i = n +
∑

j 6=i

aijzizj ∈ [1, 2n− 1],

hence
n ≤ zT Az ≤ n(2n− 1)

for each z ∈ Z, and (5) implies (6). Putting

A0 = nI − A,

we have that A0 ≥ 0, A = nI − A0 = n(I − 1
n
A0) and ‖ 1

n
A0‖1 ≤ n−1

n
< 1, hence

A−1 = 1
n

∞∑

0

( 1
n
A0)

j ≥ 0

and

‖A−1‖1 ≤ 1

n− ‖A0‖1

≤ 1,

which completes the proof.

Hence an MC-matrix A ∈ Rn×n satisfies

‖A‖1 · ‖A−1‖1 < 2n,

i.e., it is well conditioned.
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4 Computing ‖A‖∞,1 is NP-hard

The following basic result is due to Poljak and Rohn [5] (given there in another for-
mulation without using the concept of an MC-matrix).

Theorem 3 The following decision problem is NP-complete:
Instance. An MC-matrix A and a positive integer `.
Question. Is zT Az ≥ ` for some z ∈ Z?

Proof. Let (N, E) be an undirected graph with N = {1, . . . , n}. Let A = (aij) be
given by aij = n if i = j, aij = −1 if i 6= j and the nodes i, j are connected by an
edge, and aij = 0 if i 6= j and i, j are not connected. Then A is an MC-matrix. For
S ⊆ N , define the cut c(S) as the number of edges in E whose one endpoint belongs
to S and the other one to N − S. We shall prove that

‖A‖∞,1 = 4 max
S⊆N

c(S)− 2|E|+ n2 (7)

holds, where |E| denotes the cardinality of E. Given a S ⊆ N , define a z ∈ Z by

zi =

{
1 if i ∈ S,

−1 if i /∈ S.

Then we have

zT Az =
∑

i,j

aijzizj =
∑

i6=j

aijzizj + n2

=
∑

i6=j

[−1
2
aij(zi − zj)

2 + aij] + n2

= −1
2

∑

zizj=−1

aij(zi − zj)
2 +

∑

i6=j

aij + n2

= −1
2

∑

zizj=−1

4aij +
∑

i6=j

aij + n2,

hence
zT Az = 4c(S)− 2|E|+ n2. (8)

Conversely, given z ∈ Z, then for S = {i ∈ N ; zi = 1} the same reasoning implies (8).
Taking maximum on both sides of (8), we obtain (7) in view of (5).

Hence, given a positive integer L, we have that

c(S) ≥ L (9)

is valid for some S ⊆ N if and only if

zT Az ≥ 4L− 2|E|+ n2
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holds for some z ∈ Z. Since the decision problem (9) is NP-complete (“simple max-cut
problem”, Garey, Johnson and Stockmeyer [3]), we obtain that the decision problem

zT Az ≥ ` (10)

(` positive integer) is NP-hard. It is NP-complete since for a guessed solution z ∈ Z
the validity of (10) can be checked in polynomial time.

In this way, in view of (5) we have also proved the following result:

Theorem 4 Computing ‖A‖∞,1 is NP-hard in the class of MC-matrices.

To facilitate formulations of some applications of these results [6], it is advantageous
to remove the integer parameter ` from the formulation of Theorem 3. This can be done
by using M -matrices instead of MC-matrices. Let us recall that A = (aij) is called
an M -matrix if aij ≤ 0 for i 6= j and A−1 ≥ 0 (a number of equivalent formulations
can be found in Berman and Plemmons [1]); hence each MC-matrix is an M -matrix
(Proposition 2). Since a symmetric M -matrix is positive definite [1], this property is
not explicitly mentioned in the following theorem:

Theorem 5 The following decision problem is NP-hard:
Instance. A symmetric rational M-matrix A.
Question. Is ‖A‖∞,1 ≥ 1?

Proof. Given an MC-matrix A and a positive integer `, the assertion

zT Az ≥ ` for some z ∈ Z

is equivalent to ‖A‖∞,1 ≥ ` and thereby also to

∥∥∥1
`
A

∥∥∥∞,1
≥ 1,

where 1
`
A is a symmetric rational M -matrix. Hence the decision problem of Theorem

3 can be reduced in polynomial time to the current one, which is then NP-hard.

Finally we shall show that even computing a sufficiently close approximation of
‖A‖∞,1 is NP-hard:

Theorem 6 Suppose there exists a polynomial-time algorithm which for each MC-
matrix A computes a rational number ν(A) satisfying

∣∣∣∣∣
ν(A)− ‖A‖∞,1

‖A‖∞,1

∣∣∣∣∣ ≤
1

4n2
,

where n is the size of A. Then P=NP.
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Proof. If such an algorithm exists, then

|ν(A)− ‖A‖∞,1| ≤ ‖A‖∞,1

4n2 ≤ n(2n−1)
4n2 < 1

2

due to (6), which implies

‖A‖∞,1 < ν(A) + 1
2

< ‖A‖∞,1 + 1,

and thereby also
‖A‖∞,1 =

⌊
ν(A) + 1

2

⌋

(since ‖A‖∞,1 is integer for an MC-matrix A by (5)). Hence the NP-hard problem of
Theorem 4 can be solved in polynomial time, implying P=NP.

Various applications of Theorem 5 for problems with inexact data (regularity, pos-
itive definiteness, stability, solvability of linear equations and inequalities, linear and
quadratic programming) are given in [6].

5 Concluding remarks

We have proved that existence of a polynomial-time algorithm for computing ‖A‖∞,1

with relative accuracy less than 1
4n2 implies that the complexity classes P and NP are

equal. This runs against the famous unproved conjecture that P 6=NP holds, which is
widely believed to be true (see Garey and Johnson [2] for details). Hence, the existence
of such a polynomial-time algorithm seems highly unlikely, although it cannot be ruled
out by current results in complexity theory.
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