Computing the Norm $\|A\|_{\infty, 1}$ is NP-Hard

Dedicated to Professor Svatopluk Poljak, in memoriam

Jiří Rohn*

Abstract

It is proved that computing the subordinate matrix norm $\|A\|_{\infty, 1}$ is NP-hard. Even more, existence of a polynomial-time algorithm for computing this norm with relative accuracy less than $1 /\left(4 n^{2}\right)$, where n is matrix size, implies $\mathrm{P}=\mathrm{NP}$.

Key words. Norm, positive definiteness, M-matrix, NP-hardness

AMS subject classifications. 15A57, 15A60, 15A63, 90C60

1 Introduction

Given two vector norms $\|x\|_{\alpha}$ in R^{n} and $\|x\|_{\beta}$ in R^{m}, a subordinate matrix norm in $R^{m \times n}$ is defined by

$$
\|A\|_{\alpha, \beta}=\max _{\|x\|_{\alpha}=1}\|A x\|_{\beta}
$$

(Golub and van Loan [4]). $\|A\|_{\alpha, \beta}$ is a matrix norm, i.e., it possesses the three usual properties: 1) $\|A\|_{\alpha, \beta} \geq 0$ and $\|A\|_{\alpha, \beta}=0$ if and only if $\left.A=0,2\right)\|A+B\|_{\alpha, \beta} \leq$ $\left.\|A\|_{\alpha, \beta}+\|B\|_{\alpha, \beta}, 3\right)\|\lambda A\|_{\alpha, \beta}=|\lambda| \cdot\|A\|_{\alpha, \beta}$. However, generally it does not possess the property $\|A B\|_{\alpha, \beta} \leq\|A\|_{\alpha, \beta}\|B\|_{\alpha, \beta}$ (it does e.g. if $\alpha=\beta$).

By combining the two frequently used norms

$$
\begin{aligned}
& \|x\|_{1}=\sum_{i}\left|x_{i}\right|, \\
& \|x\|_{\infty}=\max _{i}\left|x_{i}\right|,
\end{aligned}
$$

we get three well-known easily computable subordinate norms

$$
\begin{aligned}
& \|A\|_{1,1}=\max _{j} \sum_{i}\left|a_{i j}\right|, \\
& \|A\|_{\infty, \infty}=\max _{i} \sum_{j}\left|a_{i j}\right|, \\
& \|A\|_{1, \infty}=\max _{i j}\left|a_{i j}\right|
\end{aligned}
$$

[^0](see Golub and van Loan [4]). It turns out, however, that the fourth norm
$$
\|A\|_{\infty, 1}=\max _{\|x\|_{\infty}=1}\|A x\|_{1}
$$
has an exceptional behavior since it is much more difficult to compute. In this paper we prove that computing $\|A\|_{\infty, 1}$ is NP-hard. For the purpose of various applications, the result is presented in several different settings (Theorems 3 to 6).

2 The norm $\|A\|_{\infty, 1}$

This norm can be computed by a finite formula which, however, involves maximization over the set Z of all ± 1-vectors of length n (whose cardinality is 2^{n}):

Proposition 1 For each $A \in R^{m \times n}$ we have

$$
\begin{equation*}
\|A\|_{\infty, 1}=\max _{z \in Z}\|A z\|_{1} \tag{1}
\end{equation*}
$$

where

$$
Z=\left\{z \in R^{n} ; z_{j} \in\{-1,1\} \text { for each } j\right\} .
$$

Moreover, if A is symmetric positive semidefinite, then

$$
\begin{equation*}
\|A\|_{\infty, 1}=\max _{z \in Z} z^{T} A z \tag{2}
\end{equation*}
$$

Proof. 1) If $\|x\|_{\infty}=1$, then x belongs to the unit cube $\{x ;-e \leq x \leq e\}, e=$ $(1, \ldots, 1)^{T}$, which is a convex polyhedron, therefore x can be expressed as a convex combination of its vertices which are exactly the points in Z :

$$
\begin{equation*}
x=\sum_{z \in Z} \lambda_{z} z \tag{3}
\end{equation*}
$$

where $\lambda_{z} \geq 0$ for each $z \in Z$ and $\sum_{z \in Z} \lambda_{z}=1$. From (3) we have

$$
\|A x\|_{1}=\left\|\sum_{z \in Z} \lambda_{z} A z\right\|_{1} \leq \max _{z \in Z}\|A z\|_{1}
$$

hence

$$
\max _{\|x\|_{\infty}=1}\|A x\|_{1} \leq \max _{z \in Z}\|A z\|_{1} \leq \max _{\|x\|_{\infty}=1}\|A x\|_{1}
$$

(since $\|z\|_{\infty}=1$ for each $z \in Z$), and (1) follows.
2) Let A be symmetric positive semidefinite and let $z \in Z$. Define $y \in Z$ by $y_{j}=1$ if $(A z)_{j} \geq 0$ and $y_{j}=-1$ if $(A z)_{j}<0(j=1, \ldots, n)$, then

$$
\|A z\|_{1}=y^{T} A z .
$$

Since A is symmetric positive semidefinite, we have

$$
(y-z)^{T} A(y-z) \geq 0,
$$

which implies

$$
2 y^{T} A z \leq y^{T} A y+z^{T} A z \leq 2 \max _{z \in Z} z^{T} A z,
$$

hence

$$
\|A z\|_{1}=y^{T} A z \leq \max _{z \in Z} z^{T} A z
$$

and

$$
\begin{equation*}
\|A\|_{\infty, 1}=\max _{z \in Z}\|A z\|_{1} \leq \max _{z \in Z} z^{T} A z \tag{4}
\end{equation*}
$$

Conversely, for each $z \in Z$ we have

$$
z^{T} A z \leq\left|z^{T} A z\right| \leq|z|^{T}|A z|=e^{T}|A z|=\|A z\|_{1} \leq \max _{z \in Z}\|A z\|_{1}=\|A\|_{\infty, 1},
$$

hence

$$
\max _{z \in Z} z^{T} A z \leq\|A\|_{\infty, 1}
$$

which together with (4) gives (2).
A weaker form of $(2)\left(\|A\|_{\infty, 1}=\max _{\|x\|_{\infty}=1} x^{T} A x\right)$ was given by Tao [8]. In section 4 we shall prove that computing $\|A\|_{\infty, 1}$ is NP-hard. This suggests that unless $\mathrm{P}=\mathrm{NP}$, the formulae (1), (2) cannot be essentially simplified.

3 MC-matrices

In order to prove the NP-hardness for a suitably narrow class of matrices, we introduce the following concept (first formulated in [7]):

Definition $1 A$ symmetric $n \times n$ matrix $A=\left(a_{i j}\right)$ is called an MC-matrix ${ }^{1}$ if it is of the form

$$
a_{i j} \begin{cases}=n & \text { if } i=j, \\ \in\{0,-1\} & \text { if } i \neq j\end{cases}
$$

$(i, j=1, \ldots, n)$.
Since an $M C$-matrix is symmetric by definition, there are altogether $2^{n(n-1) / 2} M C$ matrices of size n. The basic properties of $M C$-matrices are summed up in the following proposition (where we denote, as customary, by $\|A\|_{1}$ the norm $\|A\|_{1,1}$ described in Section 1):

[^1]Proposition 2 An MC-matrix $A \in R^{n \times n}$ is symmetric positive definite, nonnegative invertible and satisfies

$$
\begin{gather*}
\|A\|_{\infty, 1}=\max _{z \in Z} z^{T} A z, \tag{5}\\
n \leq\|A\|_{\infty, 1} \leq n(2 n-1) \tag{6}
\end{gather*}
$$

and

$$
\left\|A^{-1}\right\|_{1} \leq 1
$$

Proof. A is symmetric by definition; it is positive definite since for $x \neq 0$,

$$
x^{T} A x \geq n\|x\|_{2}^{2}-\sum_{i \neq j}\left|x_{i} x_{j}\right|=(n+1)\|x\|_{2}^{2}-\|x\|_{1}^{2} \geq\|x\|_{2}^{2}>0
$$

($\|x\|_{1} \leq \sqrt{n}\|x\|_{2}$ by the Cauchy-Schwarz inequality [4]). Hence (5) holds by Proposition 1. Since $\left|a_{i j}\right| \leq 1$ for $i \neq j$, for each $z \in Z$ and each $i \in\{1, \ldots, n\}$ we have

$$
z_{i}(A z)_{i}=n+\sum_{j \neq i} a_{i j} z_{i} z_{j} \in[1,2 n-1],
$$

hence

$$
n \leq z^{T} A z \leq n(2 n-1)
$$

for each $z \in Z$, and (5) implies (6). Putting

$$
A_{0}=n I-A,
$$

we have that $A_{0} \geq 0, A=n I-A_{0}=n\left(I-\frac{1}{n} A_{0}\right)$ and $\left\|\frac{1}{n} A_{0}\right\|_{1} \leq \frac{n-1}{n}<1$, hence

$$
A^{-1}=\frac{1}{n} \sum_{0}^{\infty}\left(\frac{1}{n} A_{0}\right)^{j} \geq 0
$$

and

$$
\left\|A^{-1}\right\|_{1} \leq \frac{1}{n-\left\|A_{0}\right\|_{1}} \leq 1
$$

which completes the proof.
Hence an $M C$-matrix $A \in R^{n \times n}$ satisfies

$$
\|A\|_{1} \cdot\left\|A^{-1}\right\|_{1}<2 n
$$

i.e., it is well conditioned.

4 Computing $\|A\|_{\infty, 1}$ is NP-hard

The following basic result is due to Poljak and Rohn [5] (given there in another formulation without using the concept of an $M C$-matrix).

Theorem 3 The following decision problem is NP-complete:
Instance. An MC-matrix A and a positive integer ℓ.
Question. Is $z^{T} A z \geq \ell$ for some $z \in Z$?
Proof. Let (N, E) be an undirected graph with $N=\{1, \ldots, n\}$. Let $A=\left(a_{i j}\right)$ be given by $a_{i j}=n$ if $i=j, a_{i j}=-1$ if $i \neq j$ and the nodes i, j are connected by an edge, and $a_{i j}=0$ if $i \neq j$ and i, j are not connected. Then A is an $M C$-matrix. For $S \subseteq N$, define the cut $c(S)$ as the number of edges in E whose one endpoint belongs to S and the other one to $N-S$. We shall prove that

$$
\begin{equation*}
\|A\|_{\infty, 1}=4 \max _{S \subseteq N} c(S)-2|E|+n^{2} \tag{7}
\end{equation*}
$$

holds, where $|E|$ denotes the cardinality of E. Given a $S \subseteq N$, define a $z \in Z$ by

$$
z_{i}=\left\{\begin{aligned}
1 & \text { if } i \in S, \\
-1 & \text { if } i \notin S
\end{aligned}\right.
$$

Then we have

$$
\begin{aligned}
z^{T} A z & =\sum_{i, j} a_{i j} z_{i} z_{j}=\sum_{i \neq j} a_{i j} z_{i} z_{j}+n^{2} \\
& =\sum_{i \neq j}\left[-\frac{1}{2} a_{i j}\left(z_{i}-z_{j}\right)^{2}+a_{i j}\right]+n^{2} \\
& =-\frac{1}{2} \sum_{z_{i} z_{j}=-1} a_{i j}\left(z_{i}-z_{j}\right)^{2}+\sum_{i \neq j} a_{i j}+n^{2} \\
& =-\frac{1}{2} \sum_{z_{i} z_{j}=-1} 4 a_{i j}+\sum_{i \neq j} a_{i j}+n^{2},
\end{aligned}
$$

hence

$$
\begin{equation*}
z^{T} A z=4 c(S)-2|E|+n^{2} . \tag{8}
\end{equation*}
$$

Conversely, given $z \in Z$, then for $S=\left\{i \in N ; z_{i}=1\right\}$ the same reasoning implies (8). Taking maximum on both sides of (8), we obtain (7) in view of (5).

Hence, given a positive integer L, we have that

$$
\begin{equation*}
c(S) \geq L \tag{9}
\end{equation*}
$$

is valid for some $S \subseteq N$ if and only if

$$
z^{T} A z \geq 4 L-2|E|+n^{2}
$$

holds for some $z \in Z$. Since the decision problem (9) is NP-complete ("simple max-cut problem", Garey, Johnson and Stockmeyer [3]), we obtain that the decision problem

$$
\begin{equation*}
z^{T} A z \geq \ell \tag{10}
\end{equation*}
$$

(ℓ positive integer) is NP-hard. It is NP-complete since for a guessed solution $z \in Z$ the validity of (10) can be checked in polynomial time.

In this way, in view of (5) we have also proved the following result:
Theorem 4 Computing $\|A\|_{\infty, 1}$ is NP-hard in the class of MC-matrices.
To facilitate formulations of some applications of these results [6], it is advantageous to remove the integer parameter ℓ from the formulation of Theorem 3. This can be done by using M-matrices instead of $M C$-matrices. Let us recall that $A=\left(a_{i j}\right)$ is called an M-matrix if $a_{i j} \leq 0$ for $i \neq j$ and $A^{-1} \geq 0$ (a number of equivalent formulations can be found in Berman and Plemmons [1]); hence each $M C$-matrix is an M-matrix (Proposition 2). Since a symmetric M-matrix is positive definite [1], this property is not explicitly mentioned in the following theorem:

Theorem 5 The following decision problem is NP-hard:
Instance. A symmetric rational M-matrix A.
Question. Is $\|A\|_{\infty, 1} \geq 1$?
Proof. Given an $M C$-matrix A and a positive integer ℓ, the assertion

$$
z^{T} A z \geq \ell \text { for some } z \in Z
$$

is equivalent to $\|A\|_{\infty, 1} \geq \ell$ and thereby also to

$$
\left\|\frac{1}{\ell} A\right\|_{\infty, 1} \geq 1
$$

where $\frac{1}{\ell} A$ is a symmetric rational M-matrix. Hence the decision problem of Theorem 3 can be reduced in polynomial time to the current one, which is then NP-hard.

Finally we shall show that even computing a sufficiently close approximation of $\|A\|_{\infty, 1}$ is NP-hard:

Theorem 6 Suppose there exists a polynomial-time algorithm which for each MCmatrix A computes a rational number $\nu(A)$ satisfying

$$
\left|\frac{\nu(A)-\|A\|_{\infty, 1}}{\|A\|_{\infty, 1}}\right| \leq \frac{1}{4 n^{2}},
$$

where n is the size of A. Then $P=N P$.

Proof. If such an algorithm exists, then

$$
\left|\nu(A)-\|A\|_{\infty, 1}\right| \leq \frac{\|A\|_{\infty, 1}}{4 n^{2}} \leq \frac{n(2 n-1)}{4 n^{2}}<\frac{1}{2}
$$

due to (6), which implies

$$
\|A\|_{\infty, 1}<\nu(A)+\frac{1}{2}<\|A\|_{\infty, 1}+1
$$

and thereby also

$$
\|A\|_{\infty, 1}=\left\lfloor\nu(A)+\frac{1}{2}\right\rfloor
$$

(since $\|A\|_{\infty, 1}$ is integer for an $M C$-matrix A by (5)). Hence the NP-hard problem of Theorem 4 can be solved in polynomial time, implying $\mathrm{P}=\mathrm{NP}$.

Various applications of Theorem 5 for problems with inexact data (regularity, positive definiteness, stability, solvability of linear equations and inequalities, linear and quadratic programming) are given in [6].

5 Concluding remarks

We have proved that existence of a polynomial-time algorithm for computing $\|A\|_{\infty, 1}$ with relative accuracy less than $\frac{1}{4 n^{2}}$ implies that the complexity classes P and NP are equal. This runs against the famous unproved conjecture that $\mathrm{P} \neq \mathrm{NP}$ holds, which is widely believed to be true (see Garey and Johnson [2] for details). Hence, the existence of such a polynomial-time algorithm seems highly unlikely, although it cannot be ruled out by current results in complexity theory.

Acknowledgment

This work was supported by the Charles University Grant Agency under grant 195/96 and by the Czech Republic Grant Agency under grant 201/98/0222.

References

[1] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, 1994.
[2] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.
[3] M. R. Garey, D. S. Johnson and L. Stockmeyer. Some simplified NP-complete graph problems. Theoretical Computer Science, 1:237-267, 1976.
[4] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 1996.
[5] S. Poljak and J. Rohn. Checking robust nonsingularity is NP-hard. Mathematics of Control, Signals, and Systems, 6:1-9, 1993.
[6] J. Rohn. Complexity of some linear problems with interval data. Reliable Computing, 3:315-323, 1997.
[7] J. Rohn. Checking positive definiteness or stability of symmetric interval matrices is NP-hard. Commentationes Mathematicae Universitatis Carolinae, 35:795-797, 1994.
[8] P. D. Tao. Algorithmes de calcul du maximum des formes quadratiques sur la boule unité de la norme du maximum. Numerische Mathematik, 45:377-401, 1984.

[^0]: *Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, and Institute of Computer Science, Academy of Sciences, Prague, Czech Republic (rohn@uivt.cas.cz).

[^1]: ${ }^{1}$ from "maximum cut"; see the proof of Theorem 3 below

