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Abstract. We construct a linear interval system Ax = b with a 4 × 4 interval matrix whose all proper
interval coefficients (there are also some noninterval ones) are of the form [−ε, ε]. It is proved that
for each ε > 0, the interval hull [x, x] and interval hull of the midpoint preconditioned system [x, x]

satisfy x1 = 0.6 and x1 = 1.2, hence midpoint preconditioning produces a 100% overestimation of
x1 independently of ε in this case. The example was obtained as a result of an extensive MATLAB
search.

1. Introduction

Let A = [Ac − ∆, Ac + ∆] be an n × n interval matrix and b = [bc − δ, bc + δ] an
interval n-vector. Solving the linear interval system

Ax = b (1.1)

usually means computing the interval hull of the solution set

X = {x; Ax = b for some A ∈ A, b ∈ b},

i.e., the narrowest interval vector [x, x] containing X. Such an interval vector exists
(i.e., X is bounded) if and only if the interval matrix A is regular, which, by
definition, means that each A ∈ A is nonsingular. The basic theoretical result
concerning computation of the interval hull in the general case is contained in the
following theorem proved in [6]:

THEOREM 1.1. Let A be regular. Then for each y ∈ Y the nonlinear equation

Acx − bc = Ty(∆|x| + δ) (1.2)

has exactly one solution xy and for the interval hull [x, x] of the solution set of (1.1)
there holds

x = min
y∈Y

xy,

Reliable Computing (2005) c© Springer 200511: 129–135



130 JIŘÍ ROHN

x = max
y∈Y

xy

(componentwise).

Here, the following notation is used: for x = (xi), the absolute value is defined
by |x| = (|xi|), Y = {y ∈ R

n; yj ∈ {−1, 1} for each j} is the set of all ±1-vectors in
R

n, and

Ty = diag(y1, y2, …, yn) =




y1 0 … 0
0 y2 … 0
...

...
. . .

...
0 0 … yn




for each y ∈ Y . Unfortunately, computing the interval hull [x, x] is NP-hard [9];
we shall also obtain this result as a by-product of Theorem 2.1 here. Therefore,
for practical needs we must set the goal differently: instead of computing the exact
interval hull [x, x], we strive for obtaining an enclosure of the solution set X, i.e.,
an interval vector [x

˜
, x̃] satisfying X ⊆ [x

˜
, x̃] and as narrow as (computationally)

possible.
One of the basic techniques developed for this purpose as early as in the 1960’s

is the so-called midpoint preconditioning. It is based on a simple observation that
if x ∈ X, i.e. if Ax = b for some A ∈ A and b ∈ b, then also A−1

c Ax = A−1
c b. Since

the Oettli-Prager theorem [5] implies that

{A−1
c A; A ∈ A} = [I − |A−1

c |∆, I + |A−1
c |∆],

{A−1
c b; b ∈ b} = [A−1

c bc − |A−1
c |δ, A−1

c bc + |A−1
c |δ],

we can see that the above x belongs to the solution set Xp of the preconditioned
system

[I − |A−1
c |∆, I + |A−1

c |∆]x = [A−1
c bc − |A−1

c |δ, A−1
c bc + |A−1

c |δ], (1.3)

in other words, X ⊆ Xp holds. The interval matrix in (1.3) is regular if and only if

�(|A−1
c |∆) < 1 (1.4)

holds (i.e., if A is strongly regular). Under this condition, Xp is bounded and its
interval hull [x, x], which we call the preconditioned interval hull, satisfies X ⊆
Xp ⊆ [x, x], so that it forms an enclosure of X. The usefulness of this technique was
demonstrated by Hansen [2], Bliek [1], and Rohn [7] who showed that the bounds
x and x can be expressed by closed-form formulae involving only computations
of two inverses and of several matrix-vector products (for other derivations of this
result, see also Ning and Kearfott [4] and Neumaier [3]).

As a rule, the enclosure [x, x] computed in this way gives fairly good results if the
spectral radius in (1.4) is small. It is the main goal of this paper to demonstrate that
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it might be not always so, which implies that preconditioning cannot be considered
a universal remedy. In Section 3 we shall show that for each ε > 0 we can construct
a linear interval system (1.1) with a 4 × 4 interval matrix A and a right-hand side
interval vector b such that the radii of all the coefficients of A and b are less or equal
than ε and x1 = 0.6, x1 = 1.2 independently of ε. This means that x1 overestimates
x1 by 100% for arbitrarily narrow data, so that midpoint preconditioning gives an
utterly false result in this case.

In Section 2 we precede this example by a theoretical result in which formulae
for the quantities x and x are derived, thereby giving a closer insight into the structure
of the example in question. The norms

‖x‖1 = eT |x| =
∑

i

|xi|,

‖A‖∞, 1 = max
‖x‖∞ = 1

‖Ax‖1 = max
y∈Y

‖Ay‖1 (1.5)

are used there (see [8] for the last formula in (1.5)).

2. A Theoretical Example

Given a nonsingular matrix A ∈ R
(n−1) × (n−1) and a real number ε > 0, consider a

linear interval system

Ax = b, (2.1)

where

A =
(

ε 2 [−εeT , εeT ]
0 A

)
(2.2)

and

b =
(

0
[−εe, εe]

)
(2.3)

with e = (1, 1, …, 1)T ∈ R
n−1. This means that the centers and radii are given by

Ac =
(

ε 2 0T

0 A

)
, ∆ =

(
0 εeT

0 0

)
,

bc =
(

0
0

)
, δ =

(
0
εe

)
,

which implies that

|A−1
c |∆ =

(
1
ε2 0T

0 |A−1|

) (
0 εeT

0 0

)
=

(
0 1

ε
eT

0 0

)
,
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so that

�(|A−1
c |∆) = 0,

hence not only the interval matrix A is strongly regular, but also the spectral radius
of |A−1

c |∆ attains the lowest possible value independently of ε. Next, A−1
c bc = 0

and

|A−1
c |δ =

(
0

ε|A−1|e
)

.

Now we can state the basic result concerning the system (2.1)–(2.3):

THEOREM 2.1. Let A be nonsingular and let ε > 0. Then for the interval hull [x, x]
and for the preconditioned interval hull [x, x] of the system (2.1)–(2.3) we have

x = −x =

(
‖A−1‖∞, 1

εd

)
, (2.4)

x = −x =

(
‖d‖1

εd

)
, (2.5)

where d = |A−1|e.

Proof. (a) Since b is symmetric about 0, the same holds for the solution set X
of (2.1)–(2.3) (because if x ∈ X, then A′x = b′ for some A′ ∈ A and b′ ∈ b, hence
A′(−x) = −b′ ∈ b and −x ∈ X), which implies that x = −x. Thus we are confined
to evaluate x only. According to Theorem 1.1, we have

x = max
y∈Y

xy,

where for each y ∈ Y , xy is the unique solution of the equation (1.2). Let us write
y = (y1, y′T)T , where y′ = (y2, …, yn)T , and let us decompose xy accordingly as
xy = (x1, x′T)T . Then the equation (1.2) for the system (2.1)–(2.3) has the form

(
ε 2 0T

0 A

) (
x1

x′

)
= T(

y1
y′

)
((

0 εeT

0 0

) ∣∣∣∣
x1

x′

∣∣∣∣ +
(

0
εe

))

or equivalently

ε 2x1 = y1εeT |x′|,
Ax′ = Ty′ εe = εy′,

which gives

x′ = εA−1y′,

x1 = y1eT |A−1y′| = y1‖A−1y′‖1,
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hence

xy =

(
y1‖A−1y′‖1

εA−1y′

)
,

and from Theorem 1.1 in view of (1.5) we obtain

x = max
y∈Y

xy =

(
‖A−1‖∞, 1

ε|A−1|e

)
=

(
‖A−1‖∞, 1

εd

)
.

(b) Since the right-hand side of the preconditioned system (1.3) is again sym-
metric about 0, we again have x = −x. The equation (1.2) for the preconditioned
system (1.3), (2.2), (2.3) has the form

(
x1

x′

)
= T(

y1
y′

)



(
0 1

ε
eT

0 0

) ∣∣∣∣
x1

x′

∣∣∣∣ +
(

0
ε|A−1|e

)
 ,

which gives

x′ = Ty′ ε|A−1|e = εTy′d,

x1 = y1
1
ε
eT |x′| = y1eT |A−1|e = y1‖d‖1,

hence

xy =

(
y1‖d‖1

εTy′d

)

and

x = max
y∈Y

xy =

(
‖d‖1

εd

)
,

which concludes the proof. �

Now we can see the main point: the values of x1 = ‖A−1‖∞, 1 and x1 = eT |A−1|e
are independent of ε. To achieve the result wanted, it remains to choose an appro-
priate matrix A. But before doing so, we note that the formula (2.4) yields another
proof of the NP-hardness of computing the interval hull (proved originally in [9]):
since computing the norm ‖ ⋅‖∞, 1 is NP-hard (as proved in [8]), by (2.4) computing
x1, and thus also [x, x], is NP-hard as well.

3. The Example

Consider the example (2.1)–(2.3) with

A =




1 −3 −3
−3 1 −3
−3 −3 1


 , (3.1)
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or, explicitly written,




ε 2 [−ε, ε] [−ε, ε] [−ε, ε]
0 1 −3 −3
0 −3 1 −3
0 −3 −3 1


 x =




0
[−ε, ε]
[−ε, ε]
[−ε, ε]


 . (3.2)

As a direct application of Theorem 2.1 we obtain:

THEOREM 3.1. For each ε > 0, for the interval hull [x, x] and for the precondi-
tioned interval hull [x, x] of the linear interval system (3.2) we have

x = −x =




0.6
0.4ε
0.4ε
0.4ε


 , (3.3)

x = −x =




1.2
0.4ε
0.4ε
0.4ε


 . (3.4)

Proof. We are left with substituting

A−1 =




0.10 −0.15 −0.15
−0.15 0.10 −0.15
−0.15 −0.15 0.10




into (2.4) and (2.5), using (1.5) for evaluation of ‖A−1‖∞, 1, which yields (3.3) and
(3.4). �

4. Concluding Remarks

We have proved that for the system (3.2) there holds x1 = 2x1 = 1.2 independently
of ε, thereby justifying the statement made in the title of the paper. The matrix A
in (3.1), although being of quite regular structure at a glance, was in fact found
through extensive experiencing in MATLAB involving computation of several tens
of thousands of randomly generated examples (of size 3 × 3) aimed at maximizing
the value of

eT |A−1|e
‖A−1‖∞, 1

. (4.1)

For the best result found the ratio was slightly less than 2 and the coefficients of A
were close to integers; then rounding to nearest integers produced the matrix (3.1)
for which the value of (4.1) is 2. However, notice from (3.3), (3.4) that x

i
= xi,
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xi = xi for i ≥ 2. Theorem 2.1 may yield another related results, but we have not
pursued the matter any further.

Finally we would like to emphasize that the negative result presented here should
not shed bad light on the idea of midpoint preconditioning as a whole. It only warns
us that one should take the result with some care. A possible remedy could consist
in computation of nonnegative vectors d, d satisfying

x − d ≤ x ≤ x,
x ≤ x ≤ x + d,

wherefrom one could recognize the amount of overestimation—an idea that seems
to be worth studying.
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