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Abstract

As is well known, an irreducible nonnegative matrix possesses a uniquely deter-
mined Perron vector. As the main result of this paper we give a description of
the set of Perron vectors of all the matrices contained in an irreducible nonneg-
ative interval matrix A. This result is then applied to show that there exists a
subset A, of A parameterized by n parameters (instead of n? ones in the de-
scription of A) such that for each A € A there exists a matrix A’ € A, having
the same spectral radius and the same Perron vector as A.
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1 Irreducible interval matrices

In this paper we consider only square n X n matrices. Such a matrix A is called
nonnegative if all its entries are nonnegative. A nonnegative matrix A € R™*" is said
to be reducible if there exists a permutation matrix P such that

v, (B C
PAP_(OD,

where B and D are square matrices (i.e., at least of size 1 x 1), and it is called irre-
ducible if it is not reducible. The basic eigenvalue properties of irreducible nonnegative
matrices are summed up in the Perron-Frobenius theorem (see Horn and Johnson [3],
p. 508). We formulate here only a portion of it relevant to the scope of this paper;
0(A) denotes the spectral radius of A, e = (1,1,...,1)T € R, and x > 0 means that
all entries of x are positive.
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Theorem 1. For each irreducible nonnegative matrixz A there exists a unique vector
x satisfying

Az = o(A)x, (1)
ez = 1, (2)
z > 0, (3)

and no eigenvalue A # o(A) has a positive eigenvector.

The positive eigenvector determined uniquely by (1)—(3) is called the Perron vector
of A; we shall denote it by z(A4).
Given A, A € R™" with A < A, the set

A=[AA={A|A<A<A}

is called an interval matrix with the bounds A and A (see e.g. Neumaier [4] for
basic facts concerning interval matrices). A is said to be nonnegative if A > 0,
which is the same as to say that all matrices in A are nonnegative. A nonnegative
interval matrix A is called irreducible if each A € A is irreducible. It turns out
that checking irreducibility of A = [A, A] reduces to checking this property for A
only. The following proposition is a consequence of a more general result (Berman
and Plemmons [1], Corollary 1.3.21), but we include an elementary proof of it for the

sake of completeness.

Proposition 2. A nonnegative interval matriz [A, A] is irreducible if and only if A
15 1rreducible.

Proof. Tf each A € [A, A] is irreducible, then so is A. Conversely, assume that A is

irreducible and that some A € [A, A] is reducible, so that there exists a permutation
matrix P such that c
B
T _
prar=(2 9.
where 0 is of size at least 1 x 1. Then from 0 < A < A it follows

0 0 rn (B G v, (B C
(00)=srar=(5 5)=rar=(T ),

which implies that F; = 0, hence A is reducible. This contradiction shows that each

A € [A, A] is irreducible, and the proof is complete. O

In this paper we are interested in description of the set of Perron vectors of all the
matrices contained in a given irreducible nonnegative interval matrix A. As far as we
know, this topic has not been studied yet.



2 Perron vectors of an interval matrix

The set of spectral radii of all the matrices contained in an irreducible nonnegative

interval matrix A = [A, A] is easy to describe:

{o(A)|Ae A} =[o(A), o(A)],

because the spectral radius is a continuous function of A (Horn and Johnson [3],
p. 313), hence the real function ¥(t) = (A + t(A — A)) is continuous in [0, 1], so
that it attains all the intermediate values between the endpoint values o(A) and o(A),
and no spectral radius can exceed this interval because 0 < A < A < A implies that
0(A) < o(A) < o(A) (Horn and Johnson [3], p. 491).

The following main result of this paper presents a description of the set { x(A) | A €
A} of the Perron vectors of all matrices contained in a given irreducible nonnegative

interval matrix A.

Theorem 3. Let A = [A, A] be an irreducible nonnegative interval matriz. Then a
vector x € R™ is the Perron vector of some matriz A € A if and only if it satisfies

Axat < xxTZT, (4)
e = 1, (5)
x > 0. (6)

Proof. Let x be the Perron vector of some matrix A € [4, A], so that (1)—(3) hold.
Then from A < A < A in view of positivity of  we obtain

Ar < Az = o(A)z < Ax,

hence for each 7,7 = 1,...,n we have
(Ax); < o(A) < (Az);
ZT; X

and thus also .

(Azz")ij = (Ax)iz; < 2i(Ax); = (22" A7)y,

which proves (4); (5) and (6) are given by (2), (3).
Conversely, let x satisfy (4)—(6). Then for each i, j we have
(Aw)iz; = (AvaT)y; < (22TA") = 2:(Ax),,

hence

(Az); _ (Az);

<

which implies that



Let us choose any A satisfying
(Az);

i Z; J T,

Then from the first inequality it follows that Az < Az, whereas the second one gives
Ar < Ax, together B
Ax < \z < Ax. (7)

For each i = 1,...,n define a real function of one real variable ¢ by

pi(t) = (A+ A~ A))z — \a);.
Then ¢;(0) = (Az — Az); <0 and ;(1) = (Az — Az); > 0 by (7), hence by continuity
of ; there exists a t; € [0, 1] such that ¢;(¢;) = 0. Now put

A=A+diag(ty,... t,)(A— A)

(where diag (¢4, ...,t,) denotes the diagonal matrix with diagonal entries t1,...,t,),

then A € [A, A] because t; € [0, 1] for each i, and we have (Az — \z); = ¢;(t;) = 0 for
each 7, hence

Ax = Ax.
Since e’z = 1 and = > 0 by (5), (6), Theorem 1 gives that A = p(A) and = = z(A),
hence x is the Perron vector of A, which proves the second implication. O

The inequality (4) could also be written in a more “symmetric” form
Ara” < (Aza™)T,
but we prefer the form (4) which, as we have seen, arises naturally in the proof.

The construction given in the second part of the proof is worth summarizing as a
separate assertion.

Theorem 4. Let x satisfy (4)-(6). Then

max B9 o iy (A2 (8)
2 €T; J Z;
and for each X\ with B
max (4z), < A < min (Az); (9)
z ZT; J X
there holds A = o(A) and x = x(A), where the matriz A € [A, A] is given by
with
Az — Ax); /(A — A)z); if (A— A)x); >0,
ti:{ (i=1,...,n). (11)



Proof. As everything else has been stated in the proof of Theorem 3, it remains to
explain the formula (11) for ¢; only. This value is a solution of the equation ¢;(t;) = 0,
i.e., it satisfies

ti((A— A)z); = (\v — Azx);. (12)
If ((A— A)z); > 0, then this equation has the unique solution
(A\x — Ax);
b (A= A

If ((A— A)z); = 0, then, since we know from the proof of Theorem 3 that equation
(12) has a solution, it must be (Ax — Az); = 0, hence the equation is satisfied for any
t; € R, thus also for our choice t; = 1. O

3 The subset A,

In accordance with the construction made in (10), denote
A, ={A+T(A-A)|0<T<T},

so that A, is a subset of A. Let us compare it with the description of A which can
also be written as B
A={A+T(A-A)|0<T <ee"}.

We can see that the description of A, involves n “parameters” ¢; € [0,1] (i = 1,...,n),
whereas that of A contains n? “parameters” t;; € [0,1] (i,j = 1,...,n). Nevertheless,
the following consequence of Theorem 4 shows that all the spectral radii and Perron
vectors of A are attained over its subset A.,.

Theorem 5. Let A be an irreducible nonnegative interval matrixz. Then for each

A € A there exists an A’ € A, such that o(A) = o(A") and x(A) = z(A).
Proof. Let A € A. Then z = x(A) satisfies (4)—(6) by Theorem 3 and there holds

o) = A2k

Tk

for each k, so that from A < A < A it follows

L Lk

for each k, hence A = p(A) satisfies (9) and a direct application of Theorem 4 gives
that o(A) = o(A") and z(A) = x(A’), where A’ is given by (10), (11) and thus belongs
to A.,. O

Finally we note that eigenvectors of interval matrices were examined from another
point of view by Hartfiel [2].
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