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Abstract

As is well known, an irreducible nonnegative matrix possesses a uniquely deter-
mined Perron vector. As the main result of this paper we give a description of
the set of Perron vectors of all the matrices contained in an irreducible nonneg-
ative interval matrix A. This result is then applied to show that there exists a
subset A∗ of A parameterized by n parameters (instead of n2 ones in the de-
scription of A) such that for each A ∈ A there exists a matrix A′ ∈ A∗ having
the same spectral radius and the same Perron vector as A.

Key words. Nonnegative matrix, irreducible matrix, interval matrix, Perron
vector.
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1 Irreducible interval matrices

In this paper we consider only square n × n matrices. Such a matrix A is called
nonnegative if all its entries are nonnegative. A nonnegative matrix A ∈ Rn×n is said
to be reducible if there exists a permutation matrix P such that

P T AP =

(
B C
0 D

)
,

where B and D are square matrices (i.e., at least of size 1 × 1), and it is called irre-
ducible if it is not reducible. The basic eigenvalue properties of irreducible nonnegative
matrices are summed up in the Perron-Frobenius theorem (see Horn and Johnson [3],
p. 508). We formulate here only a portion of it relevant to the scope of this paper;
%(A) denotes the spectral radius of A, e = (1, 1, . . . , 1)T ∈ Rn, and x > 0 means that
all entries of x are positive.
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Theorem 1. For each irreducible nonnegative matrix A there exists a unique vector
x satisfying

Ax = %(A)x, (1)

eT x = 1, (2)

x > 0, (3)

and no eigenvalue λ 6= %(A) has a positive eigenvector.

The positive eigenvector determined uniquely by (1)–(3) is called the Perron vector
of A; we shall denote it by x(A).

Given A, A ∈ Rn×n with A ≤ A, the set

A = [A,A] = {A | A ≤ A ≤ A }

is called an interval matrix with the bounds A and A (see e.g. Neumaier [4] for
basic facts concerning interval matrices). A is said to be nonnegative if A ≥ 0,
which is the same as to say that all matrices in A are nonnegative. A nonnegative
interval matrix A is called irreducible if each A ∈ A is irreducible. It turns out
that checking irreducibility of A = [A,A] reduces to checking this property for A
only. The following proposition is a consequence of a more general result (Berman
and Plemmons [1], Corollary 1.3.21), but we include an elementary proof of it for the
sake of completeness.

Proposition 2. A nonnegative interval matrix [A,A] is irreducible if and only if A
is irreducible.

Proof. If each A ∈ [A,A] is irreducible, then so is A. Conversely, assume that A is
irreducible and that some A ∈ [A,A] is reducible, so that there exists a permutation
matrix P such that

P T AP =

(
B C
0 D

)
,

where 0 is of size at least 1× 1. Then from 0 ≤ A ≤ A it follows

(
0 0
0 0

)
≤ P T AP =

(
B1 C1

E1 D1

)
≤ P T AP =

(
B C
0 D

)
,

which implies that E1 = 0, hence A is reducible. This contradiction shows that each
A ∈ [A,A] is irreducible, and the proof is complete. 2

In this paper we are interested in description of the set of Perron vectors of all the
matrices contained in a given irreducible nonnegative interval matrix A. As far as we
know, this topic has not been studied yet.
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2 Perron vectors of an interval matrix

The set of spectral radii of all the matrices contained in an irreducible nonnegative
interval matrix A = [A,A] is easy to describe:

{ %(A) | A ∈ A } = [%(A), %(A)],

because the spectral radius is a continuous function of A (Horn and Johnson [3],
p. 313), hence the real function ψ(t) = %(A + t(A − A)) is continuous in [0, 1], so
that it attains all the intermediate values between the endpoint values %(A) and %(A),
and no spectral radius can exceed this interval because 0 ≤ A ≤ A ≤ A implies that
%(A) ≤ %(A) ≤ %(A) (Horn and Johnson [3], p. 491).

The following main result of this paper presents a description of the set {x(A) | A ∈
A } of the Perron vectors of all matrices contained in a given irreducible nonnegative
interval matrix A.

Theorem 3. Let A = [A,A] be an irreducible nonnegative interval matrix. Then a
vector x ∈ Rn is the Perron vector of some matrix A ∈ A if and only if it satisfies

AxxT ≤ xxT A
T
, (4)

eT x = 1, (5)

x > 0. (6)

Proof. Let x be the Perron vector of some matrix A ∈ [A,A], so that (1)–(3) hold.
Then from A ≤ A ≤ A in view of positivity of x we obtain

Ax ≤ Ax = %(A)x ≤ Ax,

hence for each i, j = 1, . . . , n we have

(Ax)i

xi

≤ %(A) ≤ (Ax)j

xj

and thus also
(AxxT )ij = (Ax)ixj ≤ xi(Ax)j = (xxT A

T
)ij,

which proves (4); (5) and (6) are given by (2), (3).
Conversely, let x satisfy (4)–(6). Then for each i, j we have

(Ax)ixj = (AxxT )ij ≤ (xxT A
T
)ij = xi(Ax)j,

hence
(Ax)i

xi

≤ (Ax)j

xj

,

which implies that

max
i

(Ax)i

xi

≤ min
j

(Ax)j

xj

.
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Let us choose any λ satisfying

max
i

(Ax)i

xi

≤ λ ≤ min
j

(Ax)j

xj

.

Then from the first inequality it follows that Ax ≤ λx, whereas the second one gives
λx ≤ Ax, together

Ax ≤ λx ≤ Ax. (7)

For each i = 1, . . . , n define a real function of one real variable t by

ϕi(t) = ((A + t(A− A))x− λx)i.

Then ϕi(0) = (Ax− λx)i ≤ 0 and ϕi(1) = (Ax− λx)i ≥ 0 by (7), hence by continuity
of ϕi there exists a ti ∈ [0, 1] such that ϕi(ti) = 0. Now put

A = A + diag (t1, . . . , tn)(A− A)

(where diag (t1, . . . , tn) denotes the diagonal matrix with diagonal entries t1, . . . , tn),
then A ∈ [A,A] because ti ∈ [0, 1] for each i, and we have (Ax− λx)i = ϕi(ti) = 0 for
each i, hence

Ax = λx.

Since eT x = 1 and x > 0 by (5), (6), Theorem 1 gives that λ = %(A) and x = x(A),
hence x is the Perron vector of A, which proves the second implication. 2

The inequality (4) could also be written in a more “symmetric” form

AxxT ≤ (AxxT )T ,

but we prefer the form (4) which, as we have seen, arises naturally in the proof.
The construction given in the second part of the proof is worth summarizing as a

separate assertion.

Theorem 4. Let x satisfy (4)–(6). Then

max
i

(Ax)i

xi

≤ min
j

(Ax)j

xj

(8)

and for each λ with

max
i

(Ax)i

xi

≤ λ ≤ min
j

(Ax)j

xj

(9)

there holds λ = %(A) and x = x(A), where the matrix A ∈ [A,A] is given by

A = A + diag (t1, . . . , tn)(A− A), (10)

with

ti =

{ (λx− Ax)i/((A− A)x)i if ((A− A)x)i > 0,

1 if ((A− A)x)i = 0

(i = 1, . . . , n). (11)
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Proof. As everything else has been stated in the proof of Theorem 3, it remains to
explain the formula (11) for ti only. This value is a solution of the equation ϕi(ti) = 0,
i.e., it satisfies

ti((A− A)x)i = (λx− Ax)i. (12)

If ((A− A)x)i > 0, then this equation has the unique solution

ti =
(λx− Ax)i

((A− A)x)i

.

If ((A − A)x)i = 0, then, since we know from the proof of Theorem 3 that equation
(12) has a solution, it must be (λx−Ax)i = 0, hence the equation is satisfied for any
ti ∈ R, thus also for our choice ti = 1. 2

3 The subset A∗
In accordance with the construction made in (10), denote

A∗ = {A + T (A− A) | 0 ≤ T ≤ I },
so that A∗ is a subset of A. Let us compare it with the description of A which can
also be written as

A = {A + T (A− A) | 0 ≤ T ≤ eeT}.
We can see that the description of A∗ involves n “parameters” tii ∈ [0, 1] (i = 1, . . . , n),
whereas that of A contains n2 “parameters” tij ∈ [0, 1] (i, j = 1, . . . , n). Nevertheless,
the following consequence of Theorem 4 shows that all the spectral radii and Perron
vectors of A are attained over its subset A∗.

Theorem 5. Let A be an irreducible nonnegative interval matrix. Then for each
A ∈ A there exists an A′ ∈ A∗ such that %(A) = %(A′) and x(A) = x(A′).

Proof. Let A ∈ A. Then x = x(A) satisfies (4)–(6) by Theorem 3 and there holds

%(A) =
(Ax)k

xk

for each k, so that from A ≤ A ≤ A it follows

(Ax)k

xk

≤ %(A) ≤ (Ax)k

xk

for each k, hence λ = %(A) satisfies (9) and a direct application of Theorem 4 gives
that %(A) = %(A′) and x(A) = x(A′), where A′ is given by (10), (11) and thus belongs
to A∗. 2

Finally we note that eigenvectors of interval matrices were examined from another
point of view by Hartfiel [2].
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