Institute of Computer Science Academy of Sciences of the Czech Republic

A Perturbation Theorem for Linear Equations

Jiří Rohn

Technical report No. V-1103
18.01.2011

[^0]e-mail:rohn@cs.cas.cz

Institute of Computer Science Academy of Sciences of the Czech Republic

A Perturbation Theorem for Linear Equations

Jirí Rohn ${ }^{11}$
Technical report No. V-1103

18.01 .2011

Abstract

: This is an unpublished two-page manuscript from 2000. We describe explicit formulae for componentwise bounds on solution of a system of linear equations $A_{c} x=b_{c}$ (A_{c} square) under perturbation of all data. To make the result numerically tractable, we avoid use of exact inverses, using instead some matrices R and M required only to satisfy certain inequalities. Hansen's optimality result is a special case of our theorem.

Keywords:
Linear equations, perturbation, bounds.

[^1]Rohn, J.

A perturbation theorem for linear equations

We describe explicit formulae for componentwise bounds on solution of a system of linear equations $A_{c} x=b_{c}\left(A_{c}\right.$ square) under perturbation of all data. To make the result numerically tractable, we avoid use of exact inverses, using instead some matrices R and M required only to satisfy certain inequalities. Hansen's optimality result is a special case of our theorem.

Notations used: I is the unit matrix, ϱ denotes the spectral radius, for $A=\left(a_{i j}\right)$ we denote $|A|=\left(\left|a_{i j}\right|\right)$ and inequalities are understood componentwise. To save space, we write a / b instead of $\frac{a}{b}$.

Theorem. Let $M \geq 0$ and R be arbitrary matrices satisfying

$$
\begin{equation*}
M G+I \leq M \tag{1}
\end{equation*}
$$

where $G=\left|I-R A_{c}\right|+|R| \Delta$. Then for each A and b such that $\left|A-A_{c}\right| \leq \Delta$ and $\left|b-b_{c}\right| \leq \delta, A$ is nonsingular and the solution of the system $A x=b$ satisfies for each $i \in\{1, \ldots, n\}$

$$
\begin{equation*}
\min \left\{\underset{\sim}{x} / \alpha_{i},{\underset{\sim}{x}}_{i} / \beta_{i}\right\} \leq x_{i} \leq \max \left\{\tilde{x}_{i} / \alpha_{i}, \tilde{x}_{i} / \beta_{i}\right\}, \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
\underset{\sim}{x} & =-\left(M\left(\left|R b_{c}\right|+|R| \delta\right)\right)_{i}+m_{i}\left(R b_{c}+\left|R b_{c}\right|\right)_{i} \\
\tilde{x}_{i} & =\left(M\left(\left|R b_{c}\right|+|R| \delta\right)\right)_{i}+m_{i}\left(R b_{c}-\left|R b_{c}\right|\right)_{i} \\
\alpha_{i} & =1+\left(\left|r_{i}\right|-r_{i}\right) m_{i}+h_{i} \\
\beta_{i} & =2 m_{i}-1-\left(\left|r_{i}\right|+r_{i}\right) m_{i}-h_{i} \\
m_{i} & =M_{i i} \\
r_{i} & =\left(I-R A_{c}\right)_{i i} \\
h_{i} & =(M-M G-I)_{i i}
\end{aligned}
$$

and $\beta_{i} \geq \alpha_{i} \geq 1$. Moreover, if $A_{c}=I$ and $\varrho(\Delta)<1$ and if we take $R=I$ and $M=(I-\Delta)^{-1}$, then the bounds (2) are exact (i.e., attained).

Proof. 1) First we prove that each matrix A with $\left|A-A_{c}\right| \leq \Delta$ is nonsingular. Premultiplying the inequality (1) by the nonnegative matrix G yields $M G^{2}+G+I \leq M G+I \leq M$ and by induction $\sum_{j=0}^{k} G^{j} \leq M G^{k+1}+$ $\sum_{j=0}^{k} G^{j} \leq M$ for each $k \geq 0$, hence $\sum_{0}^{\infty} G^{j}$ is convergent which, as well known, implies that $\varrho(G)<1$. Since $|I-R A|=\left|I-R A_{c}+R\left(A_{c}-A\right)\right| \leq\left|I-R A_{c}\right|+|R| \Delta=G$, we have $\varrho(I-R A) \leq \varrho(G)<1$ which means that the matrix $R A=I-(I-R A)$ is nonsingular, hence A is nonsingular.
2) Next we prove that $\beta_{i} \geq \alpha_{i} \geq 1$ for each i. From the definition of h_{i} we have $m_{i}=(M G)_{i i}+1+h_{i} \geq$ $m_{i}\left|r_{i}\right|+1+h_{i}$ which can be easily rearranged to $2 m_{i}-1-\left(\left|r_{i}\right|+r_{i}\right) m_{i}-h_{i} \geq 1+\left(\left|r_{i}\right|-r_{i}\right) m_{i}+h_{i}$, giving $\beta_{i} \geq \alpha_{i}$; the inequality $\alpha_{i} \geq 1$ follows from the nonnegativity of m_{i} and h_{i}.
3) Let x solve $A x=b$ for some A, b with $\left|A-A_{c}\right| \leq \Delta$ and $\left|b-b_{c}\right| \leq \delta$. Then we have

$$
\begin{equation*}
x=(I-R A) x+R b=\left(I-R A_{c}\right) x+R\left(A_{c}-A\right) x+R b_{c}+R\left(b-b_{c}\right) \tag{3}
\end{equation*}
$$

and taking absolute values gives

$$
\begin{equation*}
|x| \leq G|x|+\left|R b_{c}\right|+|R| \delta . \tag{4}
\end{equation*}
$$

Let $i \in\{1, \ldots, n\}$. Then from the i th equation in (3) we have

$$
\begin{align*}
x_{i} & \leq\left(\left(I-R A_{c}\right) x\right)_{i}+(|R| \Delta|x|)_{i}+\left(R b_{c}\right)_{i}+(|R| \delta)_{i} \\
& =\left(G|x|+\left|R b_{c}\right|+|R| \delta\right)_{i}+\left(\left(I-R A_{c}\right) x-\left|I-R A_{c}\right| \cdot|x|+R b_{c}-\left|R b_{c}\right|\right)_{i} \tag{5}
\end{align*}
$$

Put $x^{\prime}=\left(\left|x_{1}\right|, \ldots,\left|x_{i-1}\right|, x_{i},\left|x_{i+1}\right|, \ldots,\left|x_{n}\right|\right)^{T}$. Then from (4) and (5) we have $x^{\prime} \leq G|x|+\left|R b_{c}\right|+|R| \delta+((I-$ $\left.\left.R A_{c}\right) x-\left|I-R A_{c}\right| \cdot|x|+R b_{c}-\left|R b_{c}\right|\right)_{i} e_{i}$, where e_{i} is the i th column of I. Premultiplying this inequality by the nonnegative vector $e_{i}^{T} M$ and using the matrix $H:=M-M G-I$, we obtain $\left(M x^{\prime}\right)_{i} \leq((M-H-I)|x|)_{i}+((I-$ $\left.\left.R A_{c}\right) x-\left|I-R A_{c}\right| \cdot|x|\right)_{i} m_{i}+\tilde{x}_{i}$ and consequently

$$
\begin{equation*}
\left(M\left(x^{\prime}-|x|\right)\right)_{i}+(H|x|)_{i}+\left|x_{i}\right|+\left(\left|I-R A_{c}\right| \cdot|x|-\left(I-R A_{c}\right) x\right)_{i} m_{i} \leq \tilde{x}_{i} . \tag{6}
\end{equation*}
$$

Since $\left(M\left(x^{\prime}-|x|\right)\right)_{i}=m_{i}\left(x_{i}-\left|x_{i}\right|\right),(H|x|)_{i} \geq h_{i}\left|x_{i}\right|$ and $\left(\left|I-R A_{c}\right| \cdot|x|-\left(I-R A_{c}\right) x\right)_{i} \geq\left|r_{i}\right| \cdot\left|x_{i}\right|-r_{i} x_{i}$, from (6) we finally obtain an inequality containing variable x_{i} only:

$$
\begin{equation*}
m_{i}\left(x_{i}-\left|x_{i}\right|\right)+h_{i}\left|x_{i}\right|+\left|x_{i}\right|+\left(\left|r_{i}\right| \cdot\left|x_{i}\right|-r_{i} x_{i}\right) m_{i} \leq \tilde{x}_{i} \tag{7}
\end{equation*}
$$

If $x_{i} \geq 0$, then this inequality becomes $\alpha_{i} x_{i} \leq \tilde{x}_{i}$, implying $x_{i} \leq \tilde{x}_{i} / \alpha_{i}$, and if $x_{i}<0$, then (7) turns into $\beta_{i} x_{i} \leq \tilde{x}_{i}$, giving $x_{i} \leq \tilde{x}_{i} / \beta_{i}$, which together yields

$$
\begin{equation*}
x_{i} \leq \max \left\{\tilde{x}_{i} / \alpha_{i}, \tilde{x}_{i} / \beta_{i}\right\} \tag{8}
\end{equation*}
$$

In this way we have obtained the upper bound in (2). To prove the lower one, notice that $-x$ satisfies $A(-x)=-b$, where $\left|A-A_{c}\right| \leq \Delta$ and $\left|(-b)-\left(-b_{c}\right)\right| \leq \delta$. Hence we can use the previously obtained result if we set $b_{c}:=-b_{c}$, which affects \tilde{x}_{i} only. Then from (8) we get $-x_{i} \leq \max \left\{-\underset{\sim}{x} i / \alpha_{i},-\underset{\sim}{x} i / \beta_{i}\right\}$ which, after premultiplying by -1 , gives the lower bound in (2).
4) Finally, to prove the optimality result for the case $A_{c}=I$ and $\varrho(\Delta)<1$, take $R=I$ and $M=(I-\Delta)^{-1}$, then $M \geq 0, G=\Delta$ and (1) is satisfied as an equation; moreover, for each i we have $r_{i}=h_{i}=0, \alpha_{i}=1, \beta_{i}=2 m_{i}-1$, hence (2) has the form

$$
\begin{equation*}
\min \left\{\underset{\sim}{x} i,{\underset{\sim}{x}}_{i}^{x_{i}} / \beta_{i}\right\} \leq x_{i} \leq \max \left\{\tilde{x}_{i}, \tilde{x}_{i} / \beta_{i}\right\} . \tag{9}
\end{equation*}
$$

To prove that the upper bound is really attained, let us fix an $i \in\{1, \ldots, n\}$ and define a diagonal matrix D by $D_{j j}=1$ if $j \neq i$ and $\left(b_{c}\right)_{j} \geq 0, D_{j j}=-1$ if $j \neq i$ and $\left(b_{c}\right)_{j}<0$, and $D_{j j}=1$ if $j=i$, and let $\tilde{b}=D b_{c}+\delta$. Then it can be easily verified that $\tilde{x}_{i}=(M \tilde{b})_{i}$ holds. First, define $x^{\prime}=D M \tilde{b}$. Since $M=(I-\Delta)^{-1}$ implies $\Delta M=M \Delta=M-I$, we have $(I-D \Delta D) x^{\prime}=D M \tilde{b}-D(M-I) \tilde{b}=D \tilde{b}=b_{c}+D \delta$, which means that x^{\prime} solves the system $(I-D \Delta D) x^{\prime}=$ $b_{c}+D \delta$ where $|(I-D \Delta D)-I|=\Delta,\left|\left(b_{c}+D \delta\right)-b_{c}\right|=\delta$ and $x_{i}^{\prime}=e_{i}^{T} D M \tilde{b}=e_{i}^{T} M \tilde{b}=(M \tilde{b})_{i}=\tilde{x}_{i}$, which shows that \tilde{x}_{i} is attained. Second, let $x^{\prime \prime}=D M\left(\tilde{b}-2\left(\tilde{x}_{i} / \beta_{i}\right) \Delta e_{i}\right)$ and define a diagonal matrix D^{\prime} by $D_{i i}^{\prime}=-1$ and $D_{j j}^{\prime}=D_{j j}$ otherwise. Then $\left(I-D \Delta D^{\prime}\right) D M=D M-D \Delta\left(I-2 e_{i} e_{i}^{T}\right) M=D M-D(M-I)+2 D \Delta e_{i} e_{i}^{T} M=D+2 D \Delta e_{i} e_{i}^{T} M$, hence $\left(I-D \Delta D^{\prime}\right) x^{\prime \prime}=\left(D+2 D \Delta e_{i} e_{i}^{T} M\right)\left(\tilde{b}-2\left(\tilde{x}_{i} / \beta_{i}\right) \Delta e_{i}\right)=D \tilde{b}+2 \tilde{x}_{i} D \Delta e_{i}\left(-\left(1 / \beta_{i}\right)+1-\left(2 / \beta_{i}\right)\left(m_{i}-1\right)\right)=D \tilde{b}=$ $b_{c}+D \delta$, which shows that $x^{\prime \prime}$ is a solution to the system $\left(I-D \Delta D^{\prime}\right) x^{\prime \prime}=b_{c}+D \delta$ where $\left|\left(I-D \Delta D^{\prime}\right)-I\right|=\Delta$, $\left|\left(b_{c}+D \delta\right)-b_{c}\right|=\delta$ and $x_{i}^{\prime \prime}=e_{i}^{T} D M\left(\tilde{b}-2\left(\tilde{x}_{i} / \beta_{i}\right) \Delta e_{i}\right)=\tilde{x}_{i}-2\left(\tilde{x}_{i} / \beta_{i}\right)\left(m_{i}-1\right)=\tilde{x}_{i} / \beta_{i}$. This proves that $\tilde{x}_{i} / \beta_{i}$ is attained, hence also the upper bound $\max \left\{\tilde{x}_{i}, \tilde{x}_{i} / \beta_{i}\right\}$ in (9) is attained. The proof for the lower bound follows from the result just obtained by applying it to the case $b_{c}:=-b_{c}$ as in the part 3).

The quantities r_{i} and h_{i} correct the influence of the approximate inverses R and M; they vanish if $R=A_{c}^{-1}$ and $M=(I-G)^{-1} \geq 0$ are used. The last statement of the theorem is Hansen's optimality result [1] as reformulated in [2]. Matrices R and $M \geq 0$ satisfying (1) exist if and only if $\varrho\left(\left|A_{c}^{-1}\right| \Delta\right)<1$ holds (Theorem 1 in [3]).

Acknowledgements

This work was supported by the Czech Republic Grant Agency under grant GAČR 201/98/0222.

References

1 Hansen, E. R.: Bounding the solution of interval linear equations. SIAM J. Numer. Anal. 29 (1992), 1493-1503.
2 Rohn, J.: Cheap and tight bounds: The recent result by E. Hansen can be made more efficient. Interval Computations 4 (1993), 13-21.

3 Rex, G., Rohn, J.: A note on checking regularity of interval matrices. Linear and Multilinear Algebra 39 (1995), 259-262.

Addresses: Jıří Rohn, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 11800 Prague, and Institute of Computer Science, Academy of Sciences, Pod vodárenskou věží 2, 18207 Prague, Czech Republic.

[^0]: Pod Vodárenskou věží 2, 18207 Prague 8, phone: +420 266051 111, fax: +420286585789 ,

[^1]: ${ }^{1}$ This work was supported by the Institutional Research Plan AV0Z10300504.

