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Abstract:

This is an unpublished two-page manuscript from 2000. We describe explicit formulae for com-
ponentwise bounds on solution of a system of linear equations Acx = bc (Ac square) under per-
turbation of all data. To make the result numerically tractable, we avoid use of exact inverses,
using instead some matrices R and M required only to satisfy certain inequalities. Hansen’s
optimality result is a special case of our theorem.

Keywords:
Linear equations, perturbation, bounds.

1This work was supported by the Institutional Research Plan AV0Z10300504.



Rohn, J.

A perturbation theorem for linear equations

We describe explicit formulae for componentwise bounds on solution of a system of linear equations Acx = bc (Ac

square) under perturbation of all data. To make the result numerically tractable, we avoid use of exact inverses,
using instead some matrices R and M required only to satisfy certain inequalities. Hansen’s optimality result is
a special case of our theorem.

Notations used: I is the unit matrix, % denotes the spectral radius, for A = (aij) we denote |A| = (|aij |) and
inequalities are understood componentwise. To save space, we write a/b instead of a

b .

T h e o r e m. Let M ≥ 0 and R be arbitrary matrices satisfying

MG + I ≤ M, (1)

where G = |I −RAc|+ |R|∆. Then for each A and b such that |A−Ac| ≤ ∆ and |b− bc| ≤ δ, A is nonsingular and
the solution of the system Ax = b satisfies for each i ∈ {1, . . . , n}

min{xi
˜

/αi, xi
˜

/βi} ≤ xi ≤ max{x̃i/αi, x̃i/βi}, (2)

where

xi
˜

= −(M(|Rbc|+ |R|δ))i + mi(Rbc + |Rbc|)i

x̃i = (M(|Rbc|+ |R|δ))i + mi(Rbc − |Rbc|)i

αi = 1 + (|ri| − ri)mi + hi

βi = 2mi − 1− (|ri|+ ri)mi − hi

mi = Mii

ri = (I −RAc)ii

hi = (M −MG− I)ii

and βi ≥ αi ≥ 1. Moreover, if Ac = I and %(∆) < 1 and if we take R = I and M = (I −∆)−1, then the bounds (2)
are exact (i.e., attained).

Proof. 1) First we prove that each matrix A with |A−Ac| ≤ ∆ is nonsingular. Premultiplying the inequality
(1) by the nonnegative matrix G yields MG2 + G + I ≤ MG + I ≤ M and by induction

∑k
j=0 Gj ≤ MGk+1 +∑k

j=0 Gj ≤ M for each k ≥ 0, hence
∑∞

0 Gj is convergent which, as well known, implies that %(G) < 1. Since
|I −RA| = |I −RAc + R(Ac −A)| ≤ |I −RAc|+ |R|∆ = G, we have %(I −RA) ≤ %(G) < 1 which means that the
matrix RA = I − (I −RA) is nonsingular, hence A is nonsingular.

2) Next we prove that βi ≥ αi ≥ 1 for each i. From the definition of hi we have mi = (MG)ii + 1 + hi ≥
mi|ri|+ 1 + hi which can be easily rearranged to 2mi− 1− (|ri|+ ri)mi−hi ≥ 1 + (|ri| − ri)mi + hi, giving βi ≥ αi;
the inequality αi ≥ 1 follows from the nonnegativity of mi and hi.

3) Let x solve Ax = b for some A, b with |A−Ac| ≤ ∆ and |b− bc| ≤ δ. Then we have

x = (I −RA)x + Rb = (I −RAc)x + R(Ac −A)x + Rbc + R(b− bc) (3)

and taking absolute values gives

|x| ≤ G|x|+ |Rbc|+ |R|δ. (4)

Let i ∈ {1, . . . , n}. Then from the ith equation in (3) we have

xi ≤ ((I −RAc)x)i + (|R|∆|x|)i + (Rbc)i + (|R|δ)i

= (G|x|+ |Rbc|+ |R|δ)i + ((I −RAc)x− |I −RAc| · |x|+ Rbc − |Rbc|)i. (5)



Put x′ = (|x1|, . . . , |xi−1|, xi, |xi+1|, . . . , |xn|)T . Then from (4) and (5) we have x′ ≤ G|x| + |Rbc| + |R|δ + ((I −
RAc)x − |I − RAc| · |x| + Rbc − |Rbc|)iei, where ei is the ith column of I. Premultiplying this inequality by the
nonnegative vector eT

i M and using the matrix H := M −MG− I, we obtain (Mx′)i ≤ ((M −H − I)|x|)i + ((I −
RAc)x− |I −RAc| · |x|)imi + x̃i and consequently

(M(x′ − |x|))i + (H|x|)i + |xi|+ (|I −RAc| · |x| − (I −RAc)x)imi ≤ x̃i. (6)

Since (M(x′ − |x|))i = mi(xi − |xi|), (H|x|)i ≥ hi|xi| and (|I −RAc| · |x| − (I −RAc)x)i ≥ |ri| · |xi| − rixi, from (6)
we finally obtain an inequality containing variable xi only:

mi(xi − |xi|) + hi|xi|+ |xi|+ (|ri| · |xi| − rixi)mi ≤ x̃i. (7)

If xi ≥ 0, then this inequality becomes αixi ≤ x̃i, implying xi ≤ x̃i/αi, and if xi < 0, then (7) turns into βixi ≤ x̃i,
giving xi ≤ x̃i/βi, which together yields

xi ≤ max{x̃i/αi, x̃i/βi}. (8)

In this way we have obtained the upper bound in (2). To prove the lower one, notice that −x satisfies A(−x) = −b,
where |A − Ac| ≤ ∆ and |(−b) − (−bc)| ≤ δ. Hence we can use the previously obtained result if we set bc := −bc,
which affects x̃i only. Then from (8) we get −xi ≤ max{−xi

˜
/αi, −xi

˜
/βi} which, after premultiplying by −1, gives

the lower bound in (2).
4) Finally, to prove the optimality result for the case Ac = I and %(∆) < 1, take R = I and M = (I −∆)−1,

then M ≥ 0, G = ∆ and (1) is satisfied as an equation; moreover, for each i we have ri = hi = 0, αi = 1, βi = 2mi−1,
hence (2) has the form

min{xi
˜

, xi
˜

/βi} ≤ xi ≤ max{x̃i, x̃i/βi}. (9)

To prove that the upper bound is really attained, let us fix an i ∈ {1, . . . , n} and define a diagonal matrix D by
Djj = 1 if j 6= i and (bc)j ≥ 0, Djj = −1 if j 6= i and (bc)j < 0, and Djj = 1 if j = i, and let b̃ = Dbc +δ. Then it can
be easily verified that x̃i = (Mb̃)i holds. First, define x′ = DMb̃. Since M = (I−∆)−1 implies ∆M = M∆ = M−I,
we have (I−D∆D)x′ = DMb̃−D(M − I)b̃ = Db̃ = bc +Dδ, which means that x′ solves the system (I−D∆D)x′ =
bc +Dδ where |(I−D∆D)−I| = ∆, |(bc +Dδ)− bc| = δ and x′i = eT

i DMb̃ = eT
i Mb̃ = (Mb̃)i = x̃i, which shows that

x̃i is attained. Second, let x′′ = DM(b̃− 2(x̃i/βi)∆ei) and define a diagonal matrix D′ by D′
ii = −1 and D′

jj = Djj

otherwise. Then (I −D∆D′)DM = DM −D∆(I − 2eie
T
i )M = DM −D(M − I) + 2D∆eie

T
i M = D + 2D∆eie

T
i M ,

hence (I −D∆D′)x′′ = (D + 2D∆eie
T
i M)(b̃− 2(x̃i/βi)∆ei) = Db̃+2x̃iD∆ei(−(1/βi)+ 1− (2/βi)(mi− 1)) = Db̃ =

bc + Dδ, which shows that x′′ is a solution to the system (I −D∆D′)x′′ = bc + Dδ where |(I −D∆D′) − I| = ∆,
|(bc + Dδ) − bc| = δ and x′′i = eT

i DM(b̃ − 2(x̃i/βi)∆ei) = x̃i − 2(x̃i/βi)(mi − 1) = x̃i/βi. This proves that x̃i/βi is
attained, hence also the upper bound max{x̃i, x̃i/βi} in (9) is attained. The proof for the lower bound follows from
the result just obtained by applying it to the case bc := −bc as in the part 3). 2

The quantities ri and hi correct the influence of the approximate inverses R and M ; they vanish if R = A−1
c

and M = (I−G)−1 ≥ 0 are used. The last statement of the theorem is Hansen’s optimality result [1] as reformulated
in [2]. Matrices R and M ≥ 0 satisfying (1) exist if and only if %(|A−1

c |∆) < 1 holds (Theorem 1 in [3]).
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