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We consider a problem of determining the component-wise 
distance (called the radius) of a linear system of equations or 
inequalities to a system that is either solvable or unsolvable. 
We propose explicit characterization of these radii and 
show relations between them. Then the radii are classified 
in the polynomial vs. NP-hard manner. We also present 
a generalization to an arbitrary linear system consisting 
from both equations and inequalities with both free and 
nonnegative variables. Eventually, we extend the concept of 
the component-wise distance to a non-uniform one.
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1. Introduction

We start with two motivation problems:

• Total least squares. An overdetermined system Ax = b is typically unsolvable, and 
the total least square solution is a solution of (A + A′)x = b + b′, where (A′ | b′) is 
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minimized in some matrix norm. Usually, the Frobenius norm is utilized, however, 
other norms can be employed as well [1,2]. For instance, [3] used the Chebyshev 
norm.

• Radius of nonsingularity. Given A ∈ R
n×n, we ask what is the distance to the nearest 

singular matrix. Herein, usually the Chebyshev norm is considered [4–6].

The common denominator of these two problems is that, given a linear algebraic problem, 
we want to find the minimal perturbation of data (in some matrix norm) such that the 
problem satisfies some property. In this paper, we focus on a very basic property of 
solvability and unsolvability of linear systems of equations and inequalities subject to 
perturbations with minimal Chebyshev norm.

Notation. The Chebyshev (maximum) matrix norm of A is ‖A‖1,∞ := maxi,j |ai,j |. 
Further, E and e stand for the matrix and the vector of ones, respectively, and ek for 
the kth canonical unit vector. For a matrix A, we use Ai∗ and A∗j to denote its ith row 
and jth column, respectively, and r+ := max{0, r} denotes the positive part of a real r. 
We say that a system of equations or inequalities is solvable if it has a solution, and it 
is feasible if it has a non-negative solution.

Problem formulation. In this paper, we will deal with the following radii of (un)solvability; 
in particular, we discuss their explicit characterization, computational complexity and 
other properties.

Definition 1. For a system Ax = b we introduce the radii of solvability as follows

ru= := inf{‖(A′ | b′)‖1,∞; (A + A′)x = b + b′ is solvable},

rs= := inf{‖(A′ | b′)‖1,∞; (A + A′)x = b + b′ is unsolvable},

ri= := inf{‖(A′ | b′)‖1,∞; (A + A′)x = b + b′ is feasible},

rf= := inf{‖(A′ | b′)‖1,∞; (A + A′)x = b + b′ is infeasible}.

For a system Ax ≤ b we introduce the radii of solvability as follows

ru≤ := inf{‖(A′ | b′)‖1,∞; (A + A′)x ≤ b + b′ is solvable},

rs≤ := inf{‖(A′ | b′)‖1,∞; (A + A′)x ≤ b + b′ is unsolvable},

ri≤ := inf{‖(A′ | b′)‖1,∞; (A + A′)x ≤ b + b′ is feasible},

rf≤ := inf{‖(A′ | b′)‖1,∞; (A + A′)x ≤ b + b′ is infeasible}.

Preliminaries. Our approach is mostly based on interval computation. By an interval 
matrix we mean a family of matrices

A := [A,A] = {A ∈ R
m×n; A ≤ A ≤ A},
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where A ≤ A are given and inequalities between matrices are understood entrywise. The 
midpoint and radius matrices of A are defined as

Ac := 1
2(A + A), AΔ := 1

2(A−A).

Interval vectors are defined and denoted accordingly. An interval linear system of equa-
tions, denoted briefly as Ax = b, is a family of linear systems

Ax = b, A ∈ A, b ∈ b.

A solution of this interval system is a solution of any linear system belonging to this 
family. Correspondingly, we define an interval system of inequalities and their solutions.

Solutions of interval equations are characterized by the Oettli–Prager theorem [7]
and solutions of interval inequalities by the Gerlach theorem [8]. For corollaries and 
generalization see [9,10].

Theorem 1 (Oettli–Prager, 1964). A vector x ∈ R
n is a solution of Ax = b if and only 

if

|Acx− bc| ≤ AΔ|x| + bΔ. (1)

Theorem 2 (Gerlach, 1981). A vector x ∈ R
n is a solution of Ax ≤ b if and only if

Acx ≤ AΔ|x| + b. (2)

We will also utilize Farkas lemma in several forms; see [9]. In fact, Lemma 1 is not 
a Farkas-type statement since it considers only linear equations, but thematically it 
belongs to these results.

Lemma 1. A system Ax = b is unsolvable if and only if the system

AT y = 0, bT y = −1

is solvable.

Lemma 2. A system Ax = b is infeasible if and only if the system

AT y ≥ 0, bT y ≤ −1

is solvable.

Lemma 3. A system Ax ≤ b is unsolvable if and only if the system

AT y = 0, bT y = −1

is feasible.
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Lemma 4. A system Ax ≤ b is infeasible if and only if the system

AT y ≥ 0, bT y ≤ −1

is feasible.

2. Results

2.1. Characterization

Theorem 3. We have

ru= = min
x

‖Ax− b‖∞
‖x‖1 + 1 ,

rs= = min
y �=0

‖(yTA, yT b + 1)‖∞
‖y‖1

,

ri= = min
x≥0

‖Ax− b‖∞
‖x‖1 + 1 ,

rf= = min
y �=0

‖(−yTA, yT b + 1)+‖∞
‖y‖1

.

Proof. In view of Theorem 1, the value of ru= can be expressed as

ru= = inf{δ ≥ 0; |Ax− b| ≤ δE|x| + δe is solvable},

from which

ru= = min
x

max
i

|Ax− b|i
eT |x| + 1 = min

x

‖Ax− b‖∞
‖x‖1 + 1 .

In view of Theorem 1 and Lemma 1, the value of rs= can be expressed as

rs= = inf{δ ≥ 0; |AT y| ≤ δE|y|, |bT y + 1| ≤ δeT |y| is solvable},

from which

rs= = min
y �=0

max{‖AT y‖∞, |bT y + 1|}
eT |y| = min

y �=0

‖(yTA, yT b + 1)‖∞
‖y‖1

.

In view of Theorem 1, the value of ri= can be expressed as

ri= = inf{δ ≥ 0; |Ax− b| ≤ δE|x| + δe, is feasible}, (3)

from which
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ri= = min
x≥0

max
i

|Ax− b|i
eT |x| + 1 = min

x≥0

‖Ax− b‖∞
‖x‖1 + 1 .

In view of Theorem 2 and Lemma 2, the value of rf= can be expressed as

rf= = inf{δ ≥ 0; −AT y ≤ δE|y|, bT y ≤ δeT |y| − 1 is solvable},

from which

rf= = min
y �=0

max{0,maxi(−AT y)i, bT y + 1}
eT |y|

= min
y �=0

‖(−yTA, yT b + 1)+‖∞
‖y‖1

. �
Notice that the expression for ru= already appeared in [3].

Theorem 4. We have

ru≤ = min
x

‖(Ax− b)+‖∞
‖x‖1 + 1 ,

rs≤ = min
y≥0, y �=0

‖(yTA, yT b + 1)‖∞
‖y‖1

,

ri≤ = min
x≥0

‖(Ax− b)+‖∞
‖x‖1 + 1 ,

rf≤ = min
y≥0, y �=0

‖(−yTA, yT b + 1)+‖∞
‖y‖1

.

Proof. In view of Theorem 2, the value of ru≤ can be expressed as

ru≤ = inf{δ ≥ 0; Ax− b ≤ δE|x| + δe is solvable},

from which

ru≤ = min
x

‖(Ax− b)+‖∞
‖x‖1 + 1 .

In view of Theorem 1 and Lemma 3, the value of rs≤ can be expressed as

rs≤ = inf{δ ≥ 0; |AT y| ≤ δE|y|, |bT y + 1| ≤ δeT |y| is feasible}, (4)

from which

rs≤ = min
y≥0, y �=0

max{‖AT y‖∞, |bT y + 1|}
eT |y| = min

y≥0, y �=0

‖(yTA, yT b + 1)‖∞
‖y‖1

.
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In view of Theorem 2, the value of ri≤ can be expressed as

ri≤ = inf{δ ≥ 0; Ax− b ≤ δE|x| + δe is feasible}, (5)

from which

ri≤ = min
x≥0

‖(Ax− b)+‖∞
‖x‖1 + 1 .

In view of Theorem 2 and Lemma 4, the value of rf≤ can be expressed as

rf≤ = inf{δ ≥ 0; −AT y ≤ δE|y|, bT y + 1 ≤ δeT |y| is feasible}, (6)

from which

rf≤ = min
y≥0, y �=0

max{0,maxi(−AT y)i, bT y + 1}
eT |y|

= min
y≥0, y �=0

‖(−yTA, yT b + 1)+‖∞
‖y‖1

. �
Notice that the characterizations from the above Theorems 3 and 4 already appeared 

in the technical report [11], but without proofs. So this paper can be viewed as a publi-
cation of those results, among many others.

2.2. Properties

The following theorem shows some relations between the radii of solvability.

Theorem 5. We have

(i) ru= for Ax = b is equal to ru≤ for Ax ≤ b, −Ax ≤ −b,
(ii) ri= for Ax = b is equal to ri≤ for Ax ≤ b, −Ax ≤ −b,
(iii) rs= for Ax = b is equal to rf= for Ax1 −Ax2 = b,
(iv) rs≤ for Ax ≤ b is equal to rf≤ for Ax1 −Ax2 ≤ b.

Proof. In the following, we will use the fact that the solutions to systems Ax = b and 
Ax ≤ b, −Ax ≤ −b are the same [12,13].

(i) We have

ru= = inf{δ ≥ 0; [A− δE,A + δE]x = [b− δe, b + δe] is solvable}

= inf{δ ≥ 0; [A− δE,A + δE]x ≤ [b− δe, b + δe],

− [A− δE,A + δE]x ≤ −[b− δe, b + δe] is solvable}

= ru≤.
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(ii) We have

ri= = inf{δ ≥ 0; [A− δE,A + δE]x = [b− δe, b + δe] is feasible}

= inf{δ ≥ 0; [A− δE,A + δE]x ≤ [b− δe, b + δe],

− [A− δE,A + δE]x ≤ −[b− δe, b + δe] is feasible}

= ri≤.

(iii) We have by Lemmas 1 and 2

rs= = inf{δ ≥ 0; [A− δE,A + δE]T y = 0, [b− δe, b + δe]T y ≤ −1 is solvable}

= inf{δ ≥ 0; [A− δE,A + δE]T y ≤ 0, −[A− δE,A + δE]T y ≤ 0,

[b− δe, b + δe]T y = −1 is solvable}

= rf=.

(iv) We have by Lemmas 3 and 4

rs≤ = inf{δ ≥ 0; [A− δE,A + δE]T y = 0, [b− δe, b + δe]T y ≤ −1 is feasible}

= inf{δ ≥ 0; [A− δE,A + δE]T y ≤ 0, −[A− δE,A + δE]T y ≤ 0,

[b− δe, b + δe]T y = −1 is feasible}

= rf≤. �
Comment. The above statements (i) and (ii) are by far not obvious. Their proof uses 

the fact that the solutions to systems Ax = b and Ax ≤ b, −Ax ≤ −b are the same 
[12,13]. Similar transformations, however, needn’t be equivalent since they cause the so 
called dependencies between interval parameters. This is also why we cannot state a 
simple analogy of these statements for the other radii of solvability and the statements 
(iii) and (iv) have different form.

Some cheap upper bounds for the radii are mentioned now.

Theorem 6. We have

(i) ru= ≤ ri= ≤ minj{maxi |aij |, maxi |bi|},
(ii) rf= ≤ rs= ≤ mini maxj |aij |,
(iii) ru≤ ≤ ri≤ ≤ minj{maxi(aij)+, maxi(−bi)+},
(iv) rf≤ ≤ rs≤ ≤ mini maxj{|aij |, |bi|}.

Proof. (i) If the minimum is equal to maxi |bi|, then put b′ := −b and the vector x := 0
solves Ax = b +b′. Otherwise, the minimum is equal to maxi |aij | for some j. In this case, 
put b′ := 0 and A′ := (−A∗j + εb)eTj . Then the vector x := 1

εej solves (A +A′)x = b + b′

for every ε > 0.
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(ii) Suppose that the minimum is attained at i and consider the ith equation 
Ai∗x = bi. Letting A′

i∗ := −Ai∗, the equation (A + A′)i∗x = bi reads 0Tx = b, which is 
either unsolvable or becomes unsolvable after infinitesimal perturbation of the right-hand 
side.

(iii) If the minimum is equal to maxi(−bi)+, then put b′ := (−b)+ and the vector 
x := 0 solves Ax ≤ b + b′. Otherwise, the minimum is equal to maxi(aij)+ for some j. 
In this case, put b′ := 0 and A′ := (−(A∗j)+ − εe)eTj . Then the vector x := maxi |bi|

ε ej
solves (A + A′)x ≤ b + b′ for every ε > 0.

(iv) Suppose that the minimum is attained at i and consider the ith inequality Ai∗x ≤
bi. Put b′i := −bi − ε and A′

i∗ := −Ai∗. Then the inequality (A +A′)i∗x ≤ (b + b′)i reads 
0Tx ≤ −ε, which is unsolvable for any ε > 0. �

Another basic properties are listed below. We denote by r(A, b) the corresponding 
radius (of solvability, unsolvability, . . . ) for a system with the constraint matrix A and 
the right-hand side vector b.

Theorem 7. We have

(i) For every α ∈ R and r ∈ {ru=, rs=, ri=, rf=} we have r(αA, αb) = |α|r(A, b).
(ii) For every α ≥ 0 and r ∈ {ru≤, rs≤, ri≤, rf≤} we have r(αA, αb) = αr(A, b).
(iii) For every r ∈ {ru=, ri=, ru≤, ri≤} we have r(

(
A
B

)
, 
(
b
c

)
) ≥ max{r(A, b), r(B, c)}.

(iv) For every r ∈ {rs=, rf=, rs≤, rf≤} we have r(
(
A
B

)
, 
(
b
c

)
) ≤ min{r(A, b), r(B, c)}.

Proof. Obvious. �
In [3], it was shown that ru= needn’t be attained; that is, the corresponding system 

from the definition of ru= is solvable for some A′, b′ such that ‖(A′ | b′)‖1,∞ > ru=, but 
for no A′, b′ such that ‖(A′ | b′)‖1,∞ = ru=. Similar properties have solvability-type radii. 
For instance, rs= = 0 for

A =
(

1 1
1 1

)
, b =

(
1
1

)
,

but the zero is not attained.
On the other hand, rs= is attained as long as A is nonsingular. In this case, the nearest 

singular matrix in (1, ∞)-norm is attained [4,5,14], and since the norm must be positive, 
the corresponding system is unsolvable for a suitable right-hand side.

2.3. Complexity

Theorem 8. We have

(i) computing ru= is an NP-hard problem,
(ii) computing rs= is an NP-hard problem,
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(iii) computing ri= is a polynomial problem,
(iv) computing rf= is an NP-hard problem.

Proof. We will use the following NP-hard problem: Let A ∈ R
n×n be nonsingular. In 

[5,14], it was shown that determining the so called radius of nonsingularity

d(A) := inf{‖A′‖1,∞; A + A′ is singular} (7)

is NP-hard.
(i) This case was already proved in [3], however, for the purpose of inapproximability 

results (Theorem 9) we show a different proof here.
Let A ∈ R

n×(n−1), b ∈ R
n, and suppose that (A | b) is nonsingular. We claim that 

d(A | b) = ru=. If a perturbation (Ã | b̃) is nonsingular, then Ãx = b′ is unsolvable. If 
(Ã | b̃) is singular, then either b̃ is in the image of Ã (meaning that Ãx = b̃ is solvable), 
or there is y ∈ R

n−1, yk �= 0, such that Ãy = 0. In this case, (Ã+ εb̃eTk )x = b̃ is solvable 
with ε > 0 arbitrary; a solution is x := 1

εyk
y.

(ii) Let A ∈ R
n×n be nonsingular. We will prove that d(A) = rs= for the system with 

the constraint matrix A and the right-hand side vector b := 0. If (A + A′)x = b′ is 
unsolvable, then A +A′ must be singular. Conversely, if A +A′ is singular, then there is 
a vector b′ not belonging to its image. Thus (A + A′)x = b′ is unsolvable, where b′ can 
be normalized such that ‖b′‖∞ < ε for any ε > 0.

(iii) Due to (3), ri= can be determined as

ri= = inf{δ ≥ 0; Ax− b ≤ δEx + δe, −Ax + b ≤ δEx + δe, x ≥ 0}.

This optimization problem has a form of a generalized linear fractional programming 
problem (GLFP), which is solvable in polynomial time using an interior point method 
[15,16].

(iv) By reduction from Theorem 8(ii) and using Theorem 5(iii). �
Theorem 9. We have

(i) computing ru≤ is an NP-hard problem,
(ii) computing rs≤ is a polynomial problem,
(iii) computing ri≤ is a polynomial problem,
(iv) computing rf≤ is a polynomial problem.

Proof. (i) By reduction from Theorem 8(i) and using Theorem 5(i).
(ii) Due to (4), rs≤ can be determined as

rs≤ = inf{δ ≥ 0; AT y ≤ δEy, −AT y ≤ δEy,

bT y + 1 ≤ δeT y, −bT y − 1 ≤ δeT y, y ≥ 0},

which meets the form of GLFP.



M. Hladík, J. Rohn / Linear Algebra and its Applications 503 (2016) 120–134 129
(iii) By (5), ri≤ can be expressed as

ri≤ = inf{δ ≥ 0; Ax− b ≤ δEx + δe, x ≥ 0},

which is again a GLFP.
(iv) Due to (6), rf≤ can be determined as

rf≤ = inf{δ ≥ 0; −AT y ≤ δEy, bT y + 1 ≤ δeT y, y ≥ 0},

which is again a GLFP. �
The NP-hardness results can be even more strengthened to inapproximability state-

ments.

Theorem 10. Unless P = NP, there is no polynomial algorithm to compute

(i) ru= with relative error 1
4 min(m, n + 1)−2,

(ii) rs= with relative error 1
4 min(m, n)−2,

(iii) rf= with relative error 1
4 min(m, 12n)−2,

(iv) rs≤ with relative error 1
4 min(1

2m, n + 1)−2.

Proof. In [5], it was shown that computing the radius of nonsingularity (7) is NP-hard 
even with relative error 1

4n
−2. The rest follows from the proofs of Theorems 8 and 9. �

On the other hand, the good news is that there is an effective algorithm provided a 
certain parameter of the problem is fixed.

Theorem 11. Let A ∈ R
m×n and b ∈ R

m. There is a polynomial algorithm to compute

(i) ru= and ru≤ provided the number of variables (n) is fixed,
(ii) rs= and rf= provided the number of equations (m) is fixed.

Proof. (i) As in the proof of Theorem 3, we have

ru= = inf{δ ≥ 0; |Ax− b| ≤ δE|x| + δe is solvable}.

Denoting s := sgn(x) ∈ {±1}n the sign vector of x, we can write |x| = diag(s)x, where 
diag(s) is the diagonal matrix with entries s1, . . . , sn. Then E|x| = E diag(s)x = esTx, 
and we can express ru= as

ru= = inf
s∈{±1}n

rs,
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where

rs = inf{δ ≥ 0; Ax− b ≤ δesTx + δe, −Ax + b ≤ δesTx + δe, diag(s)x ≥ 0}.

Thus, we reduced the problem of computing ru= to solving 2n problems of GLFP. This is 
a polynomial method as long as n is fixed.

Analogously, using

ru≤ = inf{δ ≥ 0; Ax− b ≤ δE|x| + δe is solvable},

and decomposing the space Rn according to the signs of the entries of x, we can express 
ru≤ in terms of solving 2n problems of GLFP.

(ii) From

rs= = inf{δ ≥ 0; |AT y| ≤ δE|y|, |bT y + 1| ≤ δeT |y| is solvable}

we can find rs= by solving 2m problems of GLFP (since y ∈ R
m) and similarly for rf=

using

rf= = inf{δ ≥ 0; −AT y ≤ δE|y|, bT y ≤ δeT |y| − 1 is solvable}. �
3. Extensions

3.1. General linear systems

Consider a general linear system in the form

Ax + By = b, Cx + Dy ≤ d, x ≥ 0, (8)

comprising both equations and inequalities, and consider both the concepts of solvability 
and feasibility. Then the radius of unsolvability

ru := inf
{∥∥∥∥

(
A′ B′ b′

C ′ D′ d′

)∥∥∥∥
1,∞

; (A + A′)x + (B + B′)y = b + b′,

(C + C ′)x + (D + D′)y ≤ d + d′, x ≥ 0}

generalizes ru=, ri=, ru≤, ri≤, and the radius of solvability

rs := inf
{∥∥∥∥

(
A′ B′ b′

C ′ D′ d′

)∥∥∥∥
1,∞

; (A + A′)x + (B + B′)y = b + b′,

(C + C ′)x + (D + D′)y ≤ d + d′, x ≥ 0 is unsolvable}

generalizes rs=, rf=, rs≤, r
f
≤.
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In order to characterize ru, rs we utilize the following description of the general interval 
linear system from [10].

Theorem 12. The solution set of

Ax + By = b, Cx + Dy ≤ d, x ≥ 0, (9)

is described by

|Acx + Bcy − bc| ≤ AΔx + BΔ|y| + bΔ,

Ccx + Dcy − dc ≤ CΔx + DΔ|y| + dΔ, x ≥ 0.

Theorem 13. We have

ru = min
x≥0,y

max{‖Ax + By − b‖∞, ‖(Cx + Dy − d)+‖∞}
‖x‖1 + ‖y‖1 + 1 ,

rs = min
q≥0,p,(p,q) �=(0,0)

max{‖(−AT p− CT q)+‖∞, ‖BT p + DT q‖∞, |bT p + dT q + 1|}
‖p‖1 + ‖q‖1

.

Proof. In view of Theorem 12, the value of ru can be expressed as

ru = inf{δ ≥ 0; |Ax + By − b| ≤ δEx + δE|y| + δe,

Cx + Dy − d ≤ δEx + δE|y| + δe, x ≥ 0},

from which the formula for ru follows.
By Farkas lemma (see the variant from [10]), the system (8) is not solvable iff and 

only if the system

AT p + CT q ≥ 0, BT p + DT q = 0, bT p + dT q = −1, q ≥ 0

is solvable. Hence by Theorem 12, the value of rs can be expressed as

rs = inf{δ ≥ 0; −AT p− CT q ≤ δE|p| + δEq,

|BT p + DT q| ≤ δE|p| + δEq,

|bT p + dT q + 1| ≤ δE|p| + δEq, q ≥ 0},

from which the formula for ru follows. �
We can easily generalize the bounds from Theorem 6 as follows.

Theorem 14. We have

(i) ru ≤ minj,� {maxi,k{|bi|, (−dk)+|}, maxi,k{|aij |, (ci�)+}, maxi,k{|bi�|, (dk�)+}},
(ii) rs ≤ mini,k {maxj,�{|aij |, |bi�|}, maxj,�{|ckj |, |dk�|, |dk|}}.
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Proof. (i) If the minimum is maxi,k{|bi|, (−dk)+|}, then x = 0, y = 0 solve the perturbed 
system with zero and non-negative right-hand side for equations and inequalities, respec-
tively. If the minimum is maxi,k{|aij |, (ci�)+}, then x = ε−1ej , y = 0 solve the perturbed 
system by A′ := −A + εbeTj , B′ := 0, b′ := 0, C ′ := (−C+

∗j − maxk |dk|εe)eTj , D′ := 0, 
d′ := 0, where ε > 0 is arbitrarily small. The third case is dealt with accordingly.

(ii) If the minimum is attained for an equation, then there is a perturbation leading to 
an unsolvable equation 0Tx +0T y = q for some q �= 0. If the minimum is attained for an 
inequality, then there is a perturbation leading to an unsolvable inequality 0Tx + 0T y ≤
−ε. �
3.2. Relative perturbations

Radii of solvability and unsolvability considered so far were defined as infimal δ ≥ 0
such that an independent perturbation of all system coefficients up to δ leads to unsolv-
able (resp. solvable) system. Now, we generalize this concept to more flexible perturba-
tions.

Consider the general linear system (8). Given nonnegative matrices A0, B0, C0, D0

and vectors b0, d0, consider the interval linear system (9) with interval matrices and 
vectors

A := [A− δA0, A + δA0], B := [B − δB0, B + δB0],

C := [C − δC0, C + δC0], D := [D − δD0, D + δD0],

b := [b− δb0, b + δb0], d := [d− δd0, d + δd0].

For (8), define the radius of unsolvability and solvability respectively as

ρu := inf{δ ≥ 0; the class (9) contains a solvable system},

ρs := inf{δ ≥ 0; the class (9) contains an unsolvable system}.

Clearly, ρu = ru and ρs = rs if all radii matrices and vectors A0, . . . , d0 consists of ones. 
Another important case is A0 = |A|, . . . , d0 = |d|, where ρu and ρs correspond to maximal 
percentage perturbation of coefficients such that the system (8) remains unsolvable and 
solvable, respectively. In this case, it is easy to show that ρu ≤ 1 since (9) will contain 
the system with zero coefficients. Analogously, ρs ≤ 1 since (9) will contain the system 
with zero coefficients in the left-hand side and arbitrarily small negative coefficients in 
the right-hand side.

Theorem 15. We have

ρu = min max
{

max |Ax + By − b|i
, max (Cx + Dy − d)j

}
,

x≥0,y,(x,y) �=(0,0) i (A0x + B0|y| + b0)i j (C0x + D0|y| + d0)j
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ρs = min
q≥0,p,(p,q) �=(0,0)

max
{

max
i

(−AT p− CT q)i
(AT

0 |p| + CT
0 q)i

,

max
j

|BT p + DT q|j
(BT

0 |p| + DT
0 q)j

,
|bT p + dT q + 1|
bT0 |p| + dT0 q

}
,

where 0
0 := 0 and a0 := ∞, a �= 0, by convention.

Proof. In view of Theorem 12, the value of ρu can be expressed as

ρu = inf{δ ≥ 0; |Ax + By − b| ≤ δA0x + δB0|y| + δb0,

Cx + Dy − d ≤ δC0x + δD0|y| + δd0, x ≥ 0},

from which the formula for ρu follows.
Analogously as in the proof of Theorem 13, the value of ρs can be expressed as

ρs = inf{δ ≥ 0; −AT p− CT q ≤ δAT
0 |p| + δCT

0 q,

|BT p + DT q| ≤ δBT
0 |p| + δDT

0 q,

|bT p + dT q + 1| ≤ δbT0 |p| + δdT0 q, q ≥ 0},

from which the formula for ρu follows. �
Remark 1. We could consider special cases of either equation, or inequalities, and dis-
tinguish (un)solvability and (in)feasibility as in Definition 1. Many properties from 
Section 2, however, are valid even in the context of more general perturbations con-
sidered here. For example, the polynomial cases from Theorems 8 and 9 remain valid 
since the problems reduce to GLFP.

As a generalization of Theorem 5, we can state that ρu will not change if we rewrite 
(9) as

Ax + By ≤ b, Ax + By ≥ b, Cx + Dy ≤ d, x ≥ 0,

where double appearances of A, B, and b are handled as independent interval objects. 
Analogously, ρs will not change if we rewrite (9) as

Ax + Bu−Bv = b, Cx + Du−Dv ≤ d, x, u, v ≥ 0,

where double appearances of B and D are considered as independent.

4. Conclusion

We introduced the concept of radii of (un)solvability for linear systems of equations 
and inequalities. It can be seen as a generalization of regression in Chebyshev norm to 
inequality systems.
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We characterized the radii by explicit formulae and discussed complexity questions, 
including inapproximability. Extensions to non-uniform perturbations were given, too.
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