Institute of Computer Science

 Academy of Sciences of the Czech Republic
Explicit Form of Matrices Q_{z} for an Interval Matrix with Unit Midpoint

Jiří Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1206
20.02.2014

Institute of Computer Science

 Academy of Sciences of the Czech Republic
Explicit Form of Matrices Q_{z} for an
 Interval Matrix with Unit Midpoint

Jiří Rohn ${ }^{\text {■ }}$
http：／／uivtx．cs．cas．cz／～rohn

Technical report No．V－1206
20．02．2014

Abstract：

We give three versions of explicit formulae for matrices Q_{z} for an interval matrix with unit mid－ point．${ }^{\square}$

Keywords：
Interval matrix，Q_{z} matrix，unit midpoint，explicit formula．

[^0]
1 Introduction

Matrices Q_{z}, first appearing in [可], may be best introduced by way of the following theorem.
Theorem 1. If an $n \times n$ interval matrix $\boldsymbol{A}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ is regular, ${ }^{\boldsymbol{\top}}$ then for each $z \in\{-1,1\}^{n}$ the nonlinear matrix equation

$$
\begin{equation*}
Q A_{c}-|Q| \Delta T_{z}=I \tag{1.1}
\end{equation*}
$$

has a unique matrix solution Q_{z}.
Comment. Here the absolute value of a matrix is understood entrywise, I is the identity matrix and $T_{z}=\operatorname{diag}(z)$ denotes the diagonal matrix with diagonal vector z.

Proof. Because \boldsymbol{A} is regular, its transpose $\boldsymbol{A}^{T}=\left\{A^{T} \mid A \in \boldsymbol{A}\right\}=\left[A_{c}^{T}-\Delta^{T}, A_{c}^{T}+\Delta^{T}\right]$ is also regular, hence by [[ll Thm. 5.1, Assertion (A3)] for each $z \in\{-1,1\}^{n}$ the equation

$$
\begin{equation*}
A_{c}^{T} B-T_{z} \Delta^{T}|B|=I \tag{1.2}
\end{equation*}
$$

has a unique matrix solution B_{z}. Then

$$
B_{z}^{T} A_{c}-\left|B_{z}^{T}\right| \Delta T_{z}=I,
$$

hence $Q_{z}=B_{z}^{T}$ solves ($\mathbb{\square}$), and its uniqueness follows from that of ($\mathbb{\square}$).
A general algorithm qzmatrix for computing Q_{z} based on the algorithm absvaleqn for solving absolute value equations was described in [回]. Neither this nor any other known result gives any clue about the shape of these matrices. In this report we describe an explicit form of matrices Q_{z} for interval matrices with unit midpoint, i.e., satisfying $A_{c}=I$. That is, we look for explicit form of the solution of the equation

$$
\begin{equation*}
Q-|Q| \Delta T_{z}=I \tag{1.3}
\end{equation*}
$$

where Δ is an arbitrary nonnegative matrix bound only by regularity requirement (see below). In this way we make a step towards our main goal, namely a new proof of the Hansen-Bliek-Rohn optimality result [[4].

2 Matrices Q_{z}

For a nonnegative square matrix Δ put

$$
M=(I-\Delta)^{-1}
$$

It is known that the following four assertions are equivalent:
(i) $[I-\Delta, I+\Delta]$ is regular,
(ii) $M \geq I$,
(iii) $M \geq 0$,
(iv) $\varrho(\Delta)<1$

[^1](see [畂, [च]). Thus any of (ii)-(iv) can be used as a regularity condition. We choose (ii) because we need the fact that each diagonal entry of M is greater or equal than one. Now we have the following explicit description of solution of the equation (ㄴ.3).

Theorem 2. Let $M \geq I$. Then for each $z \in\{-1,1\}^{n}$ the matrix Q_{z} is given rowwise by

$$
\left(Q_{z}\right)_{k \bullet}= \begin{cases}M_{k \bullet} T_{z} & \text { if } z_{k}=1 \tag{2.1}\\ \left(\left(\mu_{k}-1\right) M_{k \bullet}-\mu_{k} e_{k}^{T}\right) T_{z} & \text { if } z_{k}=-1\end{cases}
$$

where

$$
\mu_{k}=\frac{2 M_{k k}}{2 M_{k k}-1} \quad(k=1, \ldots, n)
$$

Comment. These formulae are not easy-to-derive ones. But once found, our task is greatly simplified because we are left with checking that Q_{z} given by ([.]) satisfies ([.]). $M_{k} \bullet$ denotes the k th row of M, and e_{k} stands for the k th column of the identity matrix I.

Proof. Given a $z \in\{-1,1\}^{n}$, define a matrix Q by

$$
Q_{k \bullet}=\left\{\begin{array}{ll}
M_{k \bullet} T_{z} & \text { if } z_{k}=1, \tag{2.2}\\
\left(\left(\mu_{k}-1\right) M_{k \bullet}-\mu_{k} e_{k}^{T}\right) T_{z} & \text { if } z_{k}=-1
\end{array} \quad(k=1, \ldots, n)\right.
$$

We shall prove that Q solves ([.3), which under the regularity assumption $M \geq I$ will mean that $Q=Q_{z}$. Let us note that this assumption implies that $2 M_{k k}-1 \geq 1$ and $\mu_{k}>1$ for each k, and $M \Delta=M-I$. Take an arbitrary $k \in\{1, \ldots, n\}$. Now we have either $z_{k}=1$, or $z_{k}=-1$.

If $z_{k}=1$, then

$$
\begin{equation*}
|Q|_{k \bullet}=M_{k \bullet} \tag{2.3}
\end{equation*}
$$

hence

$$
\left(Q-|Q| \Delta T_{z}\right)_{k \bullet}=M_{k \bullet} T_{z}-M_{k \bullet} \Delta T_{z}=M_{k \bullet} T_{z}-\left(M_{k \bullet}-e_{k}^{T}\right) T_{z}=e_{k}^{T} T_{z}=z_{k} I_{k \bullet}=I_{k \bullet}
$$

so that

$$
\begin{equation*}
\left(Q-|Q| \Delta T_{z}\right)_{k \bullet}=I_{k \bullet} \tag{2.4}
\end{equation*}
$$

If $z_{k}=-1$, then ($\left.\overline{\boxed{2}} \mathbf{Z}\right)$ implies that

$$
\begin{equation*}
\left|Q_{k j}\right|=\left|\left(\mu_{k}-1\right) M_{k j} z_{j}\right|=\left(\mu_{k}-1\right) M_{k j} \tag{2.5}
\end{equation*}
$$

for each $j \neq k$, and since

$$
Q_{k k}=\left(\left(\mu_{k}-1\right) M_{k k}-\mu_{k}\right) z_{k}=\left(\frac{M_{k k}}{2 M_{k k}-1}-\frac{2 M_{k k}}{2 M_{k k}-1}\right) z_{k}=-\frac{M_{k k}}{2 M_{k k}-1} z_{k}
$$

we have

$$
\left|Q_{k k}\right|=\frac{M_{k k}}{2 M_{k k}-1}=\left(\mu_{k}-1\right) M_{k k}
$$

which together with (2.5) gives

$$
\begin{equation*}
|Q|_{k \bullet}=\left(\mu_{k}-1\right) M_{k \bullet} \tag{2.6}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\left(Q-|Q| \Delta T_{z}\right)_{k} \bullet & =\left(\left(\mu_{k}-1\right) M_{k \bullet}-\mu_{k} e_{k}^{T}\right) T_{z}-\left(\mu_{k}-1\right) M_{k \bullet} \Delta T_{z} \\
& =\left(\left(\mu_{k}-1\right) M_{k \bullet}-\mu_{k} e_{k}^{T}\right) T_{z}-\left(\mu_{k}-1\right)\left(M_{k \bullet}-e_{k}^{T}\right) T_{z} \\
& =-e_{k}^{T} T_{z}=-z_{k} I_{k \bullet}=I_{k \bullet}
\end{aligned}
$$

 its solution implies that $Q=Q_{z}$. This proves that Q_{z} is given by ((

As a by-product of the proof we obtain an explicit description of the matrix $\left|Q_{z}\right|$.
Theorem 3. Let $M \geq I$. Then for each $z \in\{-1,1\}^{n}$ the matrix $\left|Q_{z}\right|$ is given rowwise by

$$
\left|Q_{z}\right|_{k \bullet}=\left\{\begin{array}{ll}
M_{k \bullet} & \text { if } z_{k}=1, \\
\left(\mu_{k}-1\right) M_{k \bullet} & \text { if } z_{k}=-1
\end{array} \quad(k=1, \ldots, n)\right.
$$

Proof. These are simply the equations (2.3 B) and ($\mathrm{E.6}$).
Next we show that both Q_{z} and $\left|Q_{z}\right|$ can be given by compact one-line formulae that, however, may be seen less transparent than the former ones.

Theorem 4. Let $M \geq I$. Then for each $z \in\{-1,1\}^{n}$ the matrix Q_{z} and its absolute value are given by

$$
\begin{equation*}
Q_{z}=\max \left\{T_{z} M, T_{z}\left(\left(I-T_{\mu}\right) M+T_{\mu}\right)\right\} T_{z} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|Q_{z}\right|=\max \left\{T_{z} M, T_{z}\left(I-T_{\mu}\right) M\right\} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=\frac{2 \operatorname{diag}(M)}{2 \operatorname{diag}(M)-e} . \tag{2.9}
\end{equation*}
$$

Comment. Observe closely the equation ($\bar{\Sigma} \boldsymbol{Z}$): first the entrywise maximum of two matrices is taken, then the result is postmultiplied by T_{z}. In ($\mathbb{Z W}$) we use the Hadamard division of vectors so that

$$
\mu_{k}=\frac{2 M_{k k}}{2 M_{k k}-1} \quad(k=1, \ldots, n)
$$

as before (e is the vector of all ones).
Proof. For given $z \in\{-1,1\}^{n}$ set

$$
Q=\max \left\{T_{z} M, T_{z}\left(\left(I-T_{\mu}\right) M+T_{\mu}\right)\right\} T_{z}
$$

and consider the difference

$$
T_{z} M-T_{z}\left(\left(I-T_{\mu}\right) M+T_{\mu}\right)=T_{z} T_{\mu}(M-I)
$$

Because of $\mu>0$ and $M \geq I$ we have $T_{\mu}(M-I) \geq 0$, hence for each k there holds

$$
\left(T_{z} M\right)_{k \bullet} \geq\left(T_{z}\left(\left(I-T_{\mu}\right) M+T_{\mu}\right)\right)_{k \bullet}
$$

if $z_{k}=1$ and

$$
\left(T_{z} M\right)_{k \bullet} \leq\left(T_{z}\left(\left(I-T_{\mu}\right) M+T_{\mu}\right)\right)_{k} \bullet
$$

if $z_{k}=-1$. Thus

$$
Q_{k \bullet}=\left(T_{z} M\right)_{k \bullet} T_{z}=M_{k \bullet} T_{z}=\left(Q_{z}\right)_{k \bullet}
$$

if $z_{k}=1$ and

$$
Q_{k \bullet}=\left(T_{z}\left(\left(I-T_{\mu}\right) M+T_{\mu}\right)\right)_{k \bullet} T_{z}=\left(\left(\mu_{k}-1\right) M_{k \bullet}-\mu_{k} e_{k}^{T}\right) T_{z}=\left(Q_{z}\right)_{k \bullet}
$$

if $z_{k}=-1$, both by Theorem \square, hence $Q=Q_{z}$.
Similarly, for the matrix defined by

$$
Q_{a}=\max \left\{T_{z} M, T_{z}\left(I-T_{\mu}\right) M\right\}
$$

we have

$$
T_{z} M-T_{z}\left(I-T_{\mu}\right) M=T_{z} T_{\mu} M
$$

where $T_{\mu} M \geq 0$, hence

$$
\left(Q_{a}\right)_{k \bullet}=M_{k \bullet}=\left|Q_{z}\right|_{k \bullet}
$$

if $z_{k}=1$ and

$$
\left(Q_{a}\right)_{k \bullet}=\left(\mu_{k}-1\right) M_{k \bullet}=\left|Q_{z}\right|_{k \bullet}
$$

if $z_{k}=-1$, both by Theorem [], which means that $Q_{a}=\left|Q_{z}\right|$.
Finally, we bring about the utmost simplification.
Theorem 5. Let $M \geq I$. Then for each $z \in\{-1,1\}^{n}$ the matrix Q_{z} and its absolute value are given by

$$
Q_{z}=\left(D_{z}+T_{z}\right) M T_{z}-D_{z} T_{z}
$$

and

$$
\left|Q_{z}\right|=\left(D_{z}+T_{z}\right) M
$$

where

$$
D_{z}=\frac{1}{2}\left(I-T_{z}\right) T_{\mu}
$$

and

$$
\mu=\frac{2 \operatorname{diag}(M)}{2 \operatorname{diag}(M)-e}
$$

Proof. For a $z \in\{-1,1\}^{n}, D_{z}$ is a diagonal matrix such that $\left(D_{z}\right)_{k k}=0$ if $z_{k}=1$ and $\left(D_{z}\right)_{k k}=\mu_{k}$ otherwise, therefore the matrix Q defined by

$$
Q=\left(D_{z}+T_{z}\right) M T_{z}-D_{z} T_{z}
$$

satisfies

$$
Q_{k \bullet}=M_{k \bullet} T_{z}
$$

if $z_{k}=1$ and

$$
Q_{k \bullet}=\left(\mu_{k}-1\right) M_{k \bullet} T_{z}-\mu_{k} e_{k}^{T} T_{z}
$$

if $z_{k}=-1$, hence $Q=Q_{z}$ by Theorem \square. The proof for $\left|Q_{z}\right|$ follows the same line.

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125.
[2] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[3] J. Rohn, Systems of linear interval equations, Linear Algebra and Its Applications, 126 (1989), pp. 39-78.
[4] J. Rohn, Cheap and tight bounds: The recent result by E. Hansen can be made more efficient, Interval Computations, 4 (1993), pp. 13-21.
[5] J. Rohn, An algorithm for computing the hull of the solution set of interval linear equations, Linear Algebra and Its Applications, 435 (2011), pp. 193-201. प
[6] J. Rohn, Explicit inverse of an interval matrix with unit midpoint, Electronic Journal of Linear Algebra, 22 (2011), pp. 138-150. http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol22_pp138150.pdf.

[^0]: ${ }^{1}$ This work was supported with institutional support RVO：67985807．
 ${ }^{2}$ Above：logo of interval computations and related areas（depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$（Barth and Nuding［⿴囗十］））．

[^1]: ${ }^{3}$ I.e., each $A \in \boldsymbol{A}$ is nonsingular.

