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Abstract:

We present a new proof of the Hansen-Bliek-Rohn optimality result for interval linear equations
with unit midpoint.2
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1 Introduction

For a system of interval linear equations Ax = b, where A is an n× n interval matrix and
b is an interval n-vector, the interval hull is defined as

x(A,b) =
⋂

X(A,b)⊆[x,y]

[x, y],

where
X(A,b) = {x | Ax = b for some A ∈ A, b ∈ b },

i.e., as the narrowest interval vector containing the solution set X(A,b). Computing the
interval hull is NP-hard [11]. Yet it was shown by Hansen [3], Bliek [2] and Rohn [6] that
the hull can be expressed by relatively simple closed-form formulae in case that the system
matrix has unit midpoint, i.e., is of the form A = [I −∆, I + ∆], where I is the unit matrix.
However, the proof of this result is by no means straightforward. The formulae not using
interval arithmetic were proved in [6], [8] and those formulated in terms of interval arithmetic
by Ning and Kearfott [5] (using the result from [6]) and by Neumaier [4].

In this report we present another proof of the optimality result, based on a new char-
acterization of the interval hull (Theorem 1). We give an interval-arithmetic-free version
(Theorem 3) and an interval arithmetic version (Theorem 4), both in new formulations
aimed at minimizing the number of auxiliary variables.

Notation used: diag(M) denotes the diagonal of a matrix M , Mk• its kth row, Tz is the
diagonal matrix with diagonal vector z, a ◦ b stands for the Hadamard (entrywise) product
of vectors a, b and a/b for their Hadamard division, minimum/maximum of a finite number
of vectors is taken entrywise, I is the identity matrix and e is the vector of all ones.

2 Interval hull

We shall later make use of the following characterization of the interval hull.

Theorem 1. Let A = [Ac−∆, Ac +∆] be regular. Then for each z ∈ {−1, 1}n the matrix
equation

QAc − |Q|∆Tz = I

has a unique solution Qz and for each right-hand side b = [bc − δ, bc + δ] there holds

x(A,b) =
[

min
z∈{−1,1}n

(Qzbc − |Qz|δ), max
z∈{−1,1}n

(Qzbc + |Qz|δ)
]
. (2.1)

Proof. The first part of the theorem is the assertion of [10, Thm. 1], the second one follows
from [7, Thm. 2] if we take Z = {−1, 1}n there. 2

3 Matrices Qz

In this section we show that the matrices Qz can be expressed explicitly in case of an
interval matrix of the form A = [I −∆, I + ∆]. The result, as well as the subsequent ones,
is formulated in terms of the matrix

M = (I −∆)−1.
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The assumption M ≥ I is equivalent to regularity of [I −∆, I + ∆], see [10].

Theorem 2. Let M ≥ I. Then for each z ∈ {−1, 1}n the matrix Qz is given rowwise by

(Qz)k• =
{

Mk•Tz if zk = 1,
νk(Mk1, . . . ,−Mkk, . . . ,Mkn)Tz if zk = −1,

(3.1)

where
νk = 1

2Mkk−1 (k = 1, . . . , n).

Proof. The expression for zk = 1 is contained in [10, Thm. 2]. The formula for zk = −1
was given in the same theorem as

(Qz)k• = ((µk − 1)Mk• − µke
T
k )Tz,

where
µk = 2Mkk

2Mkk−1 (k = 1, . . . , n).

Considering the fact that

(µk − 1)Mk• − µke
T
k = (µk − 1)(Mk1, . . . ,Mkk − µk

µk−1 , . . . , Mkn)
= (µk − 1)(Mk1, . . . ,−Mkk, . . . , Mkn)
= νk(Mk1, . . . ,−Mkk, . . . ,Mkn),

we arrive at the desired result. 2

4 Optimality result

The Hansen-Bliek-Rohn optimality result gives an explicit formula for the interval hull of an
interval linear system of the form

Ix = b,

where I = [I −∆, I + ∆].

Theorem 3. Let M ≥ I. Then for each right-hand side b = [bc − δ, bc + δ], denoting
d = diag(M), x∗ = d ◦ bc and x∗ = M(|bc|+ δ), we have

x(I,b) = [min{x
˜
, x
˜
/(2d− e)}, max{x̃, x̃/(2d− e)}], (4.1)

where

x
˜

= x∗ − (x∗ − |x∗|),
x̃ = x∗ + (x∗ − |x∗|).

Comment. In (4.1) we use (twice) the Hadamard division of vectors.
Proof. Denote [x, x] = x(A,b). Let k ∈ {1, . . . , n}. We shall first derive a formula for xk.

From (2.1) we have

xk = max
z∈{−1,1}n

(Qzbc + |Qz|δ)k = max
z∈{−1,1}n

((Qz)k•bc + |Qz|k•δ),
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so that according to (3.1) for each z ∈ {−1, 1}n we must consider two cases: zk = 1 and
zk = −1.

If zk = 1, then by Theorem 2

(Qz)k•bc + |Qz|k•δ = Mk•Tzbc + Mk•δ

=
∑

j 6=k

Mkjzj(bc)j + Mkk(bc)k + Mk•δ

≤
∑

j 6=k

Mkj |(bc)j |+ Mkk(bc)k + Mk•δ.

Introducing the vector z(k) ∈ {−1, 1}n by

z(k)j =





1 if j = k,
1 if j 6= k and (bc)j ≥ 0,

−1 if j 6= k and (bc)j < 0
(j = 1, . . . , n),

we can write
∑

j 6=k

Mkj |(bc)j |+ Mkk(bc)k + Mk•δ = Mk•Tz(k)bc + Mk•δ = (Qz(k))k•bc + |Qz(k)|k•δ,

hence for each z ∈ {−1, 1}n with zk = 1 we have

(Qz)k•bc + |Qz|k•δ ≤ (Qz(k))k•bc + |Qz(k)|k•δ,

and the upper bound is obviously attained.
If zk = −1, then, again by Theorem 2,

(Qz)k•bc + |Qz|k•δ = νk(Mk1, . . . ,−Mkk, . . . , Mkn)Tzbc + νkMk•δ

= νk

∑

j 6=k

Mkjzj(bc)j + νkMkk(bc)k + νkMk•δ

≤ νk

∑

j 6=k

Mkj |(bc)j |+ νkMkk(bc)k + νkMk•δ

= νk(Mk1, . . . ,−Mkk, . . . , Mkn)Tz(k)bc + νkMk•δ
= (Qz(k))k•bc + |Qz(k)|k•δ

where we have employed the vector z(k) given by

z(k)j =




−1 if j = k,

1 if j 6= k and (bc)j ≥ 0,
−1 if j 6= k and (bc)j < 0

(j = 1, . . . , n),

hence for each z ∈ {−1, 1}n with zk = −1 we have

(Qz)k•bc + |Qz|k•δ ≤ (Qz(k))k•bc + |Qz(k)|k•δ,

and the upper bound is again obviously attained. In this way we have proved the formula

xk = max{Qz(k))k•bc + |Qz(k)|k•δ, (Qz(k))k•bc + |Qz(k)|k•δ}.
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Now,

(Qz(k))k•bc + |Qz(k)|k•δ =
∑

j 6=k

Mkj |(bc)j |+ Mkk(bc)k + Mk•δ

= Mk•(|bc|+ δ) + Mkk((bc)k − |bc|k)
= (x∗ + x∗ − |x∗|)k

= x̃k

and similarly

(Qz(k))k•bc + |Qz(k)|k•δ = νk

∑

j 6=k

Mkj |(bc)j |+ νkMkk(bc)k + νkMk•δ

= νk(Mk•(|bc|+ δ) + Mkk((bc)k − |bc|k))
= νk(x∗ + x∗ − |x∗|)k

= νkx̃k

which together gives
xk = max{x̃k, νkx̃k}.

Since
νkx̃k = x̃k/(2Mkk − 1),

we finally obtain
x = max{x̃, x̃/(2d− e)},

where we have used the Hadamard (entrywise) division of vectors.
To prove the formula for x, consider the system Ix = −b, where I = [I − ∆, I + ∆] as

before and −b = {−b | b ∈ b } = [−bc − δ,−bc + δ]. Then X(I,−b) = −X(I,b), hence
x(I,−b) = [−x,−x]. Now we can apply the previously derived formula for the upper bound
of the interval hull:

−x = max{−d ◦ bc + M(|bc|+ δ)− |d ◦ bc|, (−d ◦ bc + M(|bc|+ δ)− |d ◦ bc|)/(2d− e)},
hence

x = min{d ◦ bc −M(|bc|+ δ) + |d ◦ bc|, (d ◦ bc −M(|bc|+ δ) + |d ◦ bc|)/(2d− e)}
= min{x∗ − x∗ + |x∗|, (x∗ − x∗ + |x∗|)/(2d− e)}
= min{x

˜
, x
˜
/(2d− e)}.

This proves that

x(I,b) = [min{x
˜
, x
˜
/(2d− e)}, max{x̃, x̃/(2d− e)}].

2

Using the interval arithmetic, we can bring the result to yet simpler form.

Theorem 4. Let M ≥ I. Denoting d = diag(M), x∗ = d ◦ bc and x∗ = M(|bc| + δ), we
have

x(I,b) =
〈x∗, x∗ − |x∗|〉
〈d, d− e〉 . (4.2)
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Comment. In (4.2) we use the Hadamard (entrywise) division of interval vectors and
their midpoint-radius representation, i.e., 〈a, b〉 = [a− b, a + b].

Proof. Because x
˜
≤ x̃ and ν > 0, we can write (4.1) as

x(I,b) = [min{x
˜
/e, x

˜
/(2d− e), x̃/e, x̃/(2d− e)}, max{x

˜
/e, x

˜
/(2d− e), x̃/e, x̃/(2d− e)}],

which is the Hadamard division performed in interval arithmetic:

x(I,b) =
[x
˜
, x̃]

[e, 2d− e]
. (4.3)

Since
[x
˜
, x̃] = [x∗ − (x∗ − |x∗|), x∗ + (x∗ − |x∗|)] = 〈x∗, x∗ − |x∗|〉

and
[e, 2d− e] = 〈d, d− e〉,

(4.3) implies (4.2). 2

The Hansen-Bliek-Rohn optimality result should not be misunderstood for the Hansen-
Bliek-Rohn enclosure, see [9].
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