Institute of Computer Science Academy of Sciences of the Czech Republic

A New Proof of the Hansen-BliekRohn Optimality Result

Jiří Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1212
20.03.2014

Institute of Computer Science

 Academy of Sciences of the Czech Republic
A New Proof of the Hansen-BliekRohn Optimality Result

Jiríi Rohn ${ }^{11}$
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1212
20.03.2014

Abstract:
We present a new proof of the Hansen-Bliek-Rohn optimality result for interval linear equations with unit midpoint. ${ }^{[1}$

Keywords:
Interval linear equations, unit midpoint, Hansen-Bliek-Rohn optimality result.

[^0]
1 Introduction

For a system of interval linear equations $\mathbf{A} x=\mathbf{b}$, where \mathbf{A} is an $n \times n$ interval matrix and \mathbf{b} is an interval n-vector, the interval hull is defined as

$$
\mathbf{x}(\mathbf{A}, \mathbf{b})=\bigcap_{\mathbf{X}(\mathbf{A}, \mathbf{b}) \subseteq[x, y]}[x, y],
$$

where

$$
\mathbf{X}(\mathbf{A}, \mathbf{b})=\{x \mid A x=b \text { for some } A \in \mathbf{A}, b \in \mathbf{b}\}
$$

i.e., as the narrowest interval vector containing the solution set $\mathbf{X}(\mathbf{A}, \mathbf{b})$. Computing the interval hull is NP-hard [11]. Yet it was shown by Hansen [3], Bliek [2] and Rohn [6] that the hull can be expressed by relatively simple closed-form formulae in case that the system matrix has unit midpoint, i.e., is of the form $\mathbf{A}=[I-\Delta, I+\Delta]$, where I is the unit matrix. However, the proof of this result is by no means straightforward. The formulae not using interval arithmetic were proved in [6], [8] and those formulated in terms of interval arithmetic by Ning and Kearfott [5] (using the result from [6]) and by Neumaier [4].

In this report we present another proof of the optimality result, based on a new characterization of the interval hull (Theorem (1). We give an interval-arithmetic-free version (Theorem (3) and an interval arithmetic version (Theorem 4), both in new formulations aimed at minimizing the number of auxiliary variables.

Notation used: $\operatorname{diag}(M)$ denotes the diagonal of a matrix $M, M_{k \bullet}$ its k th row, T_{z} is the diagonal matrix with diagonal vector $z, a \circ b$ stands for the Hadamard (entrywise) product of vectors a, b and a / b for their Hadamard division, minimum/maximum of a finite number of vectors is taken entrywise, I is the identity matrix and e is the vector of all ones.

2 Interval hull

We shall later make use of the following characterization of the interval hull.
Theorem 1. Let $\mathbf{A}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ be regular. Then for each $z \in\{-1,1\}^{n}$ the matrix equation

$$
Q A_{c}-|Q| \Delta T_{z}=I
$$

has a unique solution Q_{z} and for each right-hand side $\mathbf{b}=\left[b_{c}-\delta, b_{c}+\delta\right]$ there holds

$$
\begin{equation*}
\mathbf{x}(\mathbf{A}, \mathbf{b})=\left[\min _{z \in\{-1,1\}^{n}}\left(Q_{z} b_{c}-\left|Q_{z}\right| \delta\right), \max _{z \in\{-1,1\}^{n}}\left(Q_{z} b_{c}+\left|Q_{z}\right| \delta\right)\right] . \tag{2.1}
\end{equation*}
$$

Proof. The first part of the theorem is the assertion of [10, Thm. 1], the second one follows from [7. Thm. 2] if we take $Z=\{-1,1\}^{n}$ there.

3 Matrices Q_{z}

In this section we show that the matrices Q_{z} can be expressed explicitly in case of an interval matrix of the form $\mathbf{A}=[I-\Delta, I+\Delta]$. The result, as well as the subsequent ones, is formulated in terms of the matrix

$$
M=(I-\Delta)^{-1} .
$$

The assumption $M \geq I$ is equivalent to regularity of $[I-\Delta, I+\Delta]$, see [10].
Theorem 2. Let $M \geq I$. Then for each $z \in\{-1,1\}^{n}$ the matrix Q_{z} is given rowwise by

$$
\left(Q_{z}\right)_{k \bullet}= \begin{cases}M_{k \bullet} T_{z} & \text { if } z_{k}=1 \tag{3.1}\\ \nu_{k}\left(M_{k 1}, \ldots,-M_{k k}, \ldots, M_{k n}\right) T_{z} & \text { if } z_{k}=-1\end{cases}
$$

where

$$
\nu_{k}=\frac{1}{2 M_{k k}-1} \quad(k=1, \ldots, n) .
$$

Proof. The expression for $z_{k}=1$ is contained in [10, Thm. 2]. The formula for $z_{k}=-1$ was given in the same theorem as

$$
\left(Q_{z}\right)_{k \bullet}=\left(\left(\mu_{k}-1\right) M_{k \bullet}-\mu_{k} e_{k}^{T}\right) T_{z}
$$

where

$$
\mu_{k}=\frac{2 M_{k k}}{2 M_{k k}-1} \quad(k=1, \ldots, n)
$$

Considering the fact that

$$
\begin{aligned}
\left(\mu_{k}-1\right) M_{k \bullet}-\mu_{k} e_{k}^{T} & =\left(\mu_{k}-1\right)\left(M_{k 1}, \ldots, M_{k k}-\frac{\mu_{k}}{\mu_{k}-1}, \ldots, M_{k n}\right) \\
& =\left(\mu_{k}-1\right)\left(M_{k 1}, \ldots,-M_{k k}, \ldots, M_{k n}\right) \\
& =\nu_{k}\left(M_{k 1}, \ldots,-M_{k k}, \ldots, M_{k n}\right)
\end{aligned}
$$

we arrive at the desired result.

4 Optimality result

The Hansen-Bliek-Rohn optimality result gives an explicit formula for the interval hull of an interval linear system of the form

$$
\mathbf{I} x=\mathbf{b}
$$

where $\mathbf{I}=[I-\Delta, I+\Delta]$.
Theorem 3. Let $M \geq I$. Then for each right-hand side $\mathbf{b}=\left[b_{c}-\delta, b_{c}+\delta\right]$, denoting $d=\operatorname{diag}(M), x_{*}=d \circ b_{c}$ and $x^{*}=M\left(\left|b_{c}\right|+\delta\right)$, we have

$$
\begin{equation*}
\mathbf{x}(\mathbf{I}, \mathbf{b})=[\min \{\underset{\sim}{x}, \underset{\sim}{x} /(2 d-e)\}, \max \{\tilde{x}, \tilde{x} /(2 d-e)\}], \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underset{\sim}{x}=x_{*}-\left(x^{*}-\left|x_{*}\right|\right) \\
& \tilde{x}=x_{*}+\left(x^{*}-\left|x_{*}\right|\right)
\end{aligned}
$$

Comment. In (4.1) we use (twice) the Hadamard division of vectors.
Proof. Denote $[\underline{x}, \bar{x}]=\mathbf{x}(\mathbf{A}, \mathbf{b})$. Let $k \in\{1, \ldots, n\}$. We shall first derive a formula for \bar{x}_{k}. From (2.1) we have

$$
\bar{x}_{k}=\max _{z \in\{-1,1\}^{n}}\left(Q_{z} b_{c}+\left|Q_{z}\right| \delta\right)_{k}=\max _{z \in\{-1,1\}^{n}}\left(\left(Q_{z}\right)_{k} \bullet b_{c}+\left|Q_{z}\right|_{k \bullet} \delta\right)
$$

so that according to (3.1) for each $z \in\{-1,1\}^{n}$ we must consider two cases: $z_{k}=1$ and $z_{k}=-1$.

If $z_{k}=1$, then by Theorem 2

$$
\begin{aligned}
\left(Q_{z}\right)_{k \bullet} b_{c}+\left|Q_{z}\right|_{\bullet \bullet} \delta & =M_{k \bullet} T_{z} b_{c}+M_{k \bullet} \delta \\
& =\sum_{j \neq k} M_{k j} z_{j}\left(b_{c}\right)_{j}+M_{k k}\left(b_{c}\right)_{k}+M_{k \bullet} \delta \\
& \leq \sum_{j \neq k} M_{k j}\left|\left(b_{c}\right)_{j}\right|+M_{k k}\left(b_{c}\right)_{k}+M_{k \bullet} \delta .
\end{aligned}
$$

Introducing the vector $\bar{z}(k) \in\{-1,1\}^{n}$ by

$$
\bar{z}(k)_{j}=\left\{\begin{array}{rl}
1 & \text { if } j=k, \\
1 & \text { if } j \neq k \text { and }\left(b_{c}\right)_{j} \geq 0, \\
-1 & \text { if } j \neq k \text { and }\left(b_{c}\right)_{j}<0
\end{array} \quad(j=1, \ldots, n),\right.
$$

we can write

$$
\sum_{j \neq k} M_{k j}\left|\left(b_{c}\right)_{j}\right|+M_{k k}\left(b_{c}\right)_{k}+M_{k \bullet} \delta=M_{k} T_{\bar{z}(k)} b_{c}+M_{k} \delta=\left(Q_{\bar{z}(k)}\right)_{k} \bullet b_{c}+\left|Q_{\bar{z}(k)}\right|_{k} \delta
$$

hence for each $z \in\{-1,1\}^{n}$ with $z_{k}=1$ we have

$$
\left(Q_{z}\right)_{k \bullet} b_{c}+\left|Q_{z}\right|_{k \bullet} \delta \leq\left(Q_{\bar{z}(k)}\right)_{k} b_{c}+\left|Q_{\bar{z}(k)}\right|_{k \bullet} \delta
$$

and the upper bound is obviously attained.
If $z_{k}=-1$, then, again by Theorem 2,

$$
\begin{aligned}
\left(Q_{z}\right)_{k \bullet} b_{c}+\left|Q_{z}\right|_{k \bullet} \delta & =\nu_{k}\left(M_{k 1}, \ldots,-M_{k k}, \ldots, M_{k n}\right) T_{z} b_{c}+\nu_{k} M_{k \bullet} \delta \\
& =\nu_{k} \sum_{j \neq k} M_{k j} z_{j}\left(b_{c}\right)_{j}+\nu_{k} M_{k k}\left(b_{c}\right)_{k}+\nu_{k} M_{k \bullet} \delta \\
& \leq \nu_{k} \sum_{j \neq k} M_{k j}\left|\left(b_{c}\right)_{j}\right|+\nu_{k} M_{k k}\left(b_{c}\right)_{k}+\nu_{k} M_{k \bullet} \delta \\
& =\nu_{k}\left(M_{k 1}, \ldots,-M_{k k}, \ldots, M_{k n}\right) T_{\underline{z}(k)} b_{c}+\nu_{k} M_{k \bullet} \delta \\
& =\left(Q_{\underline{z}(k)}\right)_{k \bullet} b_{c}+\left|Q_{\underline{z}(k)}\right| k \bullet \delta
\end{aligned}
$$

where we have employed the vector $\underline{z}(k)$ given by

$$
\underline{z}(k)_{j}=\left\{\begin{aligned}
-1 & \text { if } j=k \\
1 & \text { if } j \neq k \text { and }\left(b_{c}\right)_{j} \geq 0, \\
-1 & \text { if } j \neq k \text { and }\left(b_{c}\right)_{j}<0
\end{aligned} \quad(j=1, \ldots, n)\right.
$$

hence for each $z \in\{-1,1\}^{n}$ with $z_{k}=-1$ we have

$$
\left(Q_{z}\right)_{k \bullet} b_{c}+\left|Q_{z}\right|_{k \bullet} \delta \leq\left(Q_{\underline{z}(k)}\right)_{k \bullet} b_{c}+\left|Q_{\underline{z}(k)}\right|_{k \bullet} \delta
$$

and the upper bound is again obviously attained. In this way we have proved the formula

$$
\left.\bar{x}_{k}=\max \left\{Q_{\bar{z}(k)}\right)_{k \bullet} b_{c}+\left|Q_{\bar{z}(k)}\right|_{k \bullet} \delta,\left(Q_{\underline{z}(k)}\right)_{k \bullet} b_{c}+\left|Q_{\underline{z}(k)}\right|_{k \bullet} \delta\right\}
$$

Now,

$$
\begin{aligned}
\left(Q_{\bar{z}(k)}\right)_{k \bullet} b_{c}+\left|Q_{\bar{z}(k)}\right|_{k \bullet} \delta & =\sum_{j \neq k} M_{k j}\left|\left(b_{c}\right)_{j}\right|+M_{k k}\left(b_{c}\right)_{k}+M_{k \bullet} \delta \\
& =M_{k \bullet}\left(\left|b_{c}\right|+\delta\right)+M_{k k}\left(\left(b_{c}\right)_{k}-\left|b_{c}\right|_{k}\right) \\
& =\left(x_{*}+x^{*}-\left|x_{*}\right|\right)_{k} \\
& =\tilde{x}_{k}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\left(Q_{\underline{z}(k)}\right)_{k} \cdot b_{c}+\left|Q_{\underline{z}(k)}\right|_{k \bullet} \delta & =\nu_{k} \sum_{j \neq k} M_{k j}\left|\left(b_{c}\right)_{j}\right|+\nu_{k} M_{k k}\left(b_{c}\right)_{k}+\nu_{k} M_{k \bullet} \boldsymbol{\delta} \\
& =\nu_{k}\left(M_{k \bullet}\left(\left|b_{c}\right|+\delta\right)+M_{k k}\left(\left(b_{c}\right)_{k}-\left|b_{c}\right| k\right)\right) \\
& =\nu_{k}\left(x_{*}+x^{*}-\left|x_{*}\right|\right)_{k} \\
& =\nu_{k} \tilde{x}_{k}
\end{aligned}
$$

which together gives

$$
\bar{x}_{k}=\max \left\{\tilde{x}_{k}, \nu_{k} \tilde{x}_{k}\right\} .
$$

Since

$$
\nu_{k} \tilde{x}_{k}=\tilde{x}_{k} /\left(2 M_{k k}-1\right),
$$

we finally obtain

$$
\bar{x}=\max \{\tilde{x}, \tilde{x} /(2 d-e)\},
$$

where we have used the Hadamard (entrywise) division of vectors.
To prove the formula for \underline{x}, consider the system $\mathbf{I} x=-\mathbf{b}$, where $\mathbf{I}=[I-\Delta, I+\Delta]$ as before and $-\mathbf{b}=\{-b \mid b \in \mathbf{b}\}=\left[-b_{c}-\delta,-b_{c}+\delta\right]$. Then $\mathbf{X}(\mathbf{I},-\mathbf{b})=-\mathbf{X}(\mathbf{I}, \mathbf{b})$, hence $\mathbf{x}(\mathbf{I},-\mathbf{b})=[-\bar{x},-\underline{x}]$. Now we can apply the previously derived formula for the upper bound of the interval hull:

$$
-\underline{x}=\max \left\{-d \circ b_{c}+M\left(\left|b_{c}\right|+\delta\right)-\left|d \circ b_{c}\right|,\left(-d \circ b_{c}+M\left(\left|b_{c}\right|+\delta\right)-\left|d \circ b_{c}\right|\right) /(2 d-e)\right\},
$$

hence

$$
\begin{aligned}
\underline{x} & =\min \left\{d \circ b_{c}-M\left(\left|b_{c}\right|+\delta\right)+\left|d \circ b_{c}\right|,\left(d \circ b_{c}-M\left(\left|b_{c}\right|+\delta\right)+\left|d \circ b_{c}\right|\right) /(2 d-e)\right\} \\
& =\min \left\{x_{*}-x^{*}+\left|x_{*}\right|,\left(x_{*}-x^{*}+\left|x_{*}\right|\right) /(2 d-e)\right\} \\
& =\min \{\underset{\sim}{x}, \underset{\sim}{x} /(2 d-e)\} .
\end{aligned}
$$

This proves that

$$
\mathbf{x}(\mathbf{I}, \mathbf{b})=[\min \{\underset{\sim}{x}, \underset{\sim}{x} /(2 d-e)\}, \max \{\tilde{x}, \tilde{x} /(2 d-e)\}] .
$$

Using the interval arithmetic, we can bring the result to yet simpler form.
Theorem 4. Let $M \geq I$. Denoting $d=\operatorname{diag}(M), x_{*}=d \circ b_{c}$ and $x^{*}=M\left(\left|b_{c}\right|+\delta\right)$, we have

$$
\begin{equation*}
\mathbf{x}(\mathbf{I}, \mathbf{b})=\frac{\left\langle x_{*}, x^{*}-\right| x_{*}| \rangle}{\langle d, d-e\rangle} . \tag{4.2}
\end{equation*}
$$

Comment. In (4.2) we use the Hadamard (entrywise) division of interval vectors and their midpoint-radius representation, i.e., $\langle a, b\rangle=[a-b, a+b]$.

Proof. Because $\underset{\sim}{x} \leq \tilde{x}$ and $\nu>0$, we can write (4.1) as

$$
\mathbf{x}(\mathbf{I}, \mathbf{b})=[\min \{\underset{\sim}{x} / e, \underset{\sim}{x} /(2 d-e), \tilde{x} / e, \tilde{x} /(2 d-e)\}, \max \{\underset{\sim}{x} / e, \underset{\sim}{x} /(2 d-e), \tilde{x} / e, \tilde{x} /(2 d-e)\}],
$$

which is the Hadamard division performed in interval arithmetic:

$$
\begin{equation*}
\mathbf{x}(\mathbf{I}, \mathbf{b})=\frac{[\underset{,}{x}, \tilde{x}]}{[e, 2 d-e]} . \tag{4.3}
\end{equation*}
$$

Since

$$
[\underset{\sim}{x}, \tilde{x}]=\left[x_{*}-\left(x^{*}-\left|x_{*}\right|\right), x_{*}+\left(x^{*}-\left|x_{*}\right|\right)\right]=\left\langle x_{*}, x^{*}-\right| x_{*}| \rangle
$$

and

$$
[e, 2 d-e]=\langle d, d-e\rangle
$$

(4.3) implies (4.2).

The Hansen-Bliek-Rohn optimality result should not be misunderstood for the Hansen-Bliek-Rohn enclosure, see [9].

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125. 1
[2] C. Bliek, Computer Methods for Design Automation, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, July 1992. 1
[3] E. R. Hansen, Bounding the solution of interval linear equations, SIAM Journal on Numerical Analysis, 29 (1992), pp. 1493-1503. 1]
[4] A. Neumaier, A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval equations, Reliable Computing, 5 (1999), pp. 131-136. 1
[5] S. Ning and R. B. Kearfott, A comparison of some methods for solving linear interval equations, SIAM Journal on Numerical Analysis, 34 (1997), pp. 1289-1305.
[6] J. Rohn, Cheap and tight bounds: The recent result by E. Hansen can be made more efficient, Interval Computations, 4 (1993), pp. 13-21.
[7] J. Rohn, An algorithm for computing the hull of the solution set of interval linear equations, Linear Algebra and Its Applications, 435 (2011), pp. 193-201. [1]
[8] J. Rohn, The Hansen-Bliek optimality result as a consequence of the general theory, Technical Report 1104, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, February 2011. http://uivtx.cs.cas.cz/~rohn/publist/hansen.pdf. 1
[9] J. Rohn, Compact form of the Hansen-Bliek-Rohn enclosure, Technical Report 1157, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, March 2012. http://uivtx.cs.cas.cz/~rohn/publist/compactforms.pdf. 5
[10] J. Rohn, Explicit form of matrices Q_{z} for an interval matrix with unit midpoint, Technical Report 1206, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, February 2014. http://uivtx.cs.cas.cz/~rohn/publist/report1206.pdf. [1, 2 2
[11] J. Rohn and V. Kreinovich, Computing exact componentwise bounds on solutions of linear systems with interval data is NP-hard, SIAM Journal on Matrix Analysis and Applications, 16 (1995), pp. 415-420.

[^0]: ${ }^{1}$ This work was supported with institutional support RVO:67985807.
 ${ }^{2}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$ (Barth and Nuding [1])).

