Institute of Computer Science Academy of Sciences of the Czech Republic

Interval Matrices:
 Regularity Yields Singularity

Jiríí Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1239
27.10.2016

Institute of Computer Science

 Academy of Sciences of the Czech Republic
Interval Matrices:
 Regularity Yields Singularity

Jirí Rohn ${ }^{11}$
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1239
27.10.2016

Abstract

It is proved that regularity of an interval matrix implies singularity of two related interval matrices. ${ }^{[2]}$

Keywords:
Interval matrix, regularity, singularity.

[^0]
1 Introduction

A square interval matrix

$$
[A-D, A+D]=\{B \mid A-D \leq B \leq A+D\}
$$

is called regular if each $B \in[A-D, A+D]$ is nonsingular, and is said to be singular otherwise. In this report we show that regularity of $[A-D, A+D]$ implies singularity of two related interval matrices. This is an atypical result which, in this author's knowledge, bears no analogy in literature.

2 Main result

Theorem 1. If $[A-D, A+D]$ is regular, then both the interval matrices

$$
\begin{align*}
& {\left[A^{-1} D-I, A^{-1} D+I\right],} \tag{2.1}\\
& {\left[D A^{-1}-I, D A^{-1}+I\right]} \tag{2.2}
\end{align*}
$$

are singular (I is the identity matrix).
Proof. Let $[A-D, A+D]$ be regular. Put $C=A^{-1} D$. Notice that $I-C=A^{-1}(A-D)$, as a product of two nonsingular matrices, is nonsingular. Consider the matrix

$$
(I-C)^{-1}(I+C)=(A-D)^{-1}(A+D)
$$

By [3, Thm. 1.2] the matrix $(A-D)^{-1}(A+D)$ is a P-matrix, hence so is $(I-C)^{-1}(I+C)$, and a theorem by Gale and Nikaido [2] implies existence of an $\tilde{x}>0$ satisfying

$$
\begin{equation*}
(I-C)^{-1}(I+C) \tilde{x}>0 \tag{2.3}
\end{equation*}
$$

Set $x=(I-C)^{-1} \tilde{x}$. Then $(I-C) x=\tilde{x}>0$, hence

$$
\begin{equation*}
C x<x, \tag{2.4}
\end{equation*}
$$

and from (2.3) we have

$$
\begin{aligned}
0<(I-C)^{-1}(I+C) \tilde{x} & =(I-C)^{-1}(I+C)(I-C) x \\
& =(I-C)^{-1}\left(I-C^{2}\right) x \\
& =(I-C)^{-1}(I-C)(I+C) x \\
& =(I+C) x,
\end{aligned}
$$

which gives $-x<C x$ and together with (2.4)

$$
-x<C x<x
$$

which is

$$
\begin{equation*}
|C x|<x . \tag{2.5}
\end{equation*}
$$

This inequality shows that $x>0$. Now define

$$
S=C-\operatorname{diag}(y)
$$

where $y=\left(y_{i}\right)$ is given by

$$
y_{i}=(C x)_{i} / x_{i} \quad(i=1, \ldots, n)
$$

then $|S-C| \leq I$ due to (2.5) and $(S x)_{i}=(C x)_{i}-y_{i} x_{i}=0$ for each i, hence $S x=0$ and S is a singular matrix in (2.1).

Next, regularity of $[A-D, A+D]$ implies that of its transpose $\left[A^{T}-D^{T}, A^{T}+D^{T}\right]=$ $\left\{B^{T} \mid B \in[A-D, A+D]\right\}$ which according to what has just been proved yields singularity of $\left[\left(A^{T}\right)^{-1} D^{T}-I,\left(A^{T}\right)^{-1} D^{T}+I\right]=\left[\left(D A^{-1}\right)^{T}-I,\left(D A^{-1}\right)^{T}+I\right]$ and thereby also that of its transpose (2.2).

3 Consequence

As a consequence we obtain the following purely linear algebraic result.
Theorem 2. Let A be invertible. Then there exists a singular matrix S satisfying either

$$
|A-S| \leq I,
$$

or

$$
\left|A^{-1}-S\right| \leq I
$$

Proof. Consider the interval matrix $[A-I, A+I]$. If it is singular, then we are done; if it is regular, then $\left[A^{-1}-I, A^{-1}+I\right]$ is singular by Theorem 1 .

In other words, either A or A^{-1} can be brought to a singular matrix by shifting diagonal entries by componentwise magnitudes of at most 1.

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125. 1
[2] D. Gale and H. Nikaido, The Jacobian matrix and global univalence of mappings, Mathematische Annalen, 159 (1965), pp. 81-93. 1
[3] J. Rohn, Systems of linear interval equations, Linear Algebra and Its Applications, 126 (1989), pp. 39-78. [1

[^0]: ${ }^{1}$ This work was supported with institutional support RVO:67985807.
 ${ }^{2}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$ (Barth and Nuding [1])).

