A Residual Existence Theorem for Linear Equations

Jiri Rohn

Received: date / Accepted: date

Abstract

A residual existence theorem for linear equations is proved: if $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}$ and if X is a finite subset of \mathbb{R}^{n} satisfying $\max _{x \in X} p^{T}(A x-b) \geq 0$ for each $p \in \mathbb{R}^{m}$, then the system of linear equations $A x=b$ has a solution in the convex hull of X. An application of this result to unique solvability of the absolute value equation $A x+B|x|=b$ is given.

Keywords Linear equations • Solution • Existence • Residual • Convex hull • Absolute value equation

1 Introduction

As the main result of this paper, we prove the following residual existence (and localization) theorem for linear equations (Theorem 2 below): if $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and if X is a finite subset of \mathbb{R}^{n} satisfying

$$
\max _{x \in X} p^{T}(A x-b) \geq 0
$$

for each $p \in \mathbb{R}^{m}$, then the system of linear equations

$$
A x=b
$$

has a solution in the convex hull of X. The result is then applied to derive a sufficient condition for unique solvability of the absolute value equation

$$
A x+B|x|=b
$$

[^0](Theorem 6).
We use the following notations. Matrix (or vector) inequalities, as $A \leq B$ or $A<B$, are understood componentwise. $A_{\bullet i}$ denotes the i th column of $A . I$ is the unit matrix and $e=(1, \ldots, 1)^{T}$ is the vector of all ones. The absolute value of a matrix (or vector) $A=\left(a_{i j}\right)$ is defined by $|A|=\left(\left|a_{i j}\right|\right) . Y_{n}=\{y| | y \mid=e\}$ is the set of all ± 1-vectors in \mathbb{R}^{n}, so that its cardinality is 2^{n}. For each $y \in \mathbb{R}^{n}$ we denote
\[

T_{y}=\operatorname{diag}\left(y_{1}, ···, y_{n}\right)=\left($$
\begin{array}{cccc}
y_{1} & 0 & \ldots & 0 \tag{1}\\
0 & y_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & y_{n}
\end{array}
$$\right)
\]

and $\operatorname{Conv}(X)$ is the convex hull of X.

2 The residual existence theorem

In the proof of the main theorem we shall utilize the following result proved by Gordan [2] (see also [1]).

Theorem 1 Let $A \in \mathbb{R}^{m \times n}$. Then the system

$$
\begin{aligned}
A x & =0, \\
e^{T} x & =1, \\
x & \geq 0
\end{aligned}
$$

has a solution if and only if for each $p \in \mathbb{R}^{m}$ there holds

$$
\left(A^{T} p\right)_{i} \leq 0
$$

for some i.
The following theorem is the principal result of this paper.
Theorem 2 Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and let X be a finite subset of \mathbb{R}^{n} such that

$$
\begin{equation*}
\max _{x \in X} p^{T}(A x-b) \geq 0 \tag{2}
\end{equation*}
$$

holds for each $p \in \mathbb{R}^{m}$. Then the system

$$
A x=b
$$

has a solution in $\operatorname{Conv}(X)$.
Comment We call this result a "residual existence theorem" because the condition (2) is formulated in terms of a finite set of residuals $A x-b, x \in X$.

Proof Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$, and let R be an $m \times k$ matrix defined by $R_{\bullet i}=b-A x_{i}$ $(i=1, \ldots, k)$. By (2), for each $p \in \mathbb{R}^{m}$ there exists an i such that $p^{T}\left(A x_{i}-b\right) \geq 0$, hence

$$
\left(R^{T} p\right)_{i}=\left(p^{T} R\right)_{i}=p^{T}\left(b-A x_{i}\right)=-p^{T}\left(A x_{i}-b\right) \leq 0
$$

holds, thus by Theorem 1 there exists a vector $\lambda \in \mathbb{R}^{k}$ satisfying

$$
\begin{align*}
R \lambda & =0, \tag{3}\\
e^{T} \lambda & =1, \tag{4}\\
\lambda & \geq 0 . \tag{5}
\end{align*}
$$

Then (3) gives

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i}\left(b-A x_{i}\right)=0 \tag{6}
\end{equation*}
$$

so that the vector

$$
x=\sum_{i=1}^{k} \lambda_{i} x_{i}
$$

in view of (4), (5), (6) satisfies

$$
A x=\left(e^{T} \lambda\right) b=b
$$

and

$$
x \in \operatorname{Conv}(X)
$$

which concludes the proof.
The condition (2) is generally not easy to verify, but it is satisfied if the residual set

$$
\begin{equation*}
\left\{A x-b \mid x \in \mathbb{R}^{n}\right\} \tag{7}
\end{equation*}
$$

intersects all orthants of \mathbb{R}^{m}. In this way we obtain the following consequence.
Theorem 3 Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then the system of linear equations

$$
\begin{equation*}
A x=b \tag{8}
\end{equation*}
$$

has a solution if and only if the residual set (7) intersects all orthants of \mathbb{R}^{m}.
Proof If (8) has a solution x, then $b-A x=0$ belongs to each orthant of \mathbb{R}^{m}. Conversely, if (7) intersects all orthants of \mathbb{R}^{m}, then for each orthant \mathcal{O} we can pick an $x_{\mathcal{O}}$ satisfying $A x_{\mathcal{O}}-b \in \mathcal{O}$. Put $X=\left\{x_{\mathcal{O}} \mid \mathcal{O}\right.$ is an orthant of $\left.\mathbb{R}^{m}\right\}$. Then for each $p \in \mathbb{R}^{m}$, letting \mathcal{O} to be the orthant containing p, we have $p^{T}\left(A x_{\mathcal{O}}-b\right) \geq 0$ and Theorem 2 implies existence of a solution to (8).

A small change in the definition of the residual set (7) makes it possible to formulate an analogous result for nonnegative solvability.
Theorem 4 Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then the system of linear equations

$$
\begin{equation*}
A x=b \tag{9}
\end{equation*}
$$

has a nonnegative solution if and only if the residual set

$$
\begin{equation*}
\{A x-b \mid x \geq 0\} \tag{10}
\end{equation*}
$$

intersects all orthants of \mathbb{R}^{m}.

Proof Obviously, if (9) has a nonnegative solution, then the set (10) contains 0 and thus intersects all orthants. Conversely, if the latter is true, then for each orthant \mathcal{O} of \mathbb{R}^{m} there exists a nonnegative $x_{\mathcal{O}}$ satisfying $A x_{\mathcal{O}}-b \in \mathcal{O}$, and arguing as in the proof of Theorem 3 we come to the conclusion that the equation (9) has a solution which belongs to the convex hull of the nonnegative vectors $x_{\mathcal{O}}$ and thus is itself nonnegative as well.

3 Application: Unique solvability of the absolute value equation

As an application of our previous results, we prove an existence and uniqueness theorem for the absolute value equation

$$
A x+B|x|=b
$$

(A, B square) which has been recently studied in literature (Mangasarian [3], [4], [5], Mangasarian and Meyer [6], Prokopyev [7], Rohn [8]). The basic result concerning unique solvability of the absolute value equation is Theorem 4.1 in [8].

Theorem 5 For each $A, B \in \mathbb{R}^{n \times n}$, exactly one of the two alternatives holds:
(i) for each B^{\prime} with $\left|B^{\prime}\right| \leq|B|$ and for each $b \in \mathbb{R}^{n}$ the equation

$$
A x+B^{\prime}|x|=b
$$

has a unique solution,
(ii) the inequality

$$
|A x| \leq|B||x|
$$

has a nontrivial solution.
We shall use this theorem to prove the following result.
Theorem 6 Let $A, B \in \mathbb{R}^{n \times n}$ and let for each $y \in Y_{n}$ the equation

$$
\begin{equation*}
A x-T_{y}|B \| x|=y \tag{11}
\end{equation*}
$$

have a solution. Then for each B^{\prime} with $\left|B^{\prime}\right| \leq|B|$ and for each $b \in \mathbb{R}^{n}$ the equation

$$
\begin{equation*}
A x+B^{\prime}|x|=b \tag{12}
\end{equation*}
$$

has a unique solution.
Comment Thus, solvability of a finite number of equations (11) (albeit 2^{n} of them) guarantees unique solvability of an infinite number of equations of the form (12) (see (1) for the definition of T_{y}).

Proof For each $y \in Y_{n}$, let x_{y} be a solution of (11). The main part of the proof consists in proving that each matrix C satisfying

$$
\begin{equation*}
|C-A| \leq|B| \tag{13}
\end{equation*}
$$

is nonsingular. Thus let C satisfy (13). Then for each $y \in Y_{n}$ we have

$$
\left|T_{y}\left(C x_{y}-A x_{y}\right)\right|=\left|C x_{y}-A x_{y}\right| \leq|C-A|\left|x_{y}\right| \leq|B|\left|x_{y}\right|,
$$

hence

$$
T_{y} A x_{y}-\left|B \| x_{y}\right| \leq T_{y} C x_{y} \leq T_{y} A x_{y}+|B|\left|x_{y}\right|
$$

and

$$
\begin{aligned}
T_{y}\left(C x_{y}-I_{\bullet j}\right) & \geq T_{y} A x_{y}-|B|\left|x_{y}\right|-T_{y} I_{\bullet j}=T_{y}\left(A x_{y}-T_{y}\left|B \| x_{y}\right|-y\right)+T_{y} y-T_{y} I_{\bullet j} \\
& =e-y_{j} I_{\bullet} \geq 0
\end{aligned}
$$

for each $j=1, \ldots, n$ (because x_{y} solves (11) and $y \in Y_{n}$). Thus for each $j=1, \ldots, n$ the set $\left\{C x_{y}-I_{\bullet} \mid y \in Y_{n}\right\}$ intersects all the orthants, which in the light of Theorem 3 means that the system $C x=I_{\bullet}$ has a solution $x^{(j)}$. Define a matrix X by $X_{\bullet j}=x^{(j)}$ for $j=1, \ldots, n$, then

$$
C X=I,
$$

which proves that C is nonsingular. In this way we have proved that each matrix C satisfying (11) is nonsingular, which shows that the inequality $|A x| \leq|B||x|$ has only the trivial solution $x=0$ ([8], Proposition 2.2). Now Theorem 5 guarantees unique solvability of the equation (12) for each B^{\prime} with $\left|B^{\prime}\right| \leq|B|$ and for each right-hand side b.

Acknowledgements The author wishes to thank two anonymous referees for their constructive criticism which helped to improve essentially the text of this paper.

References

1. Springer Online Reference Works (2009). http://eom.springer.de/m/m130240.htm
2. Gordan, P.: Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten. Mathematische Annalen 6, 23-28 (1873)
3. Mangasarian, O.: Absolute value equation solution via concave minimization. Optimization Letters 1(1), 3-8 (2007). DOI 10.1007/s11590-006-0005-6
4. Mangasarian, O.: Absolute value programming. Computational Optimization and Applications 36(1), 43-53 (2007)
5. Mangasarian, O.: A generalized Newton method for absolute value equations. Optimization Letters 3(1), 101-108 (2009). DOI 10.1007/s11590-008-0094-5
6. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra and its Applications 419(2-3), 359-367 (2006). DOI 10.1016/j.laa.2006.05.004
7. Prokopyev, O.: On equivalent reformulations for absolute value equations. To appear
8. Rohn, J.: An algorithm for solving the absolute value equation. Electronic Journal of Linear Algebra 18, 589-599 (2009)

[^0]: Supported by the Czech Republic Grant Agency under grants 201/09/1957 and 201/08/J020, and by the Institutional Research Plan AV0Z10300504.
 J. Rohn

 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
 E-mail: rohn@cs.cas.cz
 J. Rohn

 School of Business Administration, Anglo-American University, Prague, Czech Republic

