Vĕra Kůrková - chapters and articles in books
-
V. Kůrková:Limitations of shallow networks., In
Recent Trends in Learning from Data, SCI 896, (Eds. L. Oneto, N. Navarin, A. Sperduti, and D. Anguita), (pp. 129 -154). Springer, 2020.
-
P. C. Kainen, V. Kůrková: Quasiorthogonal dimension., In
Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy, etc. Methods and Their Applications,
(Eds. O. Kosheleva, S. Shary, G. Xiang, and R. Zapatrin), Springer, 2018.
-
V. Kůrková, P. C. Kainen: Integral transforms induced by Heaviside perceptrons., In
Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy, etc. Methods and Their Applications,
(Eds. O. Kosheleva, S. Shary, G. Xiang, and R. Zapatrin), Springer, 2018.
-
V. Kůrková: Accuracy of Surrogate Solutions of Integral Equations by Feedforward Networks,
Issues and Challenges of Intelligent Systems
and Computational Intelligence (Eds. L. T. Kóczy et al.), Studies in Computational Intelligence 530,
Springer International Publishing Switzerland, pp. 91-102, 2014.
-
Paul C. Kainen, V. Kůrková, M. Sanguineti:
Approximating Multivariable
Functions by Feedforward Neural Nets (Chapter 5),
Handbook on Neural Information Processing (Eds. M. Bianchini et al.), ISRL 49, Springer-Verlag Berlin Heidelberg, pp. 143-181, 2013.
-
V. Kůrková: Estimates of Model Complexity in Neural-Network
Learning. In Innovations in Neural Infor. Paradigms & Appli., (Eds. M. Bianchini et al.) (pp. 97-111). SCI 247, 2009.
- V. Kůrková: Generalization in learning from examples. In
Challenges for Computational Intelligence SC 63 (Eds. W. Duch. J.
Mandziuk), pp. 343-363. Berlin, Heidelberg: Springer-Verlag, 2007.
- V. Kůrková: Učení neuronových sítí se
schopností generalizace. In Mysel', inteligencia a život (Eds.
V. Kvasnička, P. Trebatický, J. Pospíchal, J. Kelemen) (pp.
275-286). Bratislava: STU, 2007.
- V. Kůrková: Mappings between high-dimensional
representations in connectionistic systems. In Machine
Intelligence: Quo Vadis? (Eds. P. Sinčák, J.
Vasčák, K. Hirota) (pp. 31-45). Singapore: World
Scientific, 2004.
- V. Kůrková: Aproximace funkcí neuronovými
sítěmi. Chapter 8 in Umělá inteligence IV
(Eds. V. Mařík, O. Štěpánková, J.
Lažanský) (pp. 254-275). Praha: Academia, 2003.
- V. Kůrková: High-dimensional approximation and
optimization by neural networks. Chapter 4 in Advances in
Learning Theory: Methods, Models and Applications. (Eds. J.
Suykens et al.) (pp. 69-88). Amsterdam: IOS Press, 2003.
- V. Kůrková: Neural networks as universal
approximators. In The Handbook of Brain Theory and Neural
Networks II (Ed. M. Arbib) (pp. 1180-1183). Cambridge: MIT
Press, 2002.
- V. Kůrková: Universality and complexity of
approximation of multivariable functions by feedforward networks.
In Softcomputing and Industry: Recent Applications (Eds. R.
Roy, M. Koeppen, S. Ovaska, T. Furuhashi, F. Hoffmann) (pp.
13-24). London: Springer-Verlag, 2002.
- V. Kůrková: Rates of approximation by neural
networks. In Quo Vadis Computational Intelligence? (Eds. P.
Sinčák, J. Vasčák (pp. 23-36). Berlin:
Springer, 2000.
- V. Kůrková: Incremental approximation by neural
networks. Chapter 12 in Complexity: Neural Network Approach.
(Eds. K. Warwick, M. Kárný, V. Kůrková). (pp.
177-188). London: Springer-Verlag, 1998.
- V. Kůrková: Kolmogorov's theorem. In The
Handbook of Brain Theory and Neural Networks (Ed. M. Arbib)
(pp. 501-502). Cambridge: MIT Press, 1995.