Vĕra Kůrková - Publications in journals
- V. Kůrková, M. Sanguineti: Networks with Finite VC Dimension: Pro and Contra.
- V. Kůrková, M. Sanguineti: Approximation of classifiers by deep perceptron networks, Neural Networks 165, 654-661, 2023.
- V. Kůrková, M. Sanguineti: Correlations of random classifiers on large data sets, Soft Computing, 25(19): 12641-12648, 2021.
- V. Kůrková, D. Coufal: Translation-invariant kernel networks for multivariable approximation,
IEEE TNNLS, 2000, to appear. DOI 10.1109/TNNLS.2020.3026720.
- P. C. Kainen, V. Kůrková, A. Vogt: Approximative compactness of linear combinations
of characteristic functions, Journal of Approximation Theory 257, paper number 105435 (17 pages), 2020. DOI 10.1016/j.jat.2020.105435.
- V. Kůrková: Some insights from high-dimensional spheres, Physics of
Life Reviews 29: 98-100, 2019. DOI: 10.1016/j.plrev.2018.09.005.
- V. Kůrková, M. Sanguineti:
Classification by Sparse Neural Networks, IEEE Trans. on Neural Networks and Learning Systems, 30 (9): 2746-2754, 2019.
DOI:10.1109/TNNLS.2018.2888517.
- V. Kůrková: Limitations of shallow networks representing finite mappings.
Neural Computing and Applications, 31:1783-1792, 2019.
DOI: 10.1007/s00521-018-3680-1.
- V. Kůrková: Constructive lower bounds on model complexity of shallow perceptron networks,
Neural Computing and Applications 29: 305-315, 2018.
- V. Kůrková, M. Sanguineti:
Probabilistic lower bounds for approximation by shallow perceptron networks.
Neural Networks 91: 34-41, 2017.
- V. Kůrková, M. Sanguineti: Model complexities of shallow networks
representing highly varying functions, Neurocomputing 171, 598-604, 2016.
- V. Kůrková, P. C. Kainen: Comparing fixed and variable-width Gaussian
networks, Neural Networks (57): 23-28, 2014.
- V. Kůrková: Complexity estimates based on integral transforms induced by
computational units, Neural Networks (33): 160-167, 2012.
- G. Gnecco, V. Kůrková: Sanguineti: Accuracy of
approximations of solutions to Fredholm equations by kernel
methods. Applied Mathematics and Computation, 218(14), 7481-7497, 2012.
- P. C. Kainen, V. Kůrková, M. Sanguineti: Dependence of
Computational Models on Input Dimension: Tractability of
Approximation and Optimization Tasks. IEEE Transactions on Information Theory 58(2): 1203-1214, 2012.
- G. Gnecco, V. Kůrková, M. Sanguineti:
Can
dictionary-based computational models outperform the best linear ones?
Neural Networks 24(8): 881-887, 2011.
- G. Gnecco, V. Kůrková, M. Sanguineti:
Some comparisons
of complexity in dictionary-based and linear computational models.
Neural Networks 24(1): 171-182, 2011.
- P. C. Kainen, V. Kůrková, A. Vogt: Integral combinations of Heavisides.
Math. Nachr. 283(6): 854-878, 2010.
- P. C. Kainen, V. Kůrková: An Integral Upper
Bound for Neural Network Approximation. Neural Computation 21(2009): 2970-2989, 2009.
- P. C. Kainen, V. Kůrková, M. Sanguineti: Complexity
of Gaussian radial basis networks approximating smooth
functions. Journal of Complexity 25(2009): 63-74, 2009.
- V. Kůrková, M. Sanguineti: Geometric Upper Bounds on Rates of
Variable-Basis Approximation. IEEE Transactions on Information Theory, 54(12): 5681-5688, 2008.
- V. Kůrková, M. Sanguineti: Approximate
minimization of the regularized expected error over kernel
models. Mathematics of Operations Research 33(3): 747-756, 2008.
- V. Kůrková: Minimization of error functionals
over perceptron networks. Neural Computation 20(1): 252-270,
2008.
- V. Kůrková, M. Sanguineti: Estimates of covering
numbers of convex sets with slowly decaying orthogonal subsets.
Discrete Applied Mathematics 155: 1930-1942, 2007.
- P. C. Kainen, V. Kůrková, A. Vogt: A Sobolev-type
upper bound for rates of approximation by linear combinations of
Heaviside plane waves. Journal of Approximation Theory 147:
1-10, 2007.
- V. Kůrková: Supervised learning with generalization as an inverse problem.
Logic Journal of IGPL 13: 551-559, 2005.
- V. Kůrková, M. Sanguineti: Learning with
generalization capability by kernel methods of bounded complexity.
Journal of Complexity 21: 350-367, 2005.
- V. Kurková, M. Sanguineti: Error estimates for
approximate optimization by the extended Ritz method. SIAM
Journal on Optimization, 15, 2, 2005, pp. 461-487.
- P. C. Kainen, V. Kůrková, M. Sanguineti: Rates
of approximate minimization of error functionals over Boolean
variable-basis functions. Journal of Mathematical Modelling
and Algorithms 4: 355-368, 2005.
- P. C. Kainen, V. Kůrková, M. Sanguineti:
Minimization of error functionals over neural networks. SIAM
Journal on Optimization 14: 732-742, 2003.
- P. C. Kainen, V. Kůrková, A. Vogt: Best
approximation by linear combinations of characteristic functions
of half-spaces. Journal of Approximation Theory 151-159, 2003.
- V. Kůrková, M. Sanguineti: Comparison of
worst-case errors in linear and neural network approximation.
IEEE Transactions on Information Theory 48: 264-275, 2002.
- V. Kůrková, M. Sanguineti: Bounds on rates of
variable-basis and neural network approximation. IEEE
Transactions on Information Theory 47: 2659-2665, 2001.
- P. C. Kainen, V. Kůrková, A. Vogt: Continuity of
approximation by neural networks in
-spaces. Annals of
Operational Research 101: 143-147, 2001.
- P. C. Kainen, V. Kůrková, A. Vogt: Best
approximation by Heaviside perceptron networks. Neural
Networks 13: 695-697, 2000.
- P. C. Kainen, V. Kůrková, A. Vogt: Geometry and
topology of continuous best and near best approximations.
Journal of Approximation Theory 105: 252-262, 2000.
- P. C. Kainen, V. Kůrková, A. Vogt: An integral
formula for Heaviside neural networks. Neural Network World
10: 313-320, 2000.
- P. C. Kainen, V. Kůrková, A. Vogt: Approximation
by neural networks is not continuous. Neurocomputing 29:
47-56, 1999.
- V. Kůrková, P. Savický, K. Hlavácková:
Representations and rates of approximation of real-valued Boolean
functions by neural networks. Neural Networks 11: 651-659,
1998.
- V. Kůrková, P. C. Kainen, V. Kreinovich:
Estimates of the number of hidden units and variation with
respect to half-spaces. Neural Networks 10: 1061-1068, 1997
- V. Kůrková: Trade-off between the size of
parameters and the number of units in one-hidden-layer networks.
Neural Network World 2: 191-200, 1996.
- V. Kůrková, P. C. Kainen: Singularities of finite
scaling functions. Applied Math. Letters 9: 33-37, 1996.
- V. Kůrková: Approximation of functions by
perceptron networks with bounded number of hidden units,
Neural Networks 8: 745-750, 1995.
- P. C. Kainen, V. Kůrková, V. Kreinovich, O.
Sirisengtaksin: Uniqueness of network parameterization and faster
learning, Neural, Parallel and Scientific Computations 2:
459-466, 1994.
- V. Kůrková, P. C. Kainen: Functionally equivalent
feedforward neural networks, Neural Computation 6:
543-558, 1994.
- P. C. Kainen, V. Kůrková: Quasiorthogonal
dimension of Euclidean spaces. Applied Math.
Letters 6: 7-10, 1993.
- V. Kůrková: P. C. Kainen: Equivalent weight
vectors in perceptron type networks, Neural Network World
2: 685-692, 1992.
- V. Kůrková: Kolmogorov's theorem and multilayer
neural networks, Neural Networks 5: 501-506, 1992.
- V. Kůrková: Are sigmoidals the best activation
functions in multilayer feedforward networks?, Neural Network
World 2: 27-34, 1992.
- V. Kůrková: Kolmogorov's theorem is relevant,
Neural Computation 3: 617-622, 1991.