The MaxSAT problem in the real-valued MV-algebra

Zuzana Haniková¹, Felip Manyà², Amanda Vidal²

¹Institute of Computer Science of the CAS, Prague, Czech Republic ²Artificial Intelligence Research Institute, CSIC, Bellaterra, Spain

Tableaux 2023, Prague, September 21

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

イロト イポト イヨト イヨト

Boolean maximum satisfiability

Consider a CNF formula

$$\varphi \coloneqq C_1 \wedge C_2 \wedge \dots C_m$$

where C_i are clauses.

• Is φ satisfiable?

• How many clauses can be satisfied by a single assignment?

イロト イヨト イヨト イヨト

Boolean maximum satisfiability

Consider a CNF formula

$$\varphi \coloneqq C_1 \wedge C_2 \wedge \dots C_m$$

where C_i are clauses.

• Is φ satisfiable?

• How many clauses can be satisfied by a single assignment?

Classical-MaxSAT

Instance: multiset $\langle C_1, \ldots, C_m \rangle$ of Boolean clauses (variables x_1, \ldots, x_n) **Output:** maximum integer $k \leq m$ such that there is assignment v in the two-element Boolean algebra $\{0, 1\}$ to $\{x_1, \ldots, x_n\}$ that satisfies k clauses.

MV-algebras

Language \mathcal{L} of Łukasiewicz logic.

Basic function symbols $\{\oplus, \neg\}$.

 $Fm(\mathcal{L})$ set of well-formed formulas of \mathcal{L} .

Some definable symbols: $x \to y$ is $\neg x \oplus y$; $x \odot y$ is $\neg(\neg x \oplus \neg y)$; $x \lor y$ is $(x \to y) \to y$; 1 is $x \to x$; 0 is \neg 1; ... nx is $x \oplus \cdots \oplus x$.

n times

MV-algebras

Language \mathcal{L} of Łukasiewicz logic.

Basic function symbols $\{\oplus, \neg\}$.

 $Fm(\mathcal{L})$ set of well-formed formulas of \mathcal{L} .

Some definable symbols: $x \to y$ is $\neg x \oplus y$; $x \odot y$ is $\neg(\neg x \oplus \neg y)$; $x \lor y$ is $(x \to y) \to y$; 1 is $x \to x$; 0 is \neg 1; ... nx is $\underbrace{x \oplus \cdots \oplus x}_{n \text{ times}}$.

Real-valued MV-algebra $[0, 1]_{L}$.

Domain: interval [0, 1] of the reals (usual order). Interpretation of function symbols: for an assignment v,

 $v(x \oplus y) = \min(1, v(x) + v(y))$ $v(\neg x) = 1 - v(x)$

Intended semantics of Lukasiewicz logic.

The subalgebra on $\{0,1\}$ is isomorphic to the two-element Boolean algebra. [Łukasiewicz 1922; Łukasiewicz and Tarski 1930; Chang 1958, 1959] \ge

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

Boolean maximum satisfiability MV-algebras and satisfiability

Satisfiability in $[0, 1]_{\rm L}$

Consider an MV-algebra A. The only designated value is 1^A .

$$SAT(A) = \{ \varphi \in Fm(\mathcal{L}) \mid \exists v_A (v_A(\varphi) = 1^A) \}$$

(Notice φ is arbitrary.)

Write just SAT in case A is $[0, 1]_{\rm L}$.

イロト イヨト イヨト イヨト

æ

Boolean maximum satisfiability MV-algebras and satisfiability

Satisfiability in $[0, 1]_{L}$

Consider an MV-algebra A. The only designated value is 1^A .

$$SAT(A) = \{ \varphi \in Fm(\mathcal{L}) \mid \exists v_A (v_A(\varphi) = 1^A) \}$$

(Notice φ is arbitrary.)

Write just SAT in case A is $[0, 1]_{L}$.

SAT

Instance: formula φ of \mathcal{L} . **Output:** (Boolean) Is φ satisfiable in $[0, 1]_{L}$?

Boolean maximum satisfiability MV-algebras and satisfiability

Satisfiability in $[0, 1]_{L}$

Consider an MV-algebra A. The only designated value is 1^A .

$$SAT(A) = \{ \varphi \in Fm(\mathcal{L}) \mid \exists v_A (v_A(\varphi) = 1^A) \}$$

(Notice φ is arbitrary.)

Write just SAT in case A is $[0, 1]_{L}$.

SAT

Instance: formula φ of \mathcal{L} . **Output:** (Boolean) Is φ satisfiable in $[0, 1]_{L}$?

SAT is NP-complete:

- bounding the denominator of assignments [Mundici 1987; (Aguzzoli, Ciabattoni, ...)]
- reduction to mixed integer programming [Hähnle 1994; Olivetti 2003; ...]

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

Maximum satisfiability in $[0, 1]_{\rm L}$

MaxSAT-OPT

Instance: multiset $\langle \varphi_1, \ldots, \varphi_m \rangle$ of formulas of \mathcal{L} in variables x_1, \ldots, x_n . **Output:** maximum integer $k \leq m$ such that there is assignment v to $\{x_1, \ldots, x_n\}$ in $[0, 1]_{\mathrm{L}}$ that satisfies at least k formulas in the multiset.

MaxSAT-DEC

Instance: multiset $\langle \varphi_1, \ldots, \varphi_m \rangle$ of formulas of \mathcal{L} in variables x_1, \ldots, x_n , and integer $1 \leq k \leq m$. **Output:** (Boolean) Is **MaxSAT-OPT** $\langle \varphi_1, \ldots, \varphi_m \rangle$ at least k?

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

(日本)(周本)(日本)(日本)(日本)

Decision version of MaxSAT Optimization version of MaxSAT

Decision version of MaxSAT

Theorem

MaxSAT-DEC is NP-complete.

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

イロト イヨト イヨト イヨト

æ

Decision version of MaxSAT

Theorem

MaxSAT-DEC is NP-complete.

- 1. For k = m = 1 the problem coincides with **SAT**.
- 2. For $2 \leq k \leq m$,

 $(\langle \varphi_1, \dots, \varphi_m \rangle, k) \in \mathbf{MaxSAT-DEC} \text{ iff } \{\rho_{1/k}\} \cup \Phi_k \cup \{\bigoplus_{i=1}^m y_{i,k}\} \in \mathbf{SAT}$

where

$$\rho_{1/k} \coloneqq y \leftrightarrow \neg((k-1)y)$$

and Φ_k collects all the formulas

$$\{ (\varphi_i \leftrightarrow k \, y_{i,k}) \lor \neg y_{i,k} \ , \ (y_{i,k} \leftrightarrow y) \lor \neg y_{i,k} \}$$

for $1 \leq i \leq m$.

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

(日本)(周本)(日本)(日本)(日本)

Decision version of MaxSAT Optimization version of MaxSAT

Oracle computation of MaxSAT

Assume an algorithm ${\bf A}$ for ${\bf MaxSAT-DEC}$ ("oracle").

Recall: input $\langle \varphi_1, \ldots, \varphi_m \rangle$ and k; output: 'yes' / 'no'.

Search space: $\{0, 1, \ldots, m\}$.

Oracle computation of MaxSAT

Assume an algorithm **A** for **MaxSAT-DEC** ("oracle"). Recall: input $\langle \varphi_1, \ldots, \varphi_m \rangle$ and k; output: 'yes' / 'no'.

Search space: $\{0, 1, \ldots, m\}$.

Binary search using $O(\log m)$ oracle calls.

Lemma

MaxSAT-OPT is in $FP^{NP}[\log m]$. (\sharp of calls to NP-complete oracle is logarithmic in \sharp of formulas).

イロト 不得下 イヨト イヨト 二日

Inside FP^{NP}

 $\text{FP}^{\text{NP}}[z(n)]$ is the class of functions computable in P-time with NP oracle with at most z(|x|) oracle calls on input x.

(In particular, $FP^{NP} = FP^{NP}[n^{O(1)}]$.)

イロト イヨト イヨト イヨト

Inside FP^{NP}

 $\operatorname{FP}^{\operatorname{NP}}[z(n)]$ is the class of functions computable in P-time with NP oracle with at most z(|x|) oracle calls on input x.

(In particular, $FP^{NP} = FP^{NP}[n^{O(1)}]$.)

Let $f, g: \Sigma^* \to \mathbb{N}$. A metric reduction of f to g is a pair (h_1, h_2) of P-time functions (with $h_1: \Sigma^* \to \Sigma^*$ and $h_2: \Sigma^* \times N \to N$) such that $f(x) = h_2(x, g(h_1(x)))$ for each $x \in \Sigma^*$.

Inside FP^{NP}

 $\operatorname{FP}^{\operatorname{NP}}[z(n)]$ is the class of functions computable in P-time with NP oracle with at most z(|x|) oracle calls on input x.

```
(In particular, FP^{NP} = FP^{NP}[n^{O(1)}].)
```

Let $f, g: \Sigma^* \to \mathbb{N}$. A metric reduction of f to g is a pair (h_1, h_2) of P-time functions (with $h_1: \Sigma^* \to \Sigma^*$ and $h_2: \Sigma^* \times N \to N$) such that $f(x) = h_2(x, g(h_1(x)))$ for each $x \in \Sigma^*$.

Theorem [Krentel 1988]

Assume $P \neq NP$. Then $FP^{NP}[O(\log \log n)] \neq FP^{NP}[O(\log n)] \neq FP^{NP}[n^{O(1)}].$

No metric reductions from, e.g., $FP^{NP}[O(\log n)]$ -complete problems to problems in $FP^{NP}[O(\log \log n)]$.

[Krentel: Complexity of optimization problems. J. Comp. System Sci. 36, 1988]

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

イロト 不得下 イヨト イヨト 二日

Decision version of MaxSAT Optimization version of MaxSAT

Complexity of MaxSAT-OPT

Theorem

MaxSAT-OPT is complete for $FP^{NP}[O(\log m)]$ under metric reductions.

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

э

Decision version of MaxSAT Optimization version of MaxSAT

Complexity of MaxSAT-OPT

Theorem

MaxSAT-OPT is complete for $FP^{NP}[O(\log m)]$ under metric reductions.

Proof idea:

Classical-MaxSAT reduces to **MaxSAT-OPT** via a pair of identity functions.

Boolean language is $\{\neg, \lor, \odot\}$ and CNF's define convex functions in $[0, 1]_{L}$.

イロト 不得下 イヨト イヨト 二日

Decision method for SAT Optimization method for MaxSAT

Tseitin transformation

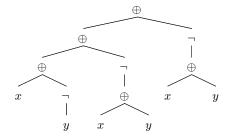
$$\varphi \coloneqq ((x \oplus \neg y) \oplus \neg (x \oplus y)) \oplus \neg (x \oplus y). \text{ Is } \varphi \in \mathbf{SAT}?$$

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

Decision method for SAT Optimization method for MaxSAT

Tseitin transformation

$$\varphi \coloneqq ((x \oplus \neg y) \oplus \neg (x \oplus y)) \oplus \neg (x \oplus y). \text{ Is } \varphi \in \mathbf{SAT}?$$



Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

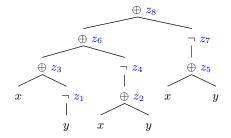
イロト イヨト イヨト イヨト

æ

Decision method for SAT Optimization method for MaxSAT

Tseitin transformation

$$\varphi \coloneqq ((x \oplus \neg y) \oplus \neg (x \oplus y)) \oplus \neg (x \oplus y). \text{ Is } \varphi \in \mathbf{SAT}?$$

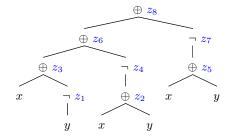


イロト イヨト イヨト イヨト

Decision method for SAT Optimization method for MaxSAT

Tseitin transformation

$$\varphi \coloneqq ((x \oplus \neg y) \oplus \neg (x \oplus y)) \oplus \neg (x \oplus y). \text{ Is } \varphi \in \mathbf{SAT}?$$



 $z_1 = \neg y; z_2 = x \oplus y; \ldots; z_8 = z_6 \oplus z_7;$

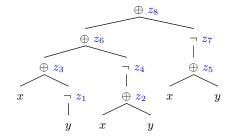
Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

イロト イヨト イヨト イヨト

Decision method for SAT Optimization method for MaxSAT

Tseitin transformation

$$\varphi \coloneqq ((x \oplus \neg y) \oplus \neg (x \oplus y)) \oplus \neg (x \oplus y). \text{ Is } \varphi \in \mathbf{SAT}?$$



 $z_1 = \neg y; z_2 = x \oplus y; \ldots; z_8 = z_6 \oplus z_7; z_8 = 1.$

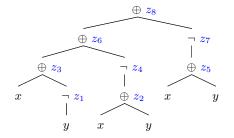
Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

イロト イヨト イヨト イヨト

Decision method for SAT Optimization method for MaxSAT

Tseitin transformation

$$\varphi \coloneqq ((x \oplus \neg y) \oplus \neg (x \oplus y)) \oplus \neg (x \oplus y). \text{ Is } \varphi \in \textbf{SAT}?$$



 $z_1 = \neg y; z_2 = x \oplus y; \ldots; z_8 = z_6 \oplus z_7; z_8 = 1.$

Polynomial increase in length. New variables. Preserves satisfiability.

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

イロト イポト イラト イラト

э

Decision method for SAT Optimization method for MaxSAT

Example: repeating subformulas

$$\alpha \coloneqq \underbrace{y \oplus y \oplus y \oplus \ldots \oplus y}_{k \text{ times}}$$

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

・ロト ・御ト ・ヨト ・ヨト

Example: repeating subformulas

$$\alpha \coloneqq \underbrace{y \oplus y \oplus y \oplus \ldots \oplus y}_{k \text{ times}}$$

Let $\|\varphi\|$ be \sharp of pairwise distinct subformulas in φ .

 $||\alpha|| \text{ proportional to: } \begin{cases} k \text{ if brackets nest to the right / left} \\ \log_2 k \text{ if brackets form a balanced tree} \end{cases}$

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

イロト イロト イヨト イヨト 三日

Example: repeating subformulas

$$\alpha \coloneqq \underbrace{y \oplus y \oplus y \oplus \ldots \oplus y}_{k \text{ times}}$$

Let $||\varphi||$ be \sharp of pairwise distinct subformulas in φ .

 $||\alpha||$ proportional to: $\begin{cases}
k \text{ if brackets nest to the right / left} \\
\log_2 k \text{ if brackets form a balanced tree}
\end{cases}$

Subformulas will be taken as a set.

イロト イロト イヨト イヨト 三日

Decision method for **SAT**

Input: $\varphi(x_1,\ldots,x_n)$.

- **Q** List **L** of pairwise distinct subformulas in φ .
- **2** New variables z_i for *i*-th subformula in **L**.
- **3** Tseitin equations: list **S** of equations of the form $z_i = x$ or $z_i = \neg z_j$ or $z_i = z_j \oplus z_k$. Notice $|S| = |\mathbf{L}|$.

Decision method for **SAT**

Input: $\varphi(x_1,\ldots,x_n)$.

- **4** List **L** of pairwise distinct subformulas in φ .
- **2** New variables z_i for *i*-th subformula in **L**.
- **3** Tseitin equations: list S of equations of the form $z_i = x$ or $z_i = \neg z_j$ or $z_i = z_j \oplus z_k$. Notice $|S| = |\mathbf{L}|$.
- Initialize rooted linear tree T. From root down, label each node of T with one equation from S.
- **3** Boundary constraints $0 \le z_i, z_i \le 1$.
- **(3)** Target constraint $z_l = 1$ where z_l is variable for φ .
- **\bigcirc Expand** nodes with symbols of \mathcal{L} using the rules:

$$\begin{array}{c}
 z_i \oplus z_j = z_k \\
 \overline{z_i + z_j \leq 1} \\
 z_i + z_j = z_k
 \end{array}
 \begin{array}{c}
 z_i = \neg z_j \\
 \overline{z_i = 1 - z_j} \\
 \overline{z_i = 1 - z_j}
 \end{array}$$

Each branch of ${\bf T}$ then defines a system of linear constraints in ${\mathbb R}.$

イロト 不得下 イヨト イヨト 二日

Decision method for **SAT**

Input: $\varphi(x_1,\ldots,x_n)$.

- **4** List **L** of pairwise distinct subformulas in φ .
- **2** New variables z_i for *i*-th subformula in **L**.
- **3** Tseitin equations: list S of equations of the form $z_i = x$ or $z_i = \neg z_j$ or $z_i = z_j \oplus z_k$. Notice $|S| = |\mathbf{L}|$.
- Initialize rooted linear tree T. From root down, label each node of T with one equation from S.
- **3** Boundary constraints $0 \le z_i, z_i \le 1$.
- **(3)** Target constraint $z_l = 1$ where z_l is variable for φ .
- **\bigcirc Expand** nodes with symbols of \mathcal{L} using the rules:

$$\begin{array}{c|c} z_i \oplus z_j = z_k & z_i = \neg z_j \\ \hline z_i + z_j \le 1 & z_i + z_j \ge 1 \\ z_i + z_j = z_k & z_k = 1 \end{array}$$

Each branch of ${\bf T}$ then defines a system of linear constraints in ${\mathbb R}.$

- Left to right, test system on each branch for solvability in R. If branch is found with solvable system, return 'yes' and exit.
- **Default.** Return 'no' and exit.

cf. [Hähnle 1994]

Z. Haniková, F. Manyà, A. Vidal

イロト イロト イヨト イヨト 三日

Linearization

Lemma

Assume $a_1, a_2, a_3 \in [0, 1]$. Then $a_1 \oplus a_2 = a_3$ holds in $[0, 1]_L$ if and only if there is an $y \in \{0, 1\}$ such that all of the following constraints hold in \mathbb{R} :

(i) $a_1 + a_2 \le 1 + y$ (ii) $y \le a_1 + a_2$ (iii) $a_3 \le a_1 + a_2$ (v) $y \le a_3$.

[Hähnle 1994, Hájek 1998]

Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra

Computing MaxSAT-OPT: first remarks

Consider the multiset $\langle \alpha, \ldots, \alpha \rangle$, with m > 1.

If $\alpha \in \mathbf{SAT}$, a sound and complete method ought to produce answer m on this input.

Computing MaxSAT-OPT: first remarks

Consider the multiset $\langle \alpha, \ldots, \alpha \rangle$, with m > 1.

If $\alpha \in \mathbf{SAT}$, a sound and complete method ought to produce answer m on this input.

Keep the procedure bringing input to Tseitin normal form.

- Update target constraint: multiset on input.
- Update method of reading output from the tree.

Input: $\langle \varphi_1, \ldots, \varphi_m \rangle$ in variables x_1, \ldots, x_n .

- **Q** List **L** of pairwise distinct subformulas in $\varphi_1, \ldots, \varphi_m$.
- **2** New variables z_i as before.
- **O Tseitin equations** as before.
- **4** Initialize **rooted linear tree** as before.
- **O Boundary constraints** as before.

Input: $\langle \varphi_1, \ldots, \varphi_m \rangle$ in variables x_1, \ldots, x_n .

- **Q** List **L** of pairwise distinct subformulas in $\varphi_1, \ldots, \varphi_m$.
- **2** New variables z_i as before.
- **O** Tseitin equations as before. Hard.
- Initialize rooted linear tree as before.
- **6** Boundary constraints as before. Hard.

Input: $\langle \varphi_1, \ldots, \varphi_m \rangle$ in variables x_1, \ldots, x_n .

- **Q** List **L** of pairwise distinct subformulas in $\varphi_1, \ldots, \varphi_m$.
- **2** New variables z_i as before.
- **5** Tseitin equations as before. Hard.
- Initialize rooted linear tree as before.
- **6** Boundary constraints as before. Hard.
- **3** Target constraints $z_{j_i} = 1$ for each var. z_{j_i} introduced for φ_i , preserving the **multiplicity** of φ_i in the input. Soft.

Input: $\langle \varphi_1, \ldots, \varphi_m \rangle$ in variables x_1, \ldots, x_n .

- **Q** List **L** of pairwise distinct subformulas in $\varphi_1, \ldots, \varphi_m$.
- **2** New variables z_i as before.
- **Oscillations** as before. Hard.
- Initialize rooted linear tree as before.
- **6** Boundary constraints as before. Hard.
- **3** Target constraints $z_{j_i} = 1$ for each var. z_{j_i} introduced for φ_i , preserving the multiplicity of φ_i in the input. Soft.
- **Expand tree.** As before. Hard.
- **3** Test systems. For each branch, determine the maximum number of satisfied soft constraints in the system determined by the branch, in R.
- **9** Maximize. Return the maximum number of satisfied soft constraints over all the branches.