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Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra



Introduction
Complexity of MaxSAT

Tableau methods for SAT and MaxSAT

Boolean maximum satisfiability
MV-algebras and satisfiability

Boolean maximum satisfiability

Consider a CNF formula

ϕ := C1 ∧ C2 ∧ . . . Cm

where Ci are clauses.

Is ϕ satisfiable?

How many clauses can be satisfied by a single assignment?

Classical-MaxSAT

Instance: multiset 〈C1, . . . , Cm〉 of Boolean clauses (variables x1, . . . , xn)

Output: maximum integer k ≤ m such that there is assignment v in the
two-element Boolean algebra {0, 1} to {x1, . . . , xn} that satisfies k clauses.
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MV-algebras

Language L of  Lukasiewicz logic.

Basic function symbols {⊕,¬}.
Fm(L) set of well-formed formulas of L.

Some definable symbols: x→ y is ¬x⊕ y; x� y is ¬(¬x⊕ ¬y);
x ∨ y is (x→ y)→ y; 1 is x→ x; 0 is ¬1; . . .

nx is x⊕ · · · ⊕ x︸ ︷︷ ︸
n times

.

Real-valued MV-algebra [0, 1] L.

Domain: interval [0, 1] of the reals (usual order).

Interpretation of function symbols: for an assigment v,

v(x⊕ y) = min(1, v(x) + v(y))

v(¬x) = 1− v(x)

Intended semantics of  Lukasiewicz logic.

The subalgebra on {0, 1} is isomorphic to the two-element Boolean algebra.

[ Lukasiewicz 1922;  Lukasiewicz and Tarski 1930; Chang 1958, 1959]
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Satisfiability in [0, 1] L

Consider an MV-algebra A. The only designated value is 1A.

SAT(A) = {ϕ ∈ Fm(L) | ∃vA (vA(ϕ) = 1A)

(Notice ϕ is arbitrary.)

Write just SAT in case A is [0, 1] L.

SAT

Instance: formula ϕ of L.

Output: (Boolean) Is ϕ satisfiable in [0, 1] L?

SAT is NP-complete:

bounding the denominator of assignments
[Mundici 1987; (Aguzzoli, Ciabattoni, . . . )]

reduction to mixed integer programming
[Hähnle 1994; Olivetti 2003; . . . ]
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Maximum satisfiability in [0, 1] L

MaxSAT-OPT

Instance: multiset 〈ϕ1, . . . , ϕm〉 of formulas of L in variables x1, . . . , xn.

Output: maximum integer k ≤ m such that there is assignment v to
{x1, . . . , xn} in [0, 1] L that satisfies at least k formulas in the multiset.

MaxSAT-DEC

Instance: multiset 〈ϕ1, . . . , ϕm〉 of formulas of L in variables x1, . . . , xn,
and integer 1 ≤ k ≤ m.

Output: (Boolean) Is MaxSAT-OPT〈ϕ1, . . . , ϕm〉 at least k?
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Decision version of MaxSAT

Theorem

MaxSAT-DEC is NP-complete.

1. For k = m = 1 the problem coincides with SAT.

2. For 2 ≤ k ≤ m,

(〈ϕ1, . . . , ϕm〉, k) ∈MaxSAT-DEC iff {ρ1/k} ∪ Φk ∪ {
m⊕
i=1

yi,k} ∈ SAT

where
ρ1/k := y ↔ ¬((k − 1)y)

and Φk collects all the formulas

{ (ϕi ↔ k yi,k) ∨ ¬yi,k , (yi,k ↔ y) ∨ ¬yi,k }

for 1 ≤ i ≤ m.
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Oracle computation of MaxSAT

Assume an algorithm A for MaxSAT-DEC (“oracle”).
Recall: input 〈ϕ1, . . . , ϕm〉 and k; output: ‘yes’ / ‘no’.

Search space: {0, 1, . . . ,m}.

Binary search using O(logm) oracle calls.

Lemma

MaxSAT-OPT is in FPNP[logm].
( ] of calls to NP-complete oracle is logarithmic in ] of formulas).
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Inside FPNP

FPNP[z(n)] is the class of functions computable in P-time with NP oracle
with at most z(|x|) oracle calls on input x.

(In particular, FPNP = FPNP[nO(1)].)

Let f, g : Σ∗ → N.
A metric reduction of f to g is a pair (h1, h2) of P-time functions
(with h1 : Σ∗ → Σ∗ and h2 : Σ∗ ×N → N)
such that f(x) = h2(x, g(h1(x))) for each x ∈ Σ∗.

Theorem [Krentel 1988]

Assume P 6= NP. Then
FPNP[O(log log n)] 6= FPNP[O(logn)] 6= FPNP[nO(1)].

No metric reductions from, e.g.,
FPNP[O(logn)]-complete problems to problems in FPNP[O(log log n)].

[Krentel: Complexity of optimization problems. J. Comp. System Sci. 36,
1988]
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Complexity of MaxSAT-OPT

Theorem

MaxSAT-OPT is complete for FPNP[O(logm)] under metric reductions.

Proof idea:

Classical-MaxSAT reduces to MaxSAT-OPT via
a pair of identity functions.

Boolean language is {¬,∨,�} and CNF’s define convex functions in [0, 1] L.
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Tseitin transformation

ϕ := ((x⊕ ¬y)⊕ ¬(x⊕ y))⊕ ¬(x⊕ y). Is ϕ ∈ SAT?

⊕

z8

¬

z7

⊕

z5

yx

⊕

z6

¬

z4

⊕

z2

yx

⊕

z3

¬

z1

y

x

z1 = ¬y; z2 = x⊕ y; . . . . . . . . . ; z8 = z6 ⊕ z7; z8 = 1.

Polynomial increase in length. New variables. Preserves satisfiability.
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Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra



Introduction
Complexity of MaxSAT

Tableau methods for SAT and MaxSAT

Decision method for SAT
Optimization method for MaxSAT

Tseitin transformation

ϕ := ((x⊕ ¬y)⊕ ¬(x⊕ y))⊕ ¬(x⊕ y). Is ϕ ∈ SAT?

⊕ z8

¬ z7

⊕ z5

yx

⊕ z6

¬ z4

⊕ z2

yx

⊕ z3

¬ z1

y

x

z1 = ¬y; z2 = x⊕ y; . . . . . . . . . ; z8 = z6 ⊕ z7;

z8 = 1.

Polynomial increase in length. New variables. Preserves satisfiability.
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Example: repeating subformulas

α := y ⊕ y ⊕ y ⊕ . . . ⊕ y︸ ︷︷ ︸
k times

Let ||ϕ|| be ] of pairwise distinct subformulas in ϕ.

||α|| proportional to:

{
k if brackets nest to the right / left

log2 k if brackets form a balanced tree

Subformulas will be taken as a set.
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Decision method for SAT

Input: ϕ(x1, . . . , xn).

1 List L of pairwise distinct subformulas in ϕ.

2 New variables zi for i-th subformula in L.

3 Tseitin equations: list S of equations of the form zi = x or zi = ¬zj
or zi = zj ⊕ zk. Notice |S| = |L|.

4 Initialize rooted linear tree T. From root down, label each node of
T with one equation from S.

5 Boundary constraints 0 ≤ zi, zi ≤ 1.

6 Target constraint zl = 1 where zl is variable for ϕ.

7 Expand nodes with symbols of L using the rules:

zi ⊕ zj = zk
zi + zj ≤ 1 zi + zj ≥ 1
zi + zj = zk zk = 1

zi = ¬zj
zi = 1− zj

Each branch of T then defines a system of linear constraints in R.

8 Left to right, test system on each branch for solvability in R.
If branch is found with solvable system, return ‘yes’ and exit.

9 Default. Return ‘no’ and exit.

cf. [Hähnle 1994]
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Z. Haniková, F. Manyà, A. Vidal MaxSAT problem in real-valued MV-algebra



Introduction
Complexity of MaxSAT

Tableau methods for SAT and MaxSAT

Decision method for SAT
Optimization method for MaxSAT

Decision method for SAT

Input: ϕ(x1, . . . , xn).

1 List L of pairwise distinct subformulas in ϕ.

2 New variables zi for i-th subformula in L.

3 Tseitin equations: list S of equations of the form zi = x or zi = ¬zj
or zi = zj ⊕ zk. Notice |S| = |L|.

4 Initialize rooted linear tree T. From root down, label each node of
T with one equation from S.

5 Boundary constraints 0 ≤ zi, zi ≤ 1.

6 Target constraint zl = 1 where zl is variable for ϕ.

7 Expand nodes with symbols of L using the rules:

zi ⊕ zj = zk
zi + zj ≤ 1 zi + zj ≥ 1
zi + zj = zk zk = 1

zi = ¬zj
zi = 1− zj

Each branch of T then defines a system of linear constraints in R.

8 Left to right, test system on each branch for solvability in R.
If branch is found with solvable system, return ‘yes’ and exit.

9 Default. Return ‘no’ and exit.

cf. [Hähnle 1994]
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Linearization

Lemma

Assume a1, a2, a3 ∈ [0, 1]. Then a1 ⊕ a2 = a3 holds in [0, 1] L if and only if
there is an y ∈ {0, 1} such that all of the following constraints hold in R:

(i) a1 + a2 ≤ 1 + y

(ii) y ≤ a1 + a2

(iii) a3 ≤ a1 + a2

(iv) a1 + a2 ≤ a3 + y

(v) y ≤ a3.

[Hähnle 1994, Hájek 1998]
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Computing MaxSAT-OPT: first remarks

Consider the multiset 〈α, . . . , α〉, with m > 1.

If α ∈ SAT,
a sound and complete method ought to produce answer m on this input.

Keep the procedure bringing input to Tseitin normal form.

Update target constraint: multiset on input.

Update method of reading output from the tree.
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Decision method for SAT
Optimization method for MaxSAT

Computing MaxSAT-OPT

Input: 〈ϕ1, . . . , ϕm〉 in variables x1, . . . , xn.

1 List L of pairwise distinct subformulas in ϕ1, . . . , ϕm.

2 New variables zi — as before.

3 Tseitin equations — as before.

Hard.

4 Initialize rooted linear tree — as before.

5 Boundary constraints — as before.

Hard.

6 Target constraints zji = 1 for each var. zji introduced for ϕi,
preserving the multiplicity of ϕi in the input. Soft.

7 Expand tree. As before. Hard.

8 Test systems. For each branch, determine the maximum number of
satisfied soft constraints in the system determined by the branch, in R.

9 Maximize. Return the maximum number of satisfied soft constraints
over all the branches.
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