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Abstract

We present an unranked probabilistic logic, which is an extension of the first-order
probability logic with sequence variables and flexible-arity (unranked) function and
predicate symbols. The semantics of the logic is defined using Kripke worlds and
the strong completeness theorem holds for it. Such a formalism is interesting as it
provides very flexible and expressive platform to model various problems coming from
real world applications.

Keywords: Unranked symbols, sequence variables, probabilistic primitives.

1 Introduction
Since the early days of Artificial Intelligence (AI) logical and probabilistic meth-
ods have been independently used in order to solve tasks that require some
sort of “intelligence”. Probability theory deals with the challenges posed by
uncertainty, while logic is more often used for reasoning with perfect knowl-
edge. Considerable efforts have been devoted to combining logical and prob-
abilistic methods in a single framework, which influenced the development of
several formalisms and programming tools. Among others, the most promi-
nent ones include Independent Choice Logic (ICL) [22], PRISM [24], Markov
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Logic Networks (MLN) [23], CLP(BN) [9], Bayesian Logic Programs [13], P-
log [2], ProbLog [10], and Probabilistic Soft Logic (PSL) [1]. These languages
and formalisms have been successfully applied to many domains. Some of the
applications include web mining, natural language processing, robotics, trans-
portation systems, communication networks, social networks, medicine, bio-
and chemo-informatics, electronic games, and activity recognition.

All probabilistic logic formalisms studied so far are either propositional, or
permit only individual variables, i.e., variables that can be instantiated by a
single term. On the other hand, theories and systems that use not only indi-
vidual variables but also sequence variables (these variables can be replaced by
arbitrary finite, possibly empty, sequences of terms) have emerged. Recently,
the usefulness of sequence variables and unranked symbols (function and/or
predicate symbols without fixed arity) has been shown in several formalisms
and illustrated in practical applications related to XML [6,7], schema transfor-
mation operations [5], knowledge representation [12,8], automated reasoning
[21,4], rewriting [25], functional, functional-logic, and rule-based programming
[17,16], just to name a few. There are systems for programming with sequence
variables. Probably the most prominent one is Mathematica [26], with a pow-
erful rule-based programming language that uses (essentially first order, equa-
tional) unranked matching with sequence variables [3]. The unranked term is a
first-order term, where the same function symbol can occur in different places
with different number of arguments. Unranked function symbols and sequence
variables bring a great deal of expressiveness in this language, permitting writ-
ing a short, concise, readable code.

We develop a novel theory, where sequence variables, unranked terms and
probabilistic primitives will be available together. Such a formalism is in-
teresting from theoretical point of view as well as from practical one, since
it provides very flexible and expressive platform to model various problems
coming from real world applications. We define an unranked probabilistic first-
order logic LFOPu, which is an extension of the probabilistic first-order logic
LFOP1 [19,20,18] with sequence variables and unranked function and predicate
symbols [15,11,14].

2 Syntax
We consider an alphabet A consisting of the following pairwise disjoint sets of
symbols:
• the set Vi of individual variables, denoted by xi, yi, zi, . . .,
• the set Vs of sequence variables, denoted by x, y, z, . . .,
• the set Fr

i of fixed arity (ranked) individual function symbols, denoted by
fr, gr, . . .,

• the set Fu
i of flexible arity (unranked) individual function symbols, denoted

by fu, gu, . . .,
• the set Fr

s of fixed arity (ranked) sequence function symbols, denoted by
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f
r
, gr, . . .,

• the set Fu
s of flexible arity (unranked) sequence function symbols, denoted

by f
u
, gu, . . .,

• the set Pr of fixed arity (ranked) predicate symbols, denoted by pr, qr, . . .,
• the set Pu of flexible arity (unranked) predicate symbols, denoted by

pu, qu, . . .,
• logical connectives and quantifiers ¬, ∧, ∨, →, ∃, ∀,
• a list of unary probability opertors P[a,b], for every [a, b] ⊆ [0, 1] and a, b ∈ Q,
• auxiliary symbols: parentheses and the comma.

Each ranked symbol has a unique arity (rank) associated with it. If the rank
of a function symbol is 0, then it is called a constant. Unranked symbols do
not have a fixed arity. Each set of variables, function symbols, and predicate
symbols is countably infinite. The letter V denotes the set Vi ∪ Vs and its
elements are denoted by x, y, z, . . .. The letter P denotes the set of all predicate
symbols, i.e. P = Pr ∪ Pu. Respectively, the letters Fi = Fr

i ∪ Fu
i and

Fs = Fr
s ∪ Fu

s denote the set of all individual and sequence function symbols.
We use the letters f, g to denote elements of Fi, the letters f, g to denote
elements of Fs, and the letters p, q for the elements of P. We might use these
letters with or without the indices; the set to which they belong will be specified
explicitly or will be clear from the context.

The intended meaning of the unary probability operators P[a,b]A is that
“the probability of A is in interval [a, b]”, where [a, b] is an interval of rational
numbers between [0, 1] 1 .

Note that, defining the probability operator using intervals is a more general
approach and the probability operators P≥s (as defined in [18]) correspond
to P[s,1]. Analogously, the abbreviated operators P≤s, P=s, P<s, P>s can be
represented as P[0,s], P[s,s], P[0,s] ∧ ¬P[s,s], P[s,1] ∧ ¬P[s,s], respectively.

The terms are defined as individual and sequence terms over A in the fol-
lowing inductive way:

t ::= xi | fr(t1, . . . , tn) | fu(s1, . . . , sn) individual terms
s ::= t | x | f

r(t1, . . . , tn) | f
u(s1, . . . , sn), n ≥ 0 sequence terms

An atom is a formula of the form pr(t1, . . . , tn), n ≥ 0 and
pu(s1, . . . , sm), m ≥ 0, where pr ∈ Pr is an n-ary predicate symbol, and
pu ∈ Pu is a flexible arity predicate symbol. Formulas are built in an usual
inductive fashion from atoms, unary probability operators P[a,b], and logical
connectives ¬, ∧, ∨, →, ∃, and ∀. Quantifications are allowed on both, individ-
ual as well as on sequence variables. We use the letters A, B, . . . to denote
formulas.
Example 2.1 The famous lottery paradox, that for each ticket the winning

1 The requirement of rational numbers is not essential, but for technical reasons only.
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chance is very low, but there is a high chance that some tickets win, can be
modelled as:

(∀x)P[0,0.000001]Win(x) ∧ P[0.999999,1](∃x1, . . . , xn)Win(x1, . . . , xn)

where Win ∈ Pu is a flexible arity predicate symbol and Win(x1, . . . , xn)
means that the tickets x1, . . . , xn win the lottery.

A substitution is a finite set of distinct variable bindings, where a variable
binding is either an expression xi 7→ t or x 7→ s. Substitutions are denoted
by σ, θ and the empty substitution is denoted by ϵ. The application of a
substitution σ on a term t and a formula A is defined in the usual way (e.g. as
given in [15]) and is denoted by tσ and Aσ, respectively.

3 Semantics
The semantics for LFOPu is based on the well-known Kripke frames, where
accessibility relations are replaced by probability measures.

An LFOPu-model is a structure M = ⟨W, D, I, Prob⟩, where:
• W is a nonempty set of worlds,
• D is a nonempty domain for every world w ∈ W and it is a union of two

disjoint sets Di and Ds, where Di ̸= ∅,
• I is an interpretation that for each w ∈ W , associates I(w) for every:

· individual constant c to an element I(w)(c) ∈ Di,
· sequence constant c to an element I(w)(c) ∈ D∞, 2

· n-ary individual function symbol fr ∈ Fr
i , with n > 0, to an n-ary function

I(w)(fr) : Dn
i → Di

· flexible arity individual function symbol fu ∈ Fu
i to a flexible arity function

I(w)(fu) : D∞ → Di

· n-ary sequence function symbol f
r ∈ Fr

s , with n > 0, to an n-ary multi-
valued function I(w)(fr) : Dn

i → D∞

· flexible arity sequence function symbol f
u ∈ Fu

s to a flexible arity multi-
valued function I(w)(fu) : D∞ → D∞

· n-ary predicate symbol pr ∈ Pr, with n ≥ 0, to an n-ary predicate
I(w)(pr) ⊆ Dn

i

· flexible arity predicate symbol pu ∈ Pu to a flexible arity predicate
I(w)(pu) ⊆ D∞

• Prob is a probability assignment that for each w ∈ W assigns a probability
space Prob(w) = ⟨W (w), H(w), µ(w)⟩, where:
· W (w) ⊆ W and W (w) ̸= ∅,
· H(w) is an algebra over subsets of W (w), defined as:

W (w) ∈ H(w), and
if α, β ∈ H(w), then W (w) \ α ∈ H(w) and α ∪ β ∈ H(w)

2 D∞ =
⋃

n≥0 Dn, where Dn, n ≥ 1, is a set of all n-tuples over D and D0 = {ϵ}, for ϵ

denoting the empy tuple.
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· µ(w) : H(w) → [0, 1] is a finitely additive probability measure, defined as:
µ(w)(W (w)) = 1, and
if α ∩ β = ∅, then µ(w)(α ∪ β) = µ(w)(α) + µ(w)(β).

An M-evaluation is a mapping e, which assigns to each individual variable xi

an element e(xi) ∈ Di and to each sequence variable x an element e(x) ∈ D∞.
Further, e[xi 7→ d], for d ∈ Di, is an M -evaluation such that e[xi 7→ d](xi) = d
and e[xi 7→ d](yi) = e(yi) for each individual variable yi different from xi.
Analogously, for any d ∈ D∞, e[x 7→ d](x) = d and e[x 7→ d](y) = e(y) for each
sequence variable y different from x.

The value of a term t in a world w with respect to an M-evaluation e,
denoted by ∥I(w)(t)∥M

e , is:
• ∥I(w)(x)∥M

e = e(x), for x being an individual or a sequence variable,
• ∥I(w)(f(t1, . . . , tn))∥M

e = I(w)(f)(∥t1∥M
e , . . . , ∥tn∥M

e ), for f ∈ {fr, fu} and
t1, . . . , tn being individual terms,

• ∥I(w)(f(s1, . . . , sn))∥M
e = I(w)(f)(∥s1∥M

e , . . . , ∥sn∥M
e ), for f ∈ {f

r
, f

u} and
s1, . . . , sn being sequence terms.
The truth value of a formula A in a world w with respect to an M-evaluation

e, denoted by ∥I(w)(A)∥M
e , is:

• ∥I(w)(pr(t1, . . . , tn))∥M
e = True, if

〈
∥t1∥M

e , . . . , ∥tn∥M
e

〉
∈ I(w)(pr),

• ∥I(w)(pu(s1, . . . , sn))∥M
e = True, if

〈
∥s1∥M

e , . . . , ∥sn∥M
e

〉
∈ I(w)(pu),

• ∥I(w)(P[a,b]A)∥M
e = True, if

µ(w)({u | u ∈ W (w) and ∥I(u)(A)∥M
e = True}) ∈ [a, b],

• ∥I(w)(¬A)∥M
e = True, if ∥I(w)(A)∥M

e = False,
• ∥I(w)(A ∧ B)∥M

e = True, if ∥I(w)(A)∥M
e = True and ∥I(w)(B)∥M

e = True,
• ∥I(w)(A ∨ B)∥M

e = True, if ∥I(w)(A)∥M
e = True or ∥I(w)(B)∥M

e = True,
• ∥I(w)(A → B)∥M

e = True, if ∥I(w)(A)∥M
e = False or ∥I(w)(B)∥M

e = True,
• ∥I(w)((∀xi)A)∥M

e = True, if for every d ∈ Di, ∥I(w)(A)∥M
e[xi 7→d] = True,

• ∥I(w)((∀x)A)∥M
e = True, if for every d ∈ D∞, ∥I(w)(A)∥M

e[x 7→d] = True,
• ∥I(w)((∃xi)A)∥M

e = True, if for some d ∈ Di, ∥I(w)(A)∥M
e[xi 7→d] = True,

• ∥I(w)((∃x)A)∥M
e = True, if for some d ∈ D∞, ∥I(w)(A)∥M

e[x 7→d] = True,
• in all other cases I(w)(A) = False

A formula A is satisfied in a world w, written as M, w |= A, if
∥I(w)(A)∥M

e = True for every valuation e. A is satisfiable in a model M,
if there exists w ∈ W such that w |= A; and it is valid in a model M, written
as M |= A, if A is satisfied in every w ∈ W . Finally, A is a valid formula of
LFOPu, written as |= A, if it is valid in every model. We say that a formula A
is a semantic consequence of a set of formulas T , written as T |= A, if in every
model M, where M |= Aj for all Aj ∈ T , also M |= A.
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4 Axiom System
The axiom system for the unranked probabilistic logic LFOPu contains the
following axiom schemata:
(i) all instances of classical propositional logic axioms
(ii) (∀x)(A → B) → (A → (∀x)B), for an individual or a sequence variable x

not being free in A

(iii) (∀x)A(x) → A(t), for both x and t being either individual or sequence
terms

(iv) P[0,1]A

(v) P[a,b]A → P[a1,b1]A, for a1 ≤ a and b1 ≥ b

(vi) (P[a,1]A ∧ P[b,1]B ∧ P[1,1](¬A ∨ ¬B)) → P[min(1,a+b),1](A ∨ B)
(vii) (P[0,a]A ∧ P[0,b]B) → P[0,min(1,a+b)](A ∨ B)
and the inference rules:

A A → B MP
B

A Nec
P[1,1]A

A(xi)
Gen1(∀xi)A

A(x)
Gen2(∀x)A

A → P[a− 1
a1

,b+ 1
b1

]B, for every integer a1 ≥ 1
a and b1 ≥ 1

1−b
Arch

A → P[a,b]B

The notion of derivability of a formula A from a set of formulas T , denoted
by T ⊢ A, is defined in the usual sense.

Example 4.1 The set of formulas T = {¬P[0,0]A} ∪ {P[0, 1
n ]A | for all n ∈ N}

is inconsistent: T ⊢ P[0,0+ 1
n ]A for every integer n > 0, then by the Arch rule

T ⊢ P[0,0]A; but, T ⊢ ¬P[0,0]A, thus T ⊢ ⊥.

It is easy to see that the LFOPu logic preserves the properties of both,
probabilistic and unranked predicate logics.

Theorem 4.2 (Soundness) The axiom system (1)-(7) is sound with respect
to the LFOPu semantics.

There are usually two forms of completeness theorems: the weak complete-
ness – a formula is consistent iff it is satisfiable; or the strong completeness –
a set of formulas is consistent iff it is satisfiable. Clearly, the weak complete-
ness follows from the strong one, but not vice versa. In classical logics these
theorems are equivalent due to the compactness theorem – a set of formulas is
satisfiable iff every finite subset of it is satisfiable. But, according to [20], in
probabilistic logics compactness usually fails and even more, the strong com-
pleteness is not available in some of them. The LFOPu logic inherits strong
completeness from LFOP1.

Theorem 4.3 (Strong completeness) Let A be an LFOPu formula and T
be a set of LFOPu formulas, then T |= A iff T ⊢ A
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formalization of uncertain reasoning,” Springer, 2016.

[21] Paulson, L. C., Isabelle: The next 700 theorem provers, in: Logic and Computer Science,
Academic Press, 1990 pp. 361–386.

[22] Poole, D., Abducing through negation as failure: Stable models within the independent
choice logic, The Journal of Logic Programming 44 (2000), pp. 5–35.

[23] Richardson, M. and P. Domingos, Markov logic networks, Machine learning 62 (2006),
pp. 107–136.

[24] Sato, T. and Y. Kameya, Parameter learning of logic programs for symbolic-statistical
modeling, Journal of Artificial Intelligence Research 15 (2001), pp. 391–454.

[25] Widera, M. and C. Beierle, A term rewriting scheme for function symbols with
variable arity, Technical Report 280, Praktische Informatik VIII, FernUniversität Hagen,
Germany (2001).

[26] Wolfram, S., “The Mathematica Book,” Wolfram Media, 2003, 5th edition.



Simplicial Belief

Christian Cachin David Lehnherr 1 Thomas Studer

Institute of Computer Science, University of Bern, Bern, Switzerland

Abstract

Recently, much work has been carried out to study simplicial interpretations of modal
logic. While notions of (distributed) knowledge have been well investigated in this
context, it has been open how to model belief in simplicial models. We introduce
polychromatic simplicial complexes, which naturally impose a plausibility relation on
states. From this, we can define various notions of belief.

Keywords: Simplicial complex, epistemic logic, plausibility model, belief modality.

1 Introduction

Simplicial interpretations for modal logic are currently avidly researched; see,
e.g., [3,7,8,10,12] due to their close connection with distributed computing [9].
At its core lies the epistemic interpretation of simplicial complexes of various
kinds. Let V be a set of vertices. Each vertex corresponds to a local state of
an agent, and we say that this vertex is of that agent’s color. In the simplest
case, a simplicial complex (S,V) is a pair where S is a set of subsets of V that
is closed under set inclusion. Vertices that belong to the same set must be of
different colors, and maximal elements of S represent global states. An agent a
cannot distinguish two global states if its local state is included in both. Hence,
simplicial complexes offer sufficient structure for an epistemic interpretation.
While (distributed) knowledge has been studied extensively in this context, it
has been open, see [4], how to model belief on simplicial structures such that

(i) belief depends only on the topological structure of the simplicial complex;

(ii) the principle of knowledge-yields-belief holds.

In this brief announcement, we present polychromatic simplicial complexes,
i.e., complexes that are not necessarily properly colored. We define a plausi-
bility relation between the states based on the multiplicity of a color within a
state. If the color of an agent a has a lower or equal multiplicity in a state X
than in a state Y , then a considers X to be at least as plausible as Y . This
relation is a wellfounded preorder, and hence, we can use the machinery of plau-
sibility models [1,2] to define various notions of belief such as plausible belief

1 Supported by the Swiss National Science Foundation (SNSF) under grant agreement
Nr. 200020 219403 (Emerging Consensus).
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and safe belief. Moreover, our structures also satisfy the knowledge-yields-belief
principle.

Acknowledgements. We would like to thank the organizers and participants
of the Dagstuhl meeting Epistemic and Topological Reasoning in Distributed
Systems [4], especially the working group on representing epistemic attitudes
via simplicial complexes.

2 Simplicial Knowledge

We quickly recall the standard definitions for distributed knowledge on sim-
plicial complexes [7,8,12]. In the subsequent section, we will extend them to
incorporate notions of belief.

Let Ag be the set of finitely many agents, and let Prop be a countable set
of atomic propositions. We define the language of knowledge LK for G ⊆ Ag
and p ∈ Prop inductively by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [∼]Gϕ.

The remaining Boolean connectives are defined as usual. In particular, we
set ⊥ := p ∧ ¬p for some fixed p ∈ Prop. We write alive(G) for ¬[∼]G⊥ and
dead(G) for [∼]G⊥.

Definition 2.1 Let V be a set of vertices. C = (S,V) with S ⊆ Pow(V) \ {∅}
is called a simplicial complex if

for each X ∈ S and each ∅ ≠ Y ⊆ X, we have Y ∈ S.

We call the elements of S faces. A face that is maximal under inclusion
is called a facet. We denote the set of facets of C by F(C). A coloring is a
mapping χ : V → Ag. A coloring is proper if it assigns a different agent to each
vertex within a face. We use χ(U) for the set {χ(u) | u ∈ U}.

Definition 2.2 Let C = (S,V) be a simplicial complex. A simplicial model
C = (C,χ,W, ℓ) is a quadruple where

(i) C is a simplicial complex;

(ii) χ : V → Ag is a proper coloring;

(iii) F(C) ⊆W ⊆ S is a set of worlds;

(iv) ℓ :W → Pow(Prop) is a valuation.

Given a simplicial model, a group of agents G ⊆ Ag cannot distinguish
two worlds X,Y ∈ W , denoted by X ∼G Y , if and only if G ⊆ χ(X ∩ Y ).
We call ∼G the epistemic indistinguishability relation. If G contains only a
single agent a, we write X ∼a Y and [∼]a instead of X ∼{a} Y and [∼]{a},
respectively.

Definition 2.3 For a simplicial model C = (C,W,χ, ℓ), a world X ∈ W , and
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a formula ϕ ∈ LK, we define the relation C, X ⊩ ϕ inductively by

C, X ⊩ p iff p ∈ ℓ(X)

C, X ⊩ ¬ϕ iff C, X ̸⊩ ϕ

C, X ⊩ ϕ ∧ ψ iff C, X ⊩ ϕ and M, X ⊩ ψ

C, X ⊩ [∼]Gϕ iff X ∼G Y implies C, Y ⊩ ϕ for all Y ∈W.

We say that agent a is alive in a world X if a ∈ χ(X). The set of worlds
in which a group G ⊆ Ag is alive is defined as

AliveC(G) = {X ∈W | G ⊆ χ(X)}.
Lemma 2.4 Let C = (C,χ,W, ℓ) be a simplicial model. For each G ⊆ Ag, the
relation ∼G is an equivalence relation on AliveC(G) and empty otherwise.

3 Simplicial belief

We now drop the requirement that the coloring of a simplicial model must
be proper. The resulting models are called polychromatic. We will define a
wellfounded preorder on the states of a polychromatic model, which will serve as
a plausibility relation [1,2]. This makes it possible to interpret various notions
of belief on simplicial models.

It is straightforward to verify that Lemma 2.4 does not hold for polychro-
matic models because ∼G need not be transitive. Indeed, consider the set of
vertices {0, 1, 2, 3} and the complex consisting of the facets

X := {0, 1}, Y := {1, 2}, and Z = {2, 3}

with a coloring χ that assigns the same agent a to every vertex. We find that
X ∼a Y and Y ∼a Z, but not X ∼a Z.

In order to re-establish transitivity of ∼G, we must require that for any
three worlds X,Y, Z ∈W and any group of agents G ⊆ Ag:

G ⊆ χ(X ∩ Y ) and G ⊆ χ(Y ∩ Z) implies G ⊆ χ(X ∩ Z). (⋆)

Definition 3.1 A polychromatic model is a simplicial model where:

(i) the coloring is not required to be proper;

(ii) condition (⋆) holds.

Definition 3.2 Let (C,χ,W, ℓ) be a polychromatic model. We define the mul-
tiplicity of a ∈ Ag in a world X by

ma(X) = |{v ∈ X | χ(v) = a}|

where | · | denotes the cardinality of a set. Note that if agent a is alive in a
world X, then ma(X) ≥ 1.

For X,Y ∈W and a ∈ Ag, we write

X ≤a Y iff ma(X) ≤a ma(Y ).
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The multiplicity of a color within a face induces for each agent a a well-
founded relation ≤a on worlds. We call this the (a priori) plausibility relation.
Notice that ≤a is a priori in the sense that it does not refer to the actual world,
i.e., it does not account for possibility. We introduce a local plausibility relation

�a := ≤a ∩ ∼a,

which captures the agent’s plausibility relation at a given state. Further, we
write X ≥a Y if and only if mX(a) ≥ mY (a) and we use �a and �a in the
obvious way. The following lemma shows that the indistinguishability relation
can be given in terms of the local plausibility relation.

Lemma 3.3 ∼a= �a ∪�a.

From the relation �a, we get a corresponding modal operator [�]a, which
is referred to in the literature as safe belief [2]. Our language of knowledge and
belief LKB extends LK by the modal operator [�]a for each agent a ∈ Ag. It is
inductively defined by as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [∼]Gϕ | [�]aϕ

where p ∈ Prop. As usual, the dual of safe belief is defined as ⟨�⟩aφ ≡ ¬[�]a¬φ.
Definition 3.4 For a polychromatic model C = (C,χ,W, ℓ), a world X ∈ W ,
and a formula ϕ ∈ LKB, we define the relation C, X ⊩ ϕ inductively by

C, X ⊩ p iff p ∈ ℓ(X)

C, X ⊩ ¬ϕ iff C, X ̸⊩ ϕ

C, X ⊩ ϕ ∧ ψ iff C, X ⊩ ϕ and M, X ⊩ ψ

C, X ⊩ [∼]Gϕ iff X ∼G Y implies C, Y ⊩ ϕ for all Y ∈W

C, X ⊩ [�]aϕ iff X �a Y implies C, Y ⊩ ϕ for all Y ∈W.

As usual with plausibility models, we can not only define safe belief but
also other notions of belief.

Definition 3.5 Let C = (C,χ,W, ℓ) be a polychromatic model. For X ∈ W
we define

Min�a
(X) = {Y ∈W | Y ∼a X and ∄Z ∈W.Z �a Y }.

Since ≤a is wellfounded, we find that Min�a(X) ̸= ∅ if agent a is alive in
the world X.

We can now extend our language LKB with a new modality Ba for each
agent a. We use the following truth definition.

Definition 3.6 For a polychromatic model C = (C,χ,W, ℓ), a world X ∈ W ,
and a formula ϕ ∈ LKB, we define

C, X ⊩ Baφ iff Y ∈ Min�a(X) implies C, Y ⊩ φ for all Y ∈W.
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The modality Ba models agent a’s (most plausible) belief. It is well-known
that Ba can be expressed in terms of the [�]a modalitiy [2,11].

Lemma 3.7 Let C = (C,χ,W, ℓ) be a polychromatic model, a an agent, and
X ∈W such that a is alive in X. We find that

C, X ⊩ Baϕ if and only if C, X ⊩ ⟨�⟩a[�]aϕ.

Our model satisfies the knowledge-yields-belief principle. In particular, we
have the following lemma.

Lemma 3.8 Let C = (C,χ,W, ℓ) be a polychromatic model and X ∈ W . For
any agent a and any formula φ, we have

C, X ⊩ [∼]aφ→ [�]aφ and C, X ⊩ [�]aφ→ Baφ.

4 Conclusion and future work

We presented the first interpretation of belief on a simplicial structure that de-
pends only on the topological structure without requiring additional machinery
like belief functions. Our approach consists of dropping the requirement that
the coloring must be proper and using the multiplicity of color within a face as
an inverted plausibility measure.

The study of polychromatic models is still in its infancy, and many ba-
sic properties need further investigation. For instance, simplicial models are
proper, i.e. different worlds can be distinguished by at least one agent. For-
mally, Goubault et al. [6] express this as

alive(G) ∧ dead(Gc) ∧ φ→ [∼]G(dead(G
c) → φ)

being valid, where Gc stands for the complement of G. This no longer holds
for polychromatic models.

Moreover, the analysis of polychromatic models is an important step to-
wards simplicial models that are based on simplicial sets [5]. Informally, one
could say that the actual vertex is repeated in such a model, and not just the
color. In this case, the property (⋆) trivially holds and must not be imposed
as a restriction on the model.
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[8] Goubault, É., J. Ledent and S. Rajsbaum, A simplicial model for KB4n: Epistemic logic
with agents that may die, in: P. Berenbrink and B. Monmege, editors, 39th International
Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18,
2022, Marseille, France (Virtual Conference), LIPIcs 219 (2022), pp. 33:1–33:20.
URL https://doi.org/10.4230/LIPIcs.STACS.2022.33

[9] Herlihy, M., D. N. Kozlov and S. Rajsbaum, “Distributed Computing Through
Combinatorial Topology,” Morgan Kaufmann, 2013.
URL https://store.elsevier.com/product.jsp?isbn=9780124045781

[10] Randrianomentsoa, R. F., H. van Ditmarsch and R. Kuznets, Impure simplicial
complexes: Complete axiomatization, Logical Methods in Computer Science (to appear).

[11] Stalnaker, R., On logics of knowledge and belief, Philosophical Studies 128 (2006),
pp. 169–199.
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1 Introduction
Automated decision support systems are more and more common. An important con-
cern about such systems is bias in decision-making. In fact, automated decision sup-
port systems do sometimes suggest decisions that are unfair or unjustified for certain
groups [2, 8]. How can we conceptualize such cases? In the field of social episte-
mology Miranda Fricker has introduced the notion of epistemic injustice [5]. There
are two aspects: (i) injustice: there is a moral wrong or a legal right is being denied,
and (ii) epistemic: the wrong is based on a difference in the knowledge or information
that is available to some groups in society relative to other groups [5, 6, 11]. In this
paper, we build on Fricker’s concept of epistemic injustice and propose to formalize
this notion as “the wrongful treatment of the right to be a knower” in the context of
various irrational epistemic positions.

In a companion paper, we analyze the social mechanisms that may lead to epis-
temic injustice, based on two cases in automated government decision making [10].
Normally, a hearer is expected to trust the competence of the speaker unless there is
evidence to the contrary. However, various forms of prejudice block these expected
inferences, resulting in the speaker being unfairly denied access to knowledge or be-
ing disbelieved, misunderstood or ignored [9]. We present two cases of information
systems that, when not developed and tested properly, prejudices that exist among de-
velopers or policymakers may end up in the system [10]. These cases illustrate that
automated decision-making processes can be irrational and unjust.

In this paper, we focus on the logical aspects of such an analysis. We use a regular
epistemic logic to characterize the structural properties of epistemic positions led by
prejudice. The aim is to use logic, not to analyze idealized knowledge, but rather the
deviant case, prejudice based on groups. Hence the contribution of this paper lies in
the way and purpose modal logic is used and not technical advance. This paper is
structured as follows. Section 2 provides background of epistemic injustice. Section 3
defines the epistemic logic. Section 4 provides a formal analysis. Section 5 concludes.

2 Epistemic Injustice
What is epistemic injustice? “Epistemic injustice refers to those forms of unfair treat-
ment that relate to issues of knowledge, understanding, and participation in commu-
nicative practices.” [11, preface]. We distinguish four specific types: (1) distributional
injustice, (2) testimonial injustice, (3) hermeneutic injustice, and (4) content-focused
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injustice. Fricker [5] discusses in particular testimonial and hermeneutic epistemic in-
justice; distributional injustice is worked out in more detail later [6]. Content-focused
epistemic injustice is introduced later by Dembroff and Whitcomb [3].

(1) Distributional injustice means that some groups unfairly do not have (access
to) specific knowledge that they need to achieve some benefits or entitlements. This is
unlike normal cases of advantage from education.

(2) Testimonial injustice relates to the relative trust in someone’s capacity as a
knower, for example, as a witness in a trial. An injustice of this kind can occur when
someone is not believed or even ignored, because of group properties like their gender
presentation, race, disability, or more generally, because of their identity [5].

(3) Hermeneutical injustice is related to how people understand their situation,
and their ability to formulate statements about that situation. For example, before the
1970s, victims of sexual harassment had trouble describing in court the behavior of
which they were the victim, because the concept had not yet been articulated. Legal
procedures demanded physical evidence of abuse, which is hard to obtain.

(4) Finally, content-focused injustice is based on consensus in a group, or a com-
mon prejudice about the content of what is stated. For example, the Reagan adminis-
tration deliberately rejected healthcare expert testimony on how to try and contain the
spreading disease of HIV, because HIV was seen as the ‘gay disease’ [3].

Cases may display various types of epistemic injustice. When Marilyn Vos Savant,
the person having the highest recorded IQ in the world, provided the correct answer
to the Monty Hall problem in the column of Parade Magazine, tens of thousands of
people (including many mathematicians and other academics) reacted by publicly re-
jecting harshly to what Vos Savant stated. Most of the reactions just considered her
answer unimaginable to be correct, which falls into the category of content-focused
injustice, but several reflected upon her being a woman as a reason for being wrong,
which is a case of testimonial injustice. 1

Essentially, cases of epistemic injustice display two aspects: dependence and prej-
udice (Figure 1). First, speaker a depends on hearer b to make a decision that will
provide some benefit ψ . This decision ψ requires evidence ϕ , which must be pro-
vided by a. For example, b must decide whether to grant a subsidy. Formally, this
decision depends on b accepting a’s statement ϕ as true. Typically, statement ϕ is
supported by written documents such as financial statements or tax returns. For in-
stance, if a fails to provide proof of residence in the municipality where the subsidy
is claimed, b will not believe that a is eligible for the subsidy and will not grant it.
Second, hearer b, belonging to a privileged group D, may act unjustly due to preju-
dice against speaker a from group A (notation A ⩽ D). This prejudice leads to various
irrational epistemic positions that influence the decision-making process. When we
say “b doesn’t believe a’s statement ϕ ,” it may be due to several wrong reasons, pri-
marily driven by prejudice. The four types of epistemic injustice mentioned can be
categorized into distinct epistemic positions influenced by prejudice.

1 See: https://priceonomics.com/the-time-everyone-corrected-the-worlds-smartest/
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grant	𝜓, if believe 𝜑state	𝜑
a b

A D reject	𝜓,	if not believe 𝜑

Fig. 1. Basic setting: speaker a from group A makes assertion ϕ to hearer b from group D.
Speaker a depends on a decision by b to receive some benefit ψ . Decision to grant ψ requires
that b believe ϕ . Members of group D are prejudiced against A.

3 Action-based Epistemic Logic
Epistemic injustice goes beyond the wrongful recognition of an individual’s epistemic
status, it also examines how this misrecognition can lead to unfair decision-making.
Here, we conceptualize that as unsatisfactory decisions for a person making a request
for action. In this section, we will explore both the epistemic and action-oriented
elements of epistemic injustice by introducing an action-based epistemic logic.

The language L we use to address the types of epistemic injustice is the set of
all formulas built recursively from atomic propositions p ∈ Prop by negation ¬ϕ ,
conjunction ϕ ∧ψ , individual knowledge modality Kaϕ , individual belief modality
Baϕ , common belief modality CGϕ , action modality Eaϕ , and universal modality 2ϕ ,
where a ∈ I is an element of a finite set of agents and /0 ̸= G ⊆ I .

The B-modality is a KD4-modality, K- and 2-modalities are S5-modalities, and
CG-modality is a KD4-modality [4]. The action modality Eb is a T-operator, inter-
preted as agent b’s decisions, from agency theory or STIT logic [1]. The dual Êbψ is
equal to ¬Eb¬ψ . The following statements are theorems in our logic, where a ∈ G:

(KB) Kaϕ → Baϕ; (CB) CGϕ → Baϕ .
Now we can define, for instance, the epistemic aspects of Fricker’s notion of

testimonial injustice, which involve the incorrect recognition of one’s capacity as a
knower, expressed as Kaϕ ∧Bb¬Kaϕ , and wrongly recognize agent a’s credibility of
knowledge as Kaϕ ∧¬BbKaϕ . In the following section we will provide a logical anal-
ysis of three of the four types of epistemic injustice. Hermeneutical injustice is left
out, as we lack the formal tools to analyze the cognitive process of conceptualizing.

4 Towards a Formal Theory of Epistemic Injustice
As argued in [5, 6] prejudices – irrational unfounded beliefs about others based on
group [7] – play a crucial role in epistemic injustice. Prejudice leads to the wrongful
treatment of the right to be a knower. This section will present one assumption about
the power of decision makers and three assumptions of epistemic positions involved in
prejudice: a decision maker b, who, as hearer of a statement ϕ , doubts the credibility
of the sender a and subsequently rejects a’s request, especially when a is outside the
privileged group D (see Figure 1).

Prejudice creates injustices due to the power of decision makers. We use ϕ to
represent the evidence submitted by a and ψ for the requested decision to be made
by b. So proposition 2(ψ → ϕ) means that the evidence is a necessary condition
for fulfilling the request. Here Ebψ → Bbϕ means that b believing evidence ϕ is a
necessary condition for b to ensure ψ:

(RD) For all b ∈ D: 2(ψ → ϕ)→ (Ebψ → Bbϕ).



18 Epistemic Positions: Towards a Formal Theory of Epistemic Injustice

We introduce notation A ⩽ D into the language L to represent prejudice: group A
holds a disadvantaged epistemic position relative to group D. This symbol ⩽ signifies
a precondition of morally wrong beliefs between groups. So prejudice is a collective
concept [7]. We have not introduced semantics for the expression A ⩽ D, however, it’s
worth noting that this is a possibility. For example, members of D may not trust mem-
bers of A on certain topics (e.g. finance; law), where topics are represented as subsets
of the set of proposition letters. Prejudice leads to various irrational beliefs underlying
decisions. In our logic, prejudice A ⩽ D involves three epistemic positions: 2

(Ai) For all a ∈ A and b ∈ D with A ⩽ D: Bbϕ → Kaϕ;

(Aii) For all a ∈ A and b ∈ D with A ⩽ D: Bbϕ → BbKaϕ;

(Aiii) For all b ∈ D: CD¬ϕ → BbEbCD¬ϕ .

Assumption (Ai) expresses that the beliefs of the privileged party take precedence
over the knowledge of the disadvantaged party. When an individual lacks certain
knowledge, this becomes a reason for the decision maker to disbelieve the informa-
tion provided by this agent. As argued by Fricker, when a disadvantaged group lacks
access to knowledge regarding a specific request or complaint—for instance, blue-
collar workers lacking knowledge related to taxes—the request may be rejected based
on the belief that the evidence is incorrect due to the agent’s lack of tax knowledge, re-
gardless of whether the evidence is factually true, as expressed by (Ai). The prejudice
leads to this epistemic position ¬Kaϕ →¬Bbϕ .

Assumption (Aii) reflects a different epistemic position. The beliefs of the domi-
nant group influence the perception about the knowledge of the disadvantaged group.
This assumption captures another form of wrongful treatment of the right to be a
knower. When a member b of the privileged group believes that an individual a lacks
certain factual information, even when a possesses full knowledge, it results in the dis-
belief and rejection of a’s claim. In the Robodebt case [8], blue-collar workers were
well aware of their incomes, but the officers believed they were wrong because the
data submitted by the workers did not match the predictions made by the IT system.
The prejudice leads to this epistemic position Bb¬Kaϕ →¬Bbϕ from (Aii) and DB.

Assumption (Aiii) is about consensus in the privileged group. When a piece of
information is part of the common ground for a group, every individual within that
group believes it is impossible to revise such a common belief. While group prejudice
may no longer be present, a new type of bias, known as confirmation bias, arises. This
leads to the epistemic position illustrated by (Aiii). This morally wrong epistemic
position still results in the wrongful treatment of the right to be a knower.

The reasoning behind distributional injustice, testimonial injustice, and content-
focused injustice differs in three key aspects, respectively: distinctions in factual

2 Given a structure M = ⟨W,{Ra}a∈I ,{Sa}a∈I ,{∼a}a∈I ⟩ where Ra is an equivalence relation over W ,
Sa is a transitive and serial relation over W such that Sa ⊆ Ra, and ∼a is an equivalence relation over
W . The truth conditions are defined as usual. M,w |= Kaϕ iff Ra[w] ⊆ ||ϕ||, M,w |= Baϕ iff Sa[w] ⊆
||ϕ||, M,w |= CGϕ iff DG[w] ⊆ ||ϕ||, M,w |= Eaϕ iff ∼a [w] ⊆ ||ϕ||, M,w |= 2ϕ iff W ⊆ ||ϕ||, where
||ϕ||= {w ∈W | M,w |= ϕ}. The frame conditions to validate (RD) and (Ai) – (Aiii) are as follows: (RD)
∀wu ∈ W (wSbu → w ∼b u); (Ai) ∀wu ∈ W (wRbu → wSau), if A ⩽ D, a ∈ A and b ∈ D; (Aii) ∀wuv ∈
W (wSbu∧uRav → wSbv), if A ⩽ D, a ∈ A and b ∈ D; (Aiii) ∀wuv ∈W (wSbu∧u ∼b v → wSbv).
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Facts Beliefs Decisions Inferential Elements

Distributional
Injustice

2(ψ → ϕ)
¬Ka2(ψ → ϕ) Weak: ¬Bbϕ Ai, ¬Kaϕ

¬Kaϕ ¬Ebψ RD, 2(ψ → ϕ), Weak

Testimonial
Injustice

2(ψ → ϕ) Strong: Bb¬Kaϕ

Ka2(ψ → ϕ) Weak: ¬Bbϕ Aii, DB, Strong
Kaϕ ¬Ebψ RD, Weak

Content-
focused
Injustice

2(ψ → ϕ) Strong: CD¬ϕ

Ka2(ψ → ϕ) Weak1: BbEbCD¬ϕ Aiii, Strong
Weak2: BbEbBb¬ϕ CB, Weak1

Kaϕ Weak3: ¬Bbϕ TE , 4B DB, Weak2
¬Ebψ RD, Weak3

Table 1
A classification of epistemic injustice (C1,C2,C4), where a ∈ A and b ∈ D with A ⩽ D.

information, beliefs of decision-makers about credibility of groups, and beliefs of
decision-makers about credibility of content (Table 1).

Distributional injustice means that a, who is in a disadvantaged position, lacks
knowledge of the evidence: ¬Kaϕ . Given this fact and the assumption (Ai), it leads
to weak belief : the decision maker b does not believe the submitted evidence: ¬Bbϕ .
This type of belief is considered weak, because it is derived from the other’s lack of
knowledge [12]. Following (RD), the decision doesn’t fulfill the request: ¬Ebψ .

The reasoning process for testimonial injustice follows a different path. Sender a
does have knowledge of the evidence (Kaϕ), but decision-maker b believes the sender
lacks knowledge of the evidence (Bb¬Kaϕ). This is a strong belief, because it is
assumed and not derived. It reflects prejudice, because it presupposes that everyone
in a disadvantaged group A lacks knowledge about this topic , regardless of its actual
veracity. From this strong belief, assumption Aii and axiom D, the weak belief ¬Bbϕ

can be inferred. Ultimately, assumption RD leads to non-fulfillment of the request.
In content-focused injustice, confirmation bias occurs when every group mem-

ber believes that a common consensus cannot be challenged, as illustrated by (Aiii).
Specifically, when there is a common consensus CD¬ϕ denying a piece of evidence, it
results in all group members rejecting that piece of evidence, as shown in the last row
of Table 1. On the one hand, as expressed in (Aiii), content-focused injustice is not
agent-based. On the other hand, there are two notable cases of denial of the right to
be a knower in content-focused injustice, which are worth to be discussed: (i) the in-
dividual case Bb¬ϕ and therefore ¬Bbϕ , so the request is rejected, and also Bb¬Kaϕ ,
so the requester is denied in her right as a knower, and (ii) the group consensus case,
CD¬ϕ and therefore ¬CDϕ , so the request would be rejected by any official, but also
CD¬Kaϕ , so the requester is by consensus denied in the right as a knower.

5 Conclusions
This work introduces a formal framework for analyzing epistemic injustice through
action-based epistemic logic. From a social epistemology viewpoint, we categorize
epistemic injustice into four types of epistemic injustice: distributional, testimonial,
hermeneutical and content-focused injustice [5, 3]. We characterizing the social set-
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ting in terms of dependence and prejudice, specifically decision rights and irrational
beliefs. These irrational beliefs, as argued in [10], can be captured by various epis-
temic positions. Our modal logic characterizes three principles of epistemic positions
influenced by prejudice in decision-making, showing how prejudice-driven logical re-
lations lead from irrational beliefs to unjust decisions. This makes our modal logic
valuable for analyzing the behaviors caused by epistemic injustice. In this paper, prej-
udice is characterized by epistemic positions. The current formalism lacks the tools
to address either (C3) hermeneutical injustice or the interaction between group beliefs
and group identities. So we leave all these to future work.
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Abstract

We study products of unimodal logics characterized by classes of Kripke frames de-
fined by universal Horn formulas, classifying them with respect to the finite model
property (FMP). Further, we show that products of modal logics defined only with
variable-free axioms have the FMP. We also provide a partial result regarding prod-
ucts of logics with both Horn and variable-free axioms.

Keywords: Horn formula, product of modal logics, filtration

1 Introduction

A Horn modal logic is a modal logic characterized by the class of all Kripke
frames satisfying several first-order universal Horn clauses. Unimodal Horn
logics naturally fall into 4 types (cf. [7]); we refer to them as transitive (e.g., K4,
S4), reflexive-symmetric (K,KB, T, KTB), strong (K5, S5), and uniform
(K+32p → 22p). Logics of the first two types are PSPACE-complete, and
those of the other two have the polynomial model property and are coNP-
complete [5] [7].

Some bimodal Horn logics are undecidable [7]. Apparently, there is no
known decidability criterion for these.

The finite model property (FMP) is known for certain products of Horn
logics, including (K+2p → 2mp)× S5 [3] and (K+2p → 2mp)×Km [8].
However, some other products (e.g., K4×K4) are undecidable [4].

In this paper we classify all products of unimodal Horn logics with respect
to the FMP. We deduce from [4] that a product of two transitive Horn logics
is undecidable and does not have the FMP. By employing the filtration via
bisimulation technique of [8], we establish that all other products of unimodal
Horn logics have the FMP.

We also extend this result to products of Horn logics with additional
variable-free axioms, provided the two Horn logics are not uniform. This
includes the following special case: if λ1 and λ2 are variable-free, then
(K+ λ1)× (K+ λ2) has the FMP and is decidable.

1 I would like to thank my supervisor Valentin Shehtman for his constant support. This
research was supported by the Academic Fund Program at HSE University (grant № 23-00-
022).
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2 Preliminaries

Basics. We consider the basic unimodal (ML) and bimodal (ML2) proposi-
tional languages; only normal logics are considered. We use the standard Kripke
semantics; unimodal (bimodal) Kripke frame are called frames (2-frames) for
short; the logic characterized by a class of (2-)frames C is denoted Log C. First-
order formulas with a single binary predicate R are interpreted over frames;
the logic characterized by the class of all frames modeling a first-order theory
Γ is denoted K(Γ).

Products. The product of frames (W1, R1) and (W2, R2) is the 2-frame
(W1 × W2, R

′
1, R

′
2), where: R′

1 := {((x, z), (y, z)) : (x, y) ∈ R1, z ∈ W2} and
R′

2 := {((z, x), (z, y)) : z ∈ W1, (x, y) ∈ R2}. The product of classes of frames
C1 and C2 is the class of 2-frames C1 × C2 := {F1 × F2 : Fi ∈ Ci}. The product
of logics L1 and L2 is the bimodal logic L1 × L2 := Log(FrL1 × FrL2), where
FrLi is the class of all frames for Li.

The commutator of L1 and L2, denoted [L1, L2], is the minimal bimodal
logic containing the axioms 3122p → 2231p and 2122p ↔ 2221p and ex-
tending [21/2]L1 ∪ [22/2]L2.

Filtration. For a subformula-closed set Σ ⊆ ML, a Σ-filtration of a Kripke
model (W,R,B) is a Kripke model of the form (W/∼, S,B∼) satisfying the
following conditions:
(1) if x ∼ y and φ ∈ Σ, then (M, x) |= φ ⇐⇒ (M, y) |= φ,
(2) S ⊇ R∼, where R∼ := {([x], [y]) : xRy},
(3) if [x]S[y], (M, x) |= 2φ, and 2φ ∈ Σ, then (M, y) |= φ, and
(4) B∼(p) := [B(p)].
A filtration satisfying S = R∼ is called a minimal filtration. A logic L admits
filtration with respect to a frame F if for any valuation B on F and any finite
subformula-closed set Σ ⊆ ML there exists a finite Σ-filtration of (F,B) based
on a frame for L. A logic L admits fitlration if it admits filtration with respect
to each frame for L. Similar definitions apply to bimodal logics and Kripke
models.

Trees. A frame (W,R) is a tree with a root w ∈ W if for any u ∈ W there
exists a unique R-path from w to u.

Pseudo-finitness. A frame (W,R) is s-pseudo-finite if there exists an
equivalence relation ∼ on W such that |W/∼| ≤ s and ∼◦R ◦∼ = R. A frame
is pseudo-finite if it is s-pseudo-finite for some s.

3 Horn Logics

Definition 3.1 A Horn clause is a first-order sentence of the following form:

∀−→x

(
m∧
s=1

xisRxjs → xi0Rxj0

)
.

A Horn theory is a set of Horn clauses. For a Horn theory Γ, the Horn Γ-closure
of a frame F = (W,R) is the frame FΓ := (W,RΓ), where RΓ is the minimal
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relation containing R and satisfying (W,RΓ) |= Γ. A Horn logic is a logic of
the form K(Γ), where Γ is a Horn theory.

Definition 3.2 A tree-clause corresponding to a finite tree (W, R̃) and nodes

u0, v0 ∈ W is the Horn clause ∀−→x
(∧

(u,v)∈R̃ xuRxv → xu0
Rxv0

)
. Its type is

the pair (n,m) ∈ (Z≥0)
2 such that wR̃nu0 and wR̃mv0, where w is the least

common ancestor of u0 and v0. A tree-theory is a set of tree-clauses.

Example 3.3 For any n,m ≥ 0, the logic K + 3n2p → 2mp is Horn, as its
only axiom is a Sahlqvist modal equivalent of ∀x, y, z (xRny ∧ xRmz → yRz).
The latter is a tree-clause of type (n,m).

As shown in [6], tree-clauses have Sahlqvist modal equivalents and are the
only (up to equivalence) Horn clauses having modal equivalents at all.

Proposition 3.4 Every Horn logic coincides with K(Γ) for some (possibly
infinite) tree-theory Γ.

Lemma 3.5 ([3], [1]) Let Γ1,Γ2 be Horn theories; set Li := K(Γi). If
φ ̸∈ [L1, L2], then there exist trees Ti with roots wi such that(
TΓ1
1 × TΓ2

2 , (w1, w2)
)
̸|= φ. In particular, [L1, L2] = L1 × L2.

Remark 3.6 It follows from Lemma 3.5 that the product K(Γ1) × K(Γ2)
coincides with Log {F1 × F2 : F1 |= Γ1,F2 |= Γ2}.
Remark 3.7 Proposition 3.4 and Lemma 3.5 also hold for polymodal Horn
logics, with “n-trees” substituted for trees; cf. [3] [6].

4 Classification of Unimodal Horn Logics

We divide unimodal Horn logics into 4 classes, similarly to the classification
used in [7].

Definition 4.1 A tree-theory Γ is —
• reflexive-symmetric if the type of each clause in Γ is (0, 0), (1, 0), or (0, 1);
• transitive if all clauses in Γ have types of the form (0,m), and at least one
of them is with m > 1;

• uniform if all clauses in Γ have types of the form (n, n + 1), and at least
one of them is with n > 0;

• strong in all other cases.

Lemma 4.2 If Γ is a strong tree-theory, then there exist integers d, s ≥ 0 such
that for any frame (W,R) |= Γ and any u ∈ W satisfying R−d(u) ̸= ∅ the
restriction of R to

{
x ∈ R<∞(u) : Rd(x) ̸= ∅

}
is s-pseudo-finite.

We will need the following properties of logics of specific types:

Lemma 4.3 Any reflexive-symmetric, transitive, or strong tree-theory is
equivalent to some finite subtheory.

Lemma 4.4 If Γ is a transitive tree-theory, then K(Γ) admits filtration.

Lemma 4.4 is proven by appropriately generalizing the proof of FMP for
K+2p → 2mp from [2].
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5 Products without the FMP

Our main result is as follows.

Theorem 5.1 Let Γ1 and Γ2 be tree-theories.
1) If both Γ1 and Γ2 are transitive, then K(Γ1)×K(Γ2) is undecidable and

does not have the fmp.
2) If Γ1 (or Γ2) is not transitive, then K(Γ1)×K(Γ2) has the fmp. 2

First, we derive the negative part of the claim from the following fact.

Lemma 5.2 ([4]) Let C1 and C2 be classes of transitive frames both containing
frames of infinite depth. Then Log(C1 × C2) is undecidable.

Proof of Theorem 5.1(1) For i ∈ {1, 2} choose an integer li > 0 such that
Ci :=

{
(W,Rli) : (W,R) |= Γi

}
contains only transitive frames. Observe that

Lemma 5.2 is applicable to C1, C2. The mapML2 → ML2 replacing each occur-
rence of 2i with 2

li
i is a reduction from Log(C1×C2) to K(Γ1)×K(Γ2), hence

the undecidability. By Lemma 4.3, K(Γ1) × K(Γ2) is finitely axiomatizable,
hence the lack of FMP. 2

6 Products with the FMP

We outline a proof of Theorem 5.1(2) similar to the reasoning in [8].

Definition 6.1 A relation E ⊆ W1 ×W2 is a temporal bisimulation between
the frames (W1, R1) and (W2, R2) if R2 ◦E = E ◦R1 and R1 ◦E−1 = E−1 ◦R2.
Two relations S1 and S2 on the same set strongly commute if S1 ◦S2 = S2 ◦S1

and S1 ◦ S−1
2 = S−1

2 ◦ S1. A frame (W,R) admits temporal bisimulation if for
any finite W/∼ there exists an equivalence relation of finite index ≈ strongly
commuting with R such that ≈ ⊆ ∼.

Lemma 6.2 Let Γ be a tree-theory and E a temporal bisimulation between F
and G; then E is also a temporal bisimulation between FΓ and GΓ.

Lemma 6.3 (“filtration via bisimulation”) Let Γ1, Γ2 be tree-theories
and (W,R1, R2) a 2-frame such that:

(1) (W,Ri) |= Γi and K(Γi) admits filtration with respect to (W,Ri), for
i ∈ {1, 2};

(2) R1 and R2 strongly commute; and
(3) (W,R1) admits temporal bisimulation.
Then [K(Γ1);K(Γ2)] admits filtration with respect to (W,R1, R2).

Proof outline Fix a valuation B on W and a finite subformula-closed set
Σ ⊆ ML2. It may be shown (using (1) only) that there exists an equiva-
lence relation ∼ such that (W/∼, (R∼

1 )
Γ1 , (R∼

2 )
Γ2 ,B∼) is a finite Σ-filtration

of (W,R1, R2,B).
Let ≈ be the union of all relations containing in ∼ and strongly commuting

with R1. Since (W,R1) admits temporal bisimulation, ≈ is an equivalence

2 Decidability does not necessarily follow, as some uniform Horn logics are not finitely ax-
iomatizable.
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relation of finite index. We have ≈ ◦ R1 = R1 ◦ ≈; thus R≈
1 and R≈

2 strongly
commute; hence (R≈

1 )
Γ1 and (R≈

2 )
Γ2 strongly commute by Lemma 6.2; therefore

(W/≈, (R≈
1 )

Γ1 , (R≈
2 )

Γ2) is a frame for [K(Γ1);K(Γ2)]. 2

Definition 6.4 A frame is a pseudo-tree of height 1 if it is pseudo-finite. A
frame (W,R) is a pseudo-tree of height h > 1 if W can be represented in the
form W0 ∪

⊔
j∈J Wj such that:

(1) |W0 ∩Wj | = 1 for each j ∈ J ;
(2) R = R|W0

∪
⊔

j∈J R|Wj
;

(3) (W0, R|W0
) is a pseudo-tree of height h− 1; and

(4) for some s, all (Wj , R|Wj ) are s-pseudo-finite.

Lemma 6.5 Every pseudo-tree admits temporal bisimulation.

Proof outline By induction on height, in the same way as for trees of finite
height in [8]. 2

Lemma 6.6 Let Γ be a strong tree-theory and T a tree. Then TΓ coincides
with the Horn Γ-closure of a pseudo-tree.

Proof Follows from Lemma 4.2. 2

Definition 6.7 The d-truncation of a pointed frame (W,R,w) is the frame
(Wd, R|Wd

, w), where Wd := R≤d(w). Pointed frames (W,R,w) and (V, S, v),
are d-indistinguishable if their d-truncations are isomorphic.

Lemma 6.8 Let Γ be a reflexive-symmetric or uniform tree-theory, d > 0.
Then every tree T with root w has a subtree T′ of finite height such that (TΓ, w)
and (T′Γ, w) are d-indistinguishable.

Proof of Theorem 5.1(2) Set L := K(Γ1)×K(Γ2). Consider φ ̸∈ L; let d be
its modal depth. Choose trees T1,T2 as in Lemma 3.5. Now for each i ∈ {1, 2},
depending on the type of Γi, apply one of Lemmas 4.4, 6.6, or 6.8. It follows
that there exist frames Fi d-indistinguishable from (or coinciding with) TΓi

i

such that Lemma 6.3 is applicable to F1 × F2. 2

7 Adding Variable-Free Axioms

Theorem 7.1 Let Γ1, Γ2 be reflexive-symmetric, transitive, or strong tree-
theories, and λ1, λ2 variable-free formulas.

1) If both Γ1 and Γ2 are transitive, and K(Γi)+λi ̸⊢ 2n⊥ for every i ∈ {1, 2}
and n > 0, then (K(Γ1)+λ1)× (K(Γ2)+λ2) is undecidable and lacks the fmp.

2) In all other cases, (K(Γ1) + λ1)× (K(Γ2) + λ2) is decidable and has the
fmp.

Note that Theorem 7.1 does not cover uniform tree-theories; that case re-
mains unclear. The proof is the same as for Theorem 5.1, except that we use
the following lemma instead of Lemma 6.8.

Lemma 7.2 Let Γ be a reflexive-symmetric tree-theory, λ a variable-free for-
mula, T = (W,R) a tree with root w such that TΓ |= λ, and d > 0 an integer.
Then there exists a pseudo-tree F with a node v such that
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(1) FΓ |= λ, and
(2) (TΓ, w) and (FΓ, v) are d-indistinguishable.

Proof outline By Lemma 4.3, we can assume that Γ is finite. One can derive
that, for some finite W/∼, the minimal filtration (W/∼, (RΓ)∼) is a frame for
both Γ and λ.

Set x ≈ y if (1) x ∼ y and (2) either x = y or the least common ancestor
of x and y is not in R≤d(w). Note that (W/≈, R≈) is a pseudo-tree and that
(R≈)Γ = (RΓ)≈. One can show that (W,RΓ, w) and (W/≈, (RΓ)≈, [w]) are
d-indistinguishable. 2
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Abstract

We introduce a series of models of various modal logics built out of structures of
ultrafilters on the algebra of premodal propositions. Given a pointed modal model,
we give a general method for constructing a bisimilar pointed model using trees of
indexed ultrafilters. At the end, we examine philosophical applications to accounts
of metaphysical necessity.

Keywords: semantics of modal logic, stone duality, metaphysics.

1 Basic Definitions

Our premodal language L is built from a countable set of atomic sentence
letters At = {pn : n ∈ N}, Boolean connectives ¬,∧,∨,⊤,⊥, and parenthesis
(, ). We inductively define the set of all premodal formulas ϕ in the standard
way, and define ϕ → ψ as shorthand for ¬ϕ ∨ ψ and ϕ ↔ ψ as shorthand for
(ϕ→ ψ)∧(ψ → ϕ). The main algebra we will be considering is the Lindenbaum-
Tarski algebra of propositional logic B = ({[ϕ]≡ : ϕ a premodal formula},≤),
where ≡ is classical logical equivalence and [ϕ]≡ ≤ [ψ]≡ iff ϕ→ ψ is a tautology.
We define 1 = [⊤]≡ and 0 = [⊥]≡, and lattice operations ∧,∨, and ¬ in the
expected way.

An ultrafilter on B is a set U ⊆ B such that 1 ∈ U , 0 /∈ U , p ∈ U and q ∈ U
implies p ∧ q ∈ U , and either p ∈ U or ¬p ∈ U for all p ∈ B. Clearly, we have
if p ∈ U and p ≤ q, then q ∈ U . We let U be the set of all ultrafilters on B.

Note that |B| = ℵ0 and |U| = 2ℵ0 .
In the modal language L2, we add a unary operator 2 to the language, and

define 3ϕ as ¬2¬ϕ.
For a given pointed modal model M, w, we define the diagram of M, w,

denoted Diag(M, w), as {[ϕ]≡ : ϕ is a premodal formula and M, w |= ϕ}.
Clearly, Diag(M, w) is an ultrafilter on B. It will be important for finding
bisimilar pointed modal models in the models we construct.

For a modal model M and logic L, we say that M has the bisimulation
property for L if for every pointed model N , w such that L is valid on the
frame of N , there is a world v ∈ M and a bisimulation between N , w and

1 daniel gonzalez@berkeley.edu
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M, v. We say that M has the κ-restricted bisimulation property for L if the
above condition holds for models N of size at most κ.

2 A Model of K45

We can construct models of K45, KD45, and S5 in a relatively straightforward
manner that have the bisimulation property for their corresponding logics.

We define the model MK45 = (WK45, RK45, VK45) as follows:

• WK45 = U × P(U)
• For worlds (U, S), (V, T ) ∈ WK45, we have (U, S) RK45 (V, T ) iff S = T and
V ∈ S

• For pi ∈ At, we have VK45(pi) = {(U, S) ∈ WK45 : [pi]≡ ∈ U}. We lift VK45

to a function from L2 to P(WK45) in the standard way.

Theorem 2.1 MK45 is a model of K45.

Proof. Note that MK45 is a Kripke model, so it satisfies K. Furthermore, since
= is transitive and Euclidean, the accessibility relation RK45 is transitive and
Euclidean. Thus, MK45 also satisfies 4 and 5. 2

Theorem 2.2 Suppose N , w is a pointed modal model whose accessibility rela-
tion is transitive and Euclidean. Then, there is some (U, S) ∈WK45 such that
MK45, (U, S) is bisimilar to N , w.

Proof. Our desired world (U, S) will be given by setting U = Diag(N , w) and
S = {D ∈ U : ∃v ∈ N (wRv and D = Diag(N , v)).

Our desired bisimulation E is given by vE(D,S) iff D = Diag(N , v).
The atomic harmony condition is easy to check. For the zig and zag con-

ditions, it suffices to show that the worlds that w can access are exactly the
worlds that w’s successors can access.

By transitivity, we know that w can access all the worlds its successors can
access, and by Euclideanness, we know that if w can access a world, all its
successors can access that worlds too. Thus, w can access a world v if and only
if every successor of w can also access v. Since this is also the case on the side
of MK45, (U, S), the zig and zag conditions follow. 2

Corollary 2.3 MK45 has the bisimulation property for K45.

Note that the cardinality of WK45 is 22
ℵ0
.

Models of KD45 and S5

We can easily modify the above construction to give models MKD45 and MS5

that have the bisimulation property for their corresponding logics. In particu-
lar, we set:

• WKD45 = U × (P(U)− ∅)
• WS5 = {(U, S) ∈ U × P(U) : U ∈ S}
• RKD45 = RS5 = RK45 and VKD45 = VS5 = VK45



Gonzalez 29

3 Models of K

Unfortunately, it is not possible to make a single modal model with the bisim-
ulation property for K. However, we can use a similar strategy to build models
of K that have the κ-restricted bisimulation property for K for any desired
cardinal κ.

First, we define a κ-indexed ultrafilter tree as a nonempty set T ⊆ (U×κ)<ω

such that for any node b ∈ T , every initial segment of b is also in T , and there
exists a root (U,α) such that b(0) = (U,α) for every nonempty node b ∈ T .
If (U,α) is the root of T , we denote U as rt(T ). We label as T+ the set
{(n + 1, (U,α)) : (n, (U,α)) ∈ T}. Although T+ is not a tree, it is important
for defining our accessibility relation.

Now, we can define the model MK,κ as follows:

• WK,κ = {T : T is a κ-indexed ultrafilter tree}
• T1 RK,κ T2 iff T+

2 ⊆ T1

• For pi ∈ At, we have VK,κ(pi) = {T ∈WK,κ : [pi]≡ ∈ rt(T )}. We lift VK,κ to
a function from L2 to P(WK,κ) in the standard way.

Theorem 3.1 Let κ be an infinite cardinal. Then MK,κ has the κ-restricted
bisimulation property for K.

Proof. Suppose N , w = (W,R, V ), w is a pointed modal model of size at most

κ. Let
−→
N = (

−→
W,

−→
R,

−→
V ) be the tree unravelling of N from w. We will construct

a tree T such that MK,κ, T is bisimilar to
−→
N , ⟨w⟩. It follows that MK,κ, T is

bisimilar to N , w.
Fix an injection f : W → κ. Now define a function g : W → U × κ so that

g(v) = (Diag(v), f(v)) for all v ∈W . We now define Tw as the following tree:

Tw = {s : ∃h ∈
−→
W s = h ◦ g}

In other words, Tw looks exactly like the tree unravelling of N starting at w.
Our bisimulation is now defined by carrying this construction out on all the
remaining worlds in the submodel of N generated by w, and can be lifted to
the tree unravelling of N from w in the obvious way.

Since ⟨w⟩ is always in
−→
W , we always have that the root of Tw is

(Diag(w), f(w)). Thus, it is easy to see that atomic harmony holds. It is
also easy to check that zig and zag hold between the tree unravelling of N and
the model MK,κ. Thus, we have that our relation is a bisimulation between
the tree unravelling of N from w and the pointed model MK,κ, Tw. Thus, our
model MK,κ, Tw is bisimilar to N , w. 2

Intuitively, we can think of each indexed ultrafilter tree as encoding the
structure of the indexed ultrafilter trees that are in its generated submodel. In
fact, we could have just defined each indexed ultrafilter tree as an entire modal
model instead of a single world. However, that is less interesting because our
model MK,κ is a single, giant modal model.

Note that the cardinality of MK,κ is max{22ℵ0
, 2κ}.



30 Modal Models in the Premodal Language

4 Further Comments on These Constructions

The construction of the model MK,κ in particular is similar to tree unravelling.
The model MK45 is a very natural model, but it is hard to think of a way to
generalize it that works. Initially, the author considered a simpler (unindexed)
tree-based model like MK,κ. Unfortunately, an unindexed model does not
contain enough bisimulation types; in particular, if a modal model contains
two worlds satisfying the same premodal formulas and are accessed by the
same worlds but can access different worlds, there is no bisimulation between
this model and an unindexed model.

It is not a trivial fact that the logic K45 and its extensions have models that
have the bisimulation property. It is impossible to make a model of K with
the full bisimulation property, since otherwise we would be able to construct
an injection from its powerset into itself by finding enough new bisimulation
types.

5 Philosophical Applications

The above constructions should be particularly interesting for philosophers
who want a strong, Ersatz account of metaphysical necessity. In philosophiz-
ing about what metaphysically possible worlds are, philosophers have sorted
themselves into two main camps: modal realism and Ersatzism. In particu-
lar, Ersatzists endorse the view that a possible world is some ersatz object,
such as a consistent set of propositions or maximal state of affairs. [1] It is
tempting for a mathematically rigorous Ersatzist to identify the set of all pos-
sible worlds with the canonical model for a certain modal logic, such as S5,
or some appropriate subset of the canonical model (with the atomic proposi-
tion letters interpreted appropriately). However, this view makes our account
of metaphysical modality circular: we are defining metaphysical necessity in
terms of possible worlds, and then defining possible worlds as sets of sentences
that include the 2 operator.

The advantage of the above models, especially the model MS5, is that
an Ersatz metaphysician can identify metaphysically possible worlds with a
construction based on sets of premodal propositions. For many philosophers,
identifying the set of metaphysically possible worlds with a construction such
as MS5 is ontologically parsimonious. For example, if a philosopher is a math-
ematical Platonist, she already has everything she needs (provided she can find
an appropriate way to interpret the atomic proposition letters). Additionally,
because of the bisimulation property, MS5 can mimic any alternative account
of metaphysically possible worlds a metaphysician would be interested in.

Some may object that the circularity problem does not completely disap-
pear, and I admit that this is not yet a complete solution to a coherent Ersatz
account of metaphysically possible worlds. But it is a step in the right direction.

It would be interesting to try to apply the constructions in this paper to
other kinds of modality, such as time or belief. In any case, the constructions of
such large, general models from the premodal language is interesting in itself,
and may have more applications down the road.
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1 Introduction

This note investigates the algebraic semantics of fuzzy modal logics from the
point of view of quantale-enriched category theory. The set of truth-values
(distances) is given by a complete lattice Ω with a (non-commutative) mul-
tiplication. Notions such as set, function, relation, downset, upset, (co)limit
will be “internalized” in Ω. Algebras are equipped with a metric, functions
are distance non-increasing, relations are fuzzy and (co)limits include not only
meets and joins but unary modalities known as power and tensor.

Our main contribution is to show that the canonical extensions [3] known
in order theory generalize to the setting of quantale-enriched category theory. 1

2 Preliminaries

A quantale (Ω,⊑,⊔, e, ⋅, ) is a complete join semilattice (Ω,⊑,⊔) and a monoid
(Ω, e, ⋅) in which multiplication distributes over joins. We write top as ⊺ and
bottom as �. Since Ω is complete it also has meets ⊓. Multiplication has a left-
residual ⊲ and the right-residual ⊳ defined as b ⊑ a ⊳ c⇔ a ⋅ b ⊑ c⇔ a ⊑ c ⊲ b.
Examples. (a) The two-chain 2 = {0 ⊑ 1} is a commutative quantale.
(b) The Lawvere quantale [0,∞] is a subset of the extended real numbers [10].
It is ordered by ≥ with top ⊺ = 0 and has + as multiplication. The residual is
truncated minus a ⊲ b = a � b.
(c) The quantale of languages P(Σ∗) over an “alphabet” Σ has as elements
subsets of the set Σ∗ of finite words over Σ . Multiplication is L ⋅ L′ = {vw ∣
v ∈ L,w ∈ L′} where vw denotes the concatenation of the words, residuals are
L ⊳M = {w ∈ Σ∗ ∣ ∀v ∈ L . vw ∈M} and M ⊲ L = {w ∈ Σ∗ ∣ ∀v ∈ L .wv ∈M}.
Quantale Spaces. An Ω-space 2 consists of a set X and a function X(−,−) ∶
X ×X → Ω such that e ⊑ X(x,x) for all x ∈ X and X(x, y) ⋅X(y, z) ⊑ X(x, z)
for all x, y, z ∈ X. Quantale spaces are ordered by x ≤X x′ ⇔ e ⊑ X(x,x′).

1 We provide the necessary category theoretic definitions but assume that the reader is
familiar with the corresponding notions from order theory.
2 In category theory, an Ω-space is known as a category enriched over Ω.
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A functor F ∶ X → Y between Ω-spaces is a function on the underlying sets
satsifying X(x,x′) ⊑ Y (Fx,Fx′)

If Ω = 2, a quantale space is a preorder and a functor is an order-preserving
map. If Ω = [0,∞], a quantale space is a generalized metric space [10] and a
functor is a distance non-increasing function. If Ω = P(Σ∗), a quantale space is
a generalized non-deterministic automata [1] and a functor is a “simulation”.

Weighted Relations. A weighted relation R ∶ X ↬ Y between quantale
spaces X and Y is a function X × Y → Ω satisfying

X(x′, x) ⋅R(x, y) ⊑ R(x′, y) R(x, y) ⋅ Y (y, y′) ⊑ R(x, y′).

Composition of weighted relations R ∶X ↬ Y and S ∶ Y ↬ Z is given by

(R ● S)(x, z) = ⊔
y∈Y

R(x, y) ⋅ S(y, z)

and has residuals

(R ▸ T )(y, z) = ⊓
x∈X

R(x, y) ⊳ T (x, z) (T ◂ S)(x, y) = ⊓
z∈Z

T (x, z) ⊲ S(y, z).

Weighted relations specialize to weakening relations [6] if Ω = 2.
Weighted Downsets and Upsets. A weighted downset φ ∈ DX is a relation
X ↬ 1 (where 1 is the one-element Ω-space) and a weighted upset ψ ∈ UY is a
relation 1↬ Y . 3 DX and UA are Ω-space with

DX(φ,φ′) = ⊓
x∈X
(φx ⊳ φ′x) UA(ψ,ψ′) = ⊓

a∈A
(ψa ⊲ ψ′a).

Note that UA is ordered by “reverse inclusion”.

Weighted Limits and Colimits. In preorders, the category theoretic no-
tions of limit and colimit specialize to meets and joins. In Ω-spaces, in addition
to meets and joins, we have a type of colimit known as tensor and a type of
limit known as power.

Given an Ω-space B, b ⋆ r is called the tensor of b ∈ B with r ∈ Ω, and,
dually, b ↑ r is the power of b with r, if

B(b ⋆ r, c) = r ⊳ B(b, c) B(c, b ↑ r) = B(c, b) ⊲ r.

Given G ∶ D → B, φ ∈ DD and ψ ∈ UD, we can now define the colimit of G
weighted by φ and the limit of G weighted by ψ via

colimφG = ⊔
d∈D
(Gd ⋆ φd) limψG = ⊓

d∈D
(Gd ↑ ψd).

For example, if B = Ω = [0,∞], then b ⋆ r = b + r and b ↑ r = b � r [12].

3 In CT, a weighted downset is known as a presheaf, a weighted upset as a co-presheaf.
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3 MacNeille Completion

The MacNeille completion generalizes from the order to the quantale-enriched
setting [11,13,8,5]. We adapt terminology from formal concept analysis [7].

DX UA

M(I)

X A

x↦X(−,x) a↦A(a,−)

I

x↦x a↦a

−▸I

I◂−
�

⊣ ⊣

Given a (weighted) relation I ∶ X ↬ A, the MacNeille completion M(I) is
defined as the set of pairs κ = ([[κ]], ([κ])) ∈ DX × UA (often referred to as
concepts) such that [[κ]]▸I = ([κ]) and [[κ]] = I◂([κ]). The MacNeille completion
of an Ω-space C is the MacNeille completion of C(−,−) ∶ C ↬ C.

Remark.

(i) DX is the free cocompletion of X and UA is the free completion of A.
M(I) is a full reflective subcategory of DX and a full coreflective subcat-
egory of UA. HenceM(I) inherits colimits from DX and limits from UA
and is, therefore, complete and complete.

(ii) If I ∶ C ↬ C is the hom of a quantale space C, that is, if X = A = C
and I(x, a) = C(x, a), then X → M(I) and A → M(I) are embeddings
(fully faithful). Since the Yoneda embedding x ↦ X(−, x) preserves all
limits and a ↦ A(−, a) preserves all colimits, the embedding C →M(I)
preserves all existing limits and colimits.

4 Canonical Extension

The canonical extension Cδ of a quantale space C is parameterised by a choice
of full subcategories U ′C → UC and D′C → DC that contain at least the
principal upsets (respectively downsets). For the purpose of this abstract, the
reader can choose U ′C = UC and D′C = DC. For applications to modal logics,
one may want to require the (co)presheaves to preserve certain (co)limits. In
the paradigmatic example, U ′C consists of the “weighted” filters f and D′C of
the “weighted” ideals i.

The canonical extension Cδ of a quantale space C is the MacNeille com-
pletion of the relation I ∶ U ′C ↬ D′C given by I(f, i) = ⊔c f(c) ⋅ i(c), that is,
the set of fixed points of the adjunction given by φ ▸ I = ⊓f φ(f) ⊳ I(f,−) and
I ◂ ψ = ⊓i I(−, i) ⊲ ψ(i).
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DU ′C UD′C

Cδ

U ′C D′C

C

I

f↦f i↦i

−▸I

I◂−

�

⊣ ⊣

[−]

For a survey of canonical extensions of lattices, we refer to [9]. In particular,
Proposition 4 gives two equivalent formulations of compactness. The second,
stating that for every filter f and ideal i with ⋀ f ≤ ⋁ i we have f ∩ i /= ∅ is the
one we generalize to the quantale-enriched setting in our main theorem.

Theorem 4.1 Let f ∈ U ′C and i ∈ D′C. Then Cδ is compact in the sense
that 4 Cδ(limf [−], colimi[−]) = I(f, i). Moreover, every (φ,ψ) ∈ Cδ is the col-
imit of a limit of C and the limit of a colimit of C.

Remark. In the applications we have in mind, C may be the Lindenbaum
algebra of a fuzzy logic induced by Ω. In this setting, (monotone) modal
operators correspond to functors on C, which will occupy us for the rest of the
section.

We are interested in extending functors G ∶ C →D between Ω-categories via
the intermediate level to functors Gσ,Gπ ∶ Cδ → Dδ on canonical extensions.
Given a functor G ∶ C →D between Ω-spaces, we define by precomposition the
functors

DC DD UC UD
Gr Gl

In detail, given f ∈ UD and i ∈ DD, we define Gl(f)(c) = f(G(c)) and
Gr(i)(c) = i(G(c)).

We next show that if G preserves finite limits and colimits, then Gl and Gr
restrict to filters and ideals.

Proposition 4.2 Let G ∶ C → D. Let f ∈ UD preserve finite limits and let
i ∈ DD preserve finite colimits. If G preserves finite limits, then so does Gl(f)
and if G preserves finite colimits, then so does Gr(i).

4 limf refers to the limit weighted by f and colimi to the colimit weighted by i.
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We now extend Gl and Gr from the intermediate level to canonical exten-
sions.

Cδ Dδ Cδ Dδ

Gr
Gl

Recall that for κ ∈ Dδ, we have [[κ]] ∈ DU ′D and ([κ]) ∈ UD′D. We define
functors Gl,Gr ∶Dδ → Cδ as

Gl(κ) = colim[[κ]]Gl Gr(κ) = lim([κ])Gr.

The σ- and π-extensions on the intermediate level

DC DD UC UD
Gr Gl

Gσ

⊺
Gπ

�

are defined as

Gπ(i) = colimiD(−,G) Gσ(f) = limf D(G,−).

Proposition 4.3 We have Gl(f) ● i = f ●Gπ(i) and f ●Gr(i) = Gσ(f) ● i.
Finally, we define functors Gπ,Gσ ∶ Cδ →Dδ

Gπ(κ) = lim([κ])Gπ Gσ(κ) = colim[[κ]]Gσ
Theorem 4.4 (i) If Gl(f) ∈ U ′C and Gπ(i) ∈ D′D for every i ∈ D′C and

f ∈ U ′D, then Gl ⊣ Gπ.
(ii) If Gσ(f) ∈ U ′D and Gr(i) ∈ D′C for every i ∈ D′D and f ∈ U ′C then

Gσ ⊣ Gr.

5 Conclusion and Future Work

We generalized the notion of canonical extension to quantale-enriched cate-
gories and developed a theory of σ- and π- extensions of functors between such
categories.

This will be a stepping stone to developing logics of relational structures
on quantale-enriched categories. Fuzzy modal logics have been developed and
interpreted on sets with many-valued relations (fuzzy Kripke models) [4].

Such models can be generalized by substituting the set with a many-valued
polarity, augmented with further fuzzy relations intended to interpret modal
operations. These relational semantics on modal logics have been investigated
in [2]. These logics include logical connectives and modalities. Even though the
interpretation of formulas in these logic can be readily understood as fuzzy sub-
sets, since these logics are not self-extensional, the interpretation of sequents
needs to also be given. If sequents are interpreted simply via subsethood,
then the expressiveness of the logic becomes the same as that over 2-valued
polarities, i.e. lattices with operations, adding no expressivity despite a richer
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semantic environment. A way to augment the expressiveness of the language
is to consider sequent relations ⊢r, parametrized by truth-values r ∈ Ω. In
this case, quantale spaces will be the natural algebraic environment to inter-
pret these logics: Logical connectives will be interpreted as weighted (co)limits
(meets, joins, tensor, power), additional modal operators will be interpreted
as endofunctors preserving certain (co)limits, and sequents will be interpreted
via the defining relation of the quantale space. In particular, given a quantale
space C and an interpretation of formulas v(⋅) one defines

C ⊧ φ ⊢r ψ ⇔ r ≤ C(v(φ), v(ψ)).

Then, the canonical extensions developed here and extensions of functors will
offer a modular and generic environment to prove completeness of finitary
modal logics with respect to various relational semantics. The method hinges
on extending functors f ∶ A→ B that preserve finite weighted (co)limits to maps
on the canonical extensions fσ, fπ ∶ Aδ → Bδ that preserve arbitrary (co)limits
and, hence, have adjoints and can be represented as fuzzy relations on the dual
space of the quantal-enriched category.
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Abstract

Previous works by Goré, Postniece and Tiu have provided sound and cut-free complete
proof systems for modal logics extended with path axioms using the formalism of
nested sequent. Our aim is to provide (i) an internal cut-elimination procedure and
(ii) alternative modular formulations for these systems. We present our methodology
to achieve these two goals on a subclass of path axioms, namely quasi-transitivity
axioms, and discuss how it could be extended further to quasi-symmetry axioms.

Keywords: Path axioms, Proof theory, Nested sequents, Cut-elimination,
Modularity.

1 Introduction

The proof theory of modal logics has been explored thoroughly and many au-
thors have contributed to the deep understanding gathered to this day. In
particular, it has been remarked time and time again that in order to capture
the validities of a modal logic, additional structure, often inspired by the seman-
tics of the logic itself, is required within the proof-theoretical syntax. This led
to the development of many formalisms extending Gentzen’s sequent calculus,
such as hypersequents [1], nested sequents [2,9], and labelled sequents [8].

It is not always clear however what sort of additional structure is precisely
required to design the proof theory of a modal logic. For example, modal logic
S5 can be expressed using labelled or nested sequents, but can also be given
a sound and complete system in the lighter hypersequent formalism, whereas
such a result is conjectured not to be possible in ordinary sequent calculus [5].

Goré, Postniece and Tiu [4] have proposed a general algorithm to design
nested sequent systems for modal logic K 1 extended with path axioms, of the

1 Their work takes place in the context of tense logic where the language contains also adjoint
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Fig. 1. Frame conditions for path, quasi-transitivity, and quasi-symmetry axioms

form 3na⊃2l3a. As a subclass of Scott-Lemmon axioms 3n2ma⊃2l3ka [6],
they enjoy a well-behaved correspondence with the frame conditions displayed
on the left of Fig. 1, i.e., if uRlv and uRnw then vRw. They are also known
to be decidable logics, as shown by [4] using automata theoretic methods.

In this line of work, we set out to understand more precisely Goré et al.’s
systems proof theoretically, in particular on a methodolgy to (i) equip them
with an internal cut-elimination procedure and (ii) distill them into modular
systems, i.e., such that each axiom corresponds to a (set of) rule(s) which can
be freely mixed with others independently of the other axioms present.

We started with some restricted classes of path axioms. We call them quasi-
transitivity when l = 0, giving 4n : 3na ⊃ 3a for n ≥ 1, and quasi-symmetry
when n = 0, giving bl : a ⊃ 2l3a for l ≥ 1. These correspond respectively to
the frame conditions displayed in the middle and on the right of Fig. 1.

In this short paper we present our preliminary results regarding quasi-
transitive modal logics and discuss the difficulty we faced so far to export
the approach to quasi-symmetric ones.

2 Nested sequent for quasi-transitive logics

2.1 Nested sequents

A nested sequent is defined as Γ ::= ∅ | A,Γ | Γ, [Γ] which corresponds in-
formally to a tree of sequents and can be expressed inductively in the modal
language as: form(∅) = ⊥, form(A,Γ) = A ∨ form(Γ), and form(Γ1, [Γ2]) =
form(Γ1) ∨2form(Γ2).

A context is a nested sequent with one or several holes { } which can take
the place of a formula in the sequent (but does not occur inside a formula).
This lets us write Γ1{Γ2} when we replace the hole in Γ1{ } by Γ2.

Nested sequent system nK is composed of the rules id, ∧, ∨, 2 and 3k

in Fig. 2 and is sound and complete wrt. K [2]. We can further extend this
system with some of the modal propagation or modal structural rules in Fig. 2
to capture wider modal logics. The modal rules on the LHS (3k, 34, 3b, as
well as their structural versions) are taken from [2]. The ones on the RHS are
the generalisations we are studying here, including 3kn which appears in [4].

A proof is then built from these rules as a tree in the same way as in

modalities, but we restrict our attention to the language with only 2 and 3.
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id
Γ{a, ā}

Γ{A} Γ{B}
∧

Γ{A ∧B}
Γ{A,B}

∨
Γ{A ∨B}

Γ{[A]}
2

Γ{2A}
Γ{A} Γ{Ā}

cut
Γ{∅}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Modal propagation rules

Γ{3A, [∆, A]}
3k

Γ{3A, [∆]}
Γ{3A, [∆1, [. . . , [∆n, A] . . . ]]}

3kn n ≥ 1
Γ{3A, [∆1, [. . . , [∆n] . . . ]]}

Γ{3A, [∆,3A]}
34

Γ{3A, [∆]}
Γ{3A, [∆1, [. . . , [∆n−1,3A] . . . ]]}

34n n ≥ 1
Γ{3A, [∆1, [. . . , [∆n−1] . . . ]]}

Γ{A, [∆,3A]}
3b

Γ{[∆,3A]}
Γ{A, [∆1, [. . . , [∆n,3A] . . .]]}

3bn n ≥ 1
Γ{[∆1, [. . . , [∆n,3A] . . .]]}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Modal structural rules

Γ{[∆], [Σ]}
⊠k

Γ{[∆,Σ]}
Γ{[Σ], [∆1, [. . . , [∆n] . . .]]}

⊠kn n ≥ 1
Γ{[∆1, [. . . , [∆n,Σ] . . .]]}

Γ{[∆, [Σ]]}
⊠b

Γ{Σ, [∆]}
Γ{[∆1, [. . . , [∆i, [Σ]] . . .]]}

⊠bn n ≥ 1
Γ{Σ, [∆1, [. . . , [∆i] . . .]]}

Fig. 2. Nested sequent rules

ordinary sequent calculi. A rule Γ1

Γ2
is admissible in a nested sequent system N

if whenever there is a proof of Γ1 in N, there is a proof of Γ2 in N.

2.2 Quasi-transitive modal logics

Let us look first at the transitive modal logic K4, which is known to be sound
complete with respect to nK + 34 (see Fig. 2). This can be proved, following
Brünnler [2], via a cut-elimination argument, that is:

A is a theorem of K+ 4 ⇐⇒ A is provable in nK+34 + cut

⇐⇒ A is provable in nK+34
(1)

The cut-elimination proof itself is a bit involved as it requires the introduction
of a complex generalisation of the cut rule, called a 4cut in [2]

Meanwhile, Goré, Postniece and Tiu [4] prove a general soundness and
completeness result for sets of path axioms, which we specialise to sets of quasi-
transitivity axioms.

Let X be from now on be a subset of the positive natural numbers. We will
write K + 4X to denote the modal logic K extended with (quasi-)transitivity
axioms 4n : 3na⊃3a for each n ∈ X and use the notations 3kX := {3kn : n ∈
X} and 34X := {34n : n ∈ X} (rules in Fig. 2).

The specialisation to quasi-transitivity allows us to simplify the notion of
completion, namely, the set X̂ can be defined inductively as:

X0 := X Xp+1 := Xp ∪ {i+ j − 1 | i, j ∈ Xp} X̂ :=

∞⋃
p=0

Xp (2)
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This is a simplification of the completion given for a set of path axioms
in [4], which is calculated from the algebra of paths for the propagation graph
of a nested sequent. It allows Goré et al. to establish certain sets of 3kn rules
to be sound and complete for certain path axioms.

Once simplified to quasi-transitive logics, their result can then be stated as:

A is a theorem of K+ 4X ⇐⇒ A is provable in nK+3kX̂ (3)

However, the obtained systems are not modular as for two subsets of positive
natural numbers X1, X2, the completion of X1 ∪X2 is not generally X̂1 ∪ X̂2.

2.3 Main result and proof sketch

We generalise (1) and give an alternative proof of (3), via cut-elimination, to
refine soundness and completeness for quasi-transitive modal logics:

Theorem 2.1 The following are equivalent:

(i) A is a theorem of K+ 4X

(ii) A is provable in nK+3kX + cut

(iii) A is provable in nK+3kX̂

(iv) A is provable in nK+34X

We give a sketch of the proof here; the full version can be found in [7].
For the direction (i) ⇒ (ii), knowing that the axioms and rules of K are

derivable using nK+ cut, we only need to show that for any n ≥ 1, axiom 4n is
derivable using the corresponding rule 3kn.

id
[. . . [ā, a] . . .],3a

3kn
[. . . [ā] . . .],3a

2 n times
2nā,3a

∨
2nā ∨3a
.....................
3na⊃3a

The direction (ii) ⇒ (iii) is a cut-elimination proof. The result can be de-
duced via the proof translations from [4]; we provide here an internal proof
which moreover lets us pinpoint precisely where the need for completion arises.
By using the rules 3kn designed by [4], rather than the generalisation 34n of
the rule from [2], the cut-reduction case for the quasi-transitivity rules be-
comes much simpler, without the need to consider a 4cut-style rule. The cut-
elimination argument follows as usual and most of the cases are identical to [2].
We are left to consider a cut of the form:

Γ{[A], [∆1, [. . . , [∆n] . . .]]}
2

Γ{2A, [∆1, [. . . , [∆n] . . .]]}
Γ{3Ā, [∆1, [. . . , [∆n, Ā] . . .]]}

3kn
Γ{3Ā, [∆1, [. . . , [∆n] . . .]]}

cut
Γ{[∆1, [. . . , [∆n] . . .]]}
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which can be reduced to a cut on smaller formulas A and Ā

Γ{[A], [∆1, [. . . , [∆n] . . .]]}
⊠kn .......................................................

Γ{[∆1, [. . . , [∆n, A] . . .]]} Γ{[∆1, [. . . , [∆n, Ā] . . .]]}
cut

Γ{[∆1, [. . . , [∆n] . . .]]}

where the right premiss is obtained by applying the induction hypothesis on
height to a cut on 2A and 3Ā and the left premiss, is obtained by admissibility
of the modal structural rules, namely:

Lemma 2.2 For each n ∈ X, ⊠kn is admissible in nK+3kX̂.

In the proof of this lemma, the requirement for completion becomes apparent.
The direction (iii) ⇒ (iv) is where we achieve modularity. Indeed, using

the 34n rule which propagates formulas 3A (similar to the 34 rule from [2]),
rather than the 3kn rule, allows us to drop the requirement of completion.

We need to show that for n ∈ X̂, the rules 3kn and 34n are derivable in
nK + 34X by induction on the definition of X̂. As a matter of example, if
n ∈ Xp+1 and n = l +m − 1 for some l,m ∈ Xp, by induction hypothesis 34l

and 3km are derivable, hence 3kn can be shown derivable:

Γ{3A, [∆1, [. . . , [∆l+m, A] . . . ]]}
3k(l+m)

Γ{3A, [∆1, [. . . , [∆l+m] . . . ]]}

≡
Γ{3A, [∆1, [. . . , [∆l+m, A] . . . ]]}

3km
Γ{3A, [∆1, [. . . , [∆l−1,3A, [. . . , [∆l+m]] . . . ] . . . ]]}

34l
Γ{3A, [∆1, [. . . , [∆l+m] . . . ]]}

Finally, the direction (iv) ⇒ (i) is stating the soundness of rules in nK+34X.
The soundness of the rules in the system nK are proved in [2]. For a rule 34n

Γ1

Γ2
,

we can similarly show that form(Γ1)⊃ form(Γ2) is a theorem of K+ 4X.
Note that the nested sequent systems we considered in this section, for

quasi-transitive logics, are exclusively propagation rule based. The structural
rules are used in the process of the cut-elimination proof but do not need to
be explicitly added to the systems.

3 Towards nested sequents for quasi-symmetric logics

The completion we gave in (2) is a simplification of the completion given for a
set of path axioms in [4], which is calculated by looking at the algebra of paths
for a propagation graph of a nested sequent.

When specialising it again for the quasi-symmetric axioms bl : a⊃2l3a, we
get the rules 3bn in Fig. 2. However, we have so far been unable to replicate
the methodology developed in the previous section for this set of rules. In par-
ticular, the approach is unsuccessful when attempting to prove ⊠bl admissible.

The strategy, similar to Lemma 2.2, would be to prove this through an
induction on the height of the proof. That is, for example when i = 2, we
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would like to transform the derivation

Γ{[∆1, [∆2, A, [Σ1, [Σ2,3A]]]]}
3b2

Γ{[∆1, [∆2, [Σ1, [Σ2,3A]]]]}
⊠b2

Γ{Σ1, [Σ2,3A], [∆1, [∆2]]}
into a derivation of this shape

Γ{[∆1, [∆2, A, [Σ1, [Σ2,3A]]]]}
⊠b2

Γ{Σ1, [Σ2,3A], [∆1, [∆2, A]]}
..............................................................
Γ{Σ1, [Σ2,3A], [∆1, [∆2]]}

Unfortunately, the step indicated as a dashed line does not seem to corre-
spond to any of the rules considered in this paper. It is not clear at this point
whether the completion in [4] is enough to perform this step.

An alternative approach, inspired by Brünnler and Straßburger’s [3], would
be to renounce modal propagation rules and try to obtain a cut-elimination
result for a system based exclusively on modal structural rules. These different
avenues are the subject of ongoing work.

4 Concluding remarks

In this work, we proposed a proof-theoretic study of nested sequent systems for
path axioms [4]. We showed its benefits on the special case of quasi-transitivity
axioms and how it is challenged by quasi-symmetry axioms. The interest of the
approach is not strictly to provide new nested sequent systems to a restricted
family of logics for which we already know sound and complete systems in many
different formalisms, including nested sequents. It is rather to dive deeper into
some of these existing systems to understand the reason behind non-modularity
and to ease the requirement of completion for path axioms in general.
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Intuitionistic and Modal Logic

Jan von Plato 1
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Abstract

A normalizing system of classical natural deduction for S4 is given. It is shown that
steps of indirect proof can be eliminated from derivations of formulas T (A) translated
from intuitionistic logic to S4. For the converse translation, the modal operators and
their rules are simply deleted, to obtain a derivation of A in intuitionistic logic.

Keywords: modal translation, S4, normalization.

1 The question

Gödel published in 1933 a one-page paper in which he defined the modal system
now known as S4, then gave a translation from intuitionistic propositional
logic to S4 such that translations T (A) of theorems A of the former turn into
theorems of the latter:

1. □(A) ⊃ A 1. A ∨B □(A) ∨□(B)

2. □(A ⊃ B)&□(A) ⊃ □(B) 2. A ⊃ B □(A) ⊃ □(B)

3. □(A) ⊃ □□(A) 3. A&B □(A)&□(B)

4. ¬A ∼□(A)

Table 1. Axioms of S4. Table 2. Gödel’s modal translation.

The rule of inference is that if A has been proved, □(A) can be inferred. Gödel’s
article does not add the □-operator in the translation of conjunctions, but he
does it elsewhere (cf. [4]). The translation shown gives a useful uniformity to
the structure of translated formulas.

Gödel conjectured in 1933 that the correspondence he had established be-
tween the theorems of intuitionistic propositional logic and S4 is exact: If the
translation of a formula A is a theorem of S4, A is a theorem of intuitionis-
tic logic. This was proved by semantic means in 1948 (cf. [5] and Troelstra’s
introduction to Gödel’s short paper in the Collected Works, vol. 1, [2]).

1 Full paper to appear in The Bulletin of Symbolic Logic. Research of the author financed
by the European Research Council Advanced Grant GODELIANA (grant agreement No
787758).
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It was found out recently that Gödel had found a complicated syntactic
proof of his conjecture in 1941, in a book he wrote in 1940–42, Results on
Foundations (cf. [3]). The proof uses a propositional version of what is today
called Barr’s theorem to first constructivize theorems of classical S4. The
details and circumstances of this result are found in [6].

When natural deduction is used, the modal translation extends easily to
derivations, with some added steps of introduction and elimination of □, with
no instance of indirect proof visible anywhere. Thus, the proper perspective on
the matter is to show that indirect proof in S4 is conservative over the class of
provable translated formulas. That is the content of our Main Lemma proved
below. (Other proofs are only indicative, for brevity.)

2 Natural deduction for classical and modal logic

In [9], normalization is proved for classical natural deduction, with no ad hoc
restrictions, global proof transformations, or similar tricks. Also natural de-
duction for the classical modal logic S4 was covered, as an extension of a
proof of normalization for intuitionistic S4 in [8]. It will be useful to have the
elimination rules in their general form, analogous to ∨E and ∃E in which the
major premiss (the one with the connective) stands on the inference line and
the derivations of the minor premiss or premisses to its right (cf. [7]). This
arrangement is seen in the □E rule in table 4 below.

In classical natural deduction, the subformula property of normal deriva-
tions includes also negations of subformulas. In rules that close assumptions,
the assumptions can occur any number of times. If an assumption occurs 0
times, it is vacuously discharged. The system of intuitionistic natural deduc-
tion NI is obtained as that special case of the classical system NK in which
the two assumptions ¬A on top of the subderivations in rule ¬E are absent,
i.e., vacuously discharged:

1

A....
C

1

A....
¬C

¬A
¬I,1

1

¬A....
C

1

¬A....
¬C

A
¬E,1

....
C

....
¬C

A
¬E

Table 3. Rules for primitive negation, ex falso.

Definition. A derivation in NK is normal if all major premisses of E-rules
are assumptions.

Here, contrary to [9], negation is a primitive notion. It can then happen that a
major premiss of an elimination is derived by rule ¬E. That rule has no major
premiss, but there are some obvious convertibilities with the two negation rules.

Theorem. Normalization for NK. Derivations in NK normalize.

The cases to consider, beyond the proof of normalization for NI (with gen-
eral elimination rules), are convertibilities when the major premiss of one of
&E,∨E, or ⊃E is derived by ¬E, and secondly cases with successive instances
of rules ¬I and ¬E. For brevity, only the latter is shown here:
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Rule ¬I followed by rule ¬E: Consider an uppermost such occurrence. The
derivation and its transformation are:

2

¬A....
B

2

¬A,
1

B....
C

2

¬A,
1

B....
¬C

¬B
¬I,1

A
¬E,2

1

¬A,

1

¬A....
B....

C

1

¬A,

1

¬A....
B....

¬C
A

¬E,1

As can be expected, the conversion will not make indirect proof disappear, even
if there is the rule pair ¬I,¬E. The composition formula B can lead to a new
convertibility, but it is in a strictly smaller subderivation and therefore such
cases get removed in a bounded number of steps.

There are, in addition to the above obvious cases, three further reductions
(omitted here) that we take as belonging to a normal derivation:

Lemma. Reduction of indirect proof. Successive applications of the nega-
tion rules reduce to at most one such application.

Corollary. Indirect proof reduced to one last instance in a derivation.
Indirect proof can be permuted down with respect to all of the propositional rules.

It is readily seen, by routine transformations, that rule ¬E permutes down with
respect to all the introduction and elimination rules for &,∨, and ⊃. Moreover,
as shown in the above lemma, consecutive instances of rule ¬E collapse into
just one such instance.

The rules of the system of modal logic S4 are, with rule □E formulated as a
general elimination rule:

Γ....
A
□A

□I
□A

1

A....
C

C
□E,1

Table 4. Natural modal rules.

Rule □I has the restriction that the open assumptions Γ on which the premiss
A depends must be modal formulas, and the effect is that indirect proof cannot
be permuted below □I. The standard □E rule is obtained when C = A. The
intuitionistic and classical modal systems will be denoted by NIS4 and NKS4.

Theorem. Normalization for NKS4. Derivations in NKS4 normalize.

The only new case to consider is when the major premiss of □E has been
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derived by ¬E. The derivation and its transformation are:

1

¬□A....
B

1

¬□A....
¬B

□A
¬E,1

2

A....
C

C
□E,2

2

□A

1

A....
C

C
□E,1 5

¬C
¬□A

¬I,2

....
B

4

□A

3

A....
C

C
□E,3 5

¬C
¬□A

¬I,4

....
¬B

C
¬E,5

Whereas rule ¬E permutes down with respect to rule □E, the condition in rule
□I, entirely analogous to the eigenvariable condition of rule ∀I, rules out such
permutations.

Corollary. CM-lemma. If in a normal derivation of a theorem in NKS4
the last rule is ¬E, the derivation of its right premiss is degenerate.

By the degeneracy, C = A, and with the right premiss left unwritten, the rule
is: 1

¬A....
A
A

CM ,1

Here CM stands for Consequentia Mirabilis, a rule that corresponds to the
axiom (¬A ⊃ A) ⊃ A. The CM-lemma holds in particular for NK.

The modal translation, as in Table 2, is best illustrated by an example:

T ((A ⊃ ¬B) ⊃ (B ⊃ ¬A)) = □(□A ⊃ □¬□B) ⊃ □(□B ⊃ □¬□A)

Let formulas with one of &,∨,⊃,¬ as the main connective be called I-formulas
and ones with □ as the main connective S-formulas. The example shows how
the immediate subformulas of translated formulas come in a succession I, S,
I, S... until translations T (P ) of atomic formulas are reached. The curious
subformula structure dictates that NI-rules must alternate with □-rules in
normal derivations.

Main Lemma. Conservativity of NKS4 over NIS4 for T-formulas. If
the translation T (C) of an intuitionistic formula C is derivable in NKS4, it
is already derivable in NIS4.

Proof. Consider an uppermost step of ¬E in a normal derivation in NKS4:

1

¬A....
B

1

¬A....
¬B

A
¬E,1

In the derivation of the right premiss ¬B of rule ¬E, assume the assumption ¬A
is not vacuous, the vacuous case postponed to the end. It is not a premiss in any
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I-rule: Rule □I is excluded by its restriction and the other I-rules would lead to
formulas that don’t have the alternating S-I subformula structure. Therefore
¬A is a premiss in rule ¬I. The other premiss is not ¬¬A because then the
conclusion of ¬E would be a negative formula for which no indirect proof is
needed. Therefore the other premiss is A, derived from some assumption C,
and the conclusion of ¬I is ¬C, as in

1

¬A....
B

C....
A

1

¬A
¬C ¬I

....
¬B

A
¬E,1

¬C cannot be a minor premiss in rule ⊃E, because the immediate subformulas
of implications must be S-formulas. ¬C is not a premiss in rule ¬I as that
would give two successive instances of ¬I. Therefore we must have ¬B = ¬A,
then also B = A and the derivation is: 1

¬A....
A

1

¬A
A

¬E,1

If A is the conclusion of the whole derivation, it is an I-formula, and the same
if it is a premiss in rule □I. Then, if A is a negation, the step of indirect
inference is not needed. Therefore A is equal to one of □D&□E,□D ∨ □E,
or □D ⊃ □E, and A is derived by &I,∨I, or ⊃ I. In each of these rules,
the premisses contain one of □D,□E, but in the presence of the negative
assumption ¬A, these cannot have been derived by rule □I. Therefore the
assumption ¬A is not used in the derivation of the premiss A and the step of
¬E can be left out to obtain a derivation of A in NIS4.

Finally, the case in which the assumption ¬A is vacuous in the derivation of
the right premiss of ¬E, in the first proof figure above: Here B must have the
form □D. Its derivation in the left premiss of ¬E must be by rule □I and that
can be, just as before, only if the assumption ¬A was absent in the derivation
of the left premiss. A then follows by ex falso in NIS4. QED.

Here is a normal derivation of our example in NIS4 and its translation back
to NI, by just deleting the □’s and their rules:

5

□B

6

□(□A ⊃ □¬□B)

3

□A ⊃ □¬□B
4

□A

2

□¬□B
1

¬□B
¬□B

□E,1

¬□B
⊃E,2

¬□B
□E,3

¬□A
¬I,4

□¬□A
□I

□B ⊃ □¬□A
⊃I,5

□(□B ⊃ □¬□A)
□I

□(□A ⊃ □¬□B) ⊃ □(□B ⊃ □¬□A)
⊃I,6

5

B

6

A ⊃ ¬B
4

A
2

¬B
¬B

⊃E,2

¬A
¬I,4

B ⊃ ¬A
⊃I,5

(A ⊃ ¬B) ⊃ (B ⊃ ¬A)
⊃I,6
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mathematischen Kolloquiums, vol. 4 (1933), pp. 39–40. An English translation is found
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Abstract

We prove that canonicity of predicate modal logics transfers to their fusions.

Keywords: Predicate modal logic, fusion of logics, canonicity, strong Kripke
completeness.

1 Introduction

In propositional modal logic, completeness through canonicity is a powerful
technique for establishing Kripke completeness. A number of general results—
among them, Sahlqvist canonicity theorem—show that modal propositional
logics axiomatized by formulas of particular form are canonical and, therefore,
Kripke complete. Moreover, it is known that canonicity and Kripke complete-
ness of propositional logics transfer to their fusions [1,3]. By contrast, not much
is known about canonicity of predicate modal (even monomodal) logics. The
authors are only aware of the following general canonicity results for predicate
modal logics: the Tanaka-Ono theorem for constant domains [5], canonicity of
the minimal extensions of propositional one-way PTC logics with expanding
domains [2, Theorem 6.1.29], and transfer of canonicity under boxing [4, The-
orem 4.1]. Neither canonicity nor completeness transfers from logics to their
fusions have been studied in the predicate setting. In this brief note, we show
that, in predicate logic, just as in propositional logic, canonicity transfers to
fusions.

2 Preliminaries

We consider logics in two languages: the monomodal predicate language L1 con-
tains countably many free variables (denoted by a, a1, b, . . .), countably many
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bound variables (denoted by x, y, x1, . . .),
1 countably many predicate letters

of every arity, the Boolean connectives ¬ and ∧, the quantifier symbol ∀, and
the unary modality □1; the bimodal language L2 extends L1 with the unary
modality □2. Formulas are defined by recursion: atomic formulas are expres-
sions of the form P (a1, . . . , an); if A and B are formulas, then so is (A∧B); if A
is a formula, then so are ¬A, □iA, and ∀x [x/a]A, where [x/a] is a substitution
of a bound variable x not occurring in A for a free variable a. As usual, ⊥
abbreviates (B∧¬B), for some fixed B. An occurrence of a free variable a in a
formula A is a triple (A, i, a) such that a is the ith symbol of A. The universal
closure of a formula A, which is unique up to the renaming of variables, is
denoted by ∀̄A.

We denote by □2Fma the set of all L2-formulas of the form □2A.
An N -modal predicate logic (in this paper, N ∈ {1, 2}) is a set of

LN -formulas containing the minimal N -modal propositional logic KN and
closed under Substitution (Sub), Modus Ponens (MP), Generalization (Gen),
and Necessitation for □1, . . . , □N . The fusion L1 ∗ L2 of 1-modal predicate
logics L1 and L2 is the logic K2 +L1 ∪L+1

2 , where L+1
2 is obtained from L2 by

replacing every occurrence of □1 with □2.
We work with Kripke semantics with expanding domains (see, e.g., [2,

Chapter 3]). A predicate Kripke N -frame with expanding domains is a tuple
F = (F,D) where F = (W,R1, . . . , RN ) is a (propositional) Kripke N -frame
and D := {Dw | w ∈ W} is a system of non-empty domains over F such that,
if i ⩽ N and wRiw

′, then Dw ⊆ Dw′ . The following fact is well known:

Fact 2.1 Let F be a predicate Kripke 2-frame, and let L1 and L2 be predicate
monomodal logics. If F |= L1 and F |= L2, then F |= L1 ∗ L2.

We write (W,R) ⊆ (W ′, R′) if a Kripke 1-frame (W,R) is a subframe of
a Kripke 1-frame (W ′, R′), and (W,R) ⊑ (W ′, R′) if (W,R) is a generated
subframe of (W ′, R′).

For the construction of canonical models, we use languages enriched with
a countable set of constants (denoted by c, c1, . . .). Constants behave just like
free variables, except that quantified formulas cannot be obtained by replacing
constants with bound variables and prefixing a quantifier. A set of sentences
possibly containing constants is called a theory. If Γ is a theory, the set of all
constants occurring in Γ is denoted by CΓ and the set of all sentences possibly
containing constants from CΓ is denoted by L(Γ). A theory Γ is called negation-
saturated if, for every A ∈ L(Γ), either A ∈ Γ or ¬A ∈ Γ. A theory Γ is
called Henkin if, whenever ∃xA(x) ∈ L(Γ), there exists c ∈ CΓ such that
∃xA(x) → A(c) ∈ Γ.

We say that a formula, possibly with constants, A is L-provable, and write
⊢L A, if A = [c/a]B, for some B ∈ L and some renaming [c/a] of some free
variables of B with constants.

We say that a sentence A is L-derivable from a theory Γ, and write Γ ⊢L A,

1 Note that our syntax differs from that used in [2], where there are no separate stocks of
free and bound variables.
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if there exists a sequence A1, . . . , An of formulas, called an L-derivation of A
from Γ, such that, for every Ai, either Ai ∈ Γ or ⊢L Ai or else Ai is obtained
from Aj , with j < i, by either (MP) or (Gen). A theory Γ is L-consistent if
Γ ̸⊢L ⊥. The following fact is well known and proven as for the classical logic:

Fact 2.2 If Γ is a theory, a is a free variable, and c is a constant such that
c /∈ CΓ, then Γ ⊢L A implies Γ ⊢L [c/a]A.

Let L be an N -modal predicate logic. An L-place is a negation-saturated
L-consistent Henkin theory Γ such that the set of constants not in CΓ is infinite.
The canonical predicate frame for L is the tuple FL = (WL, R1, . . . , RN , DL)
where WL is the set of all L-places, ΓRi∆ holds iff □iA ∈ Γ implies A ∈ ∆, and
the domain function is defined by DL(Γ) := CΓ. It is well-known that every
non-theorem of L is refuted on FL.

By analogy with propositional logic, we call a predicate logic canonical if it
is validated by its canonical predicate frame. 2 Every canonical predicate logic
is Kripke complete: if a predicate logic L is canonical, then L = {A | FL |= A}.

3 Main result

In view of Fact 2.1, our aim is to show that if L1 and L2 are canonical
monomodal predicate logics, then the canonical predicate frame for L1 ∗ L2

validates both L1 and L2. The arguments for L1 and L2 are symmetric, so we
give only one in full detail.

Define a binary relation ∼ on Fma so that A ∼ B if B can be obtained by
replacing occurrences of free variables in A with some free variables; e.g.,

□2∃x(P (x, a, b) ∧Q(x, b, c)) ∼ □2∃x(P (x, a, d) ∧Q(x, a, b)), (∗)

i.e, the only occurrence of a is replaced with a, the first occurrence of b with d,
the second occurrence of b with a, and the only occurrence of c with b. It
should be clear that ∼ is an equivalence; we write [A] for {B | B ∼ A}.

Enrich L1 with a countable set of predicate letters of each arity; denote by
S the set of all newly introduced predicate letters and by (L1 + S) the set of
formulas of the resultant language; denote by AFS the set of atomic formulas
with predicate letters from S.

Let s : □2Fma/∼ → S be a bijection such that the arity of the letter
s([□2A]) equals the number of occurrences of free variables in □2A; the map s is
well defined since all formulas from [□2A] have the same number of occurrences
of free variables (e.g., four in formulas from (∗)). We write□2A(a) to mean that
a is the list, with repetitions, of free variables with occurrences in □2A (e.g.,
in the first formula from (∗), a = (a, b, b, c)) and define a (unique) bijection
s̄ : □2Fma → AFS so that s̄(□2A(a)) := s([□2A(a)])(a); the atomic formula
s̄(□2A) is called the surrogate of □2A. Next, define a map e : L2 → (L1 + S)

2 Note that, in general, canonicity may depend on the cardinality of the set of constants used
in the construction of a canonical predicate frame; for the purposes of this paper, however,
this issue is immaterial.
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by

e(A) := A if A is atomic; e(∀x [x/a]A) := ∀x[x/a] e(A);

e(¬A) := ¬e(A); e(□1A) := □1e(A);

e(A ∧B) := e(A) ∧ e(B); e(□2A) := s̄(□2A).

The formula e(A) ∈ (L1 + S) is called the ersatz of A ∈ L2. If Γ ⊆ L2, then
Γe := {e(A) | A ∈ Γ}. Note that the map e is a bijection; hence, we can
define the map r := e−1. The formula r(A) ∈ L2 is called the reconstruction
of A ∈ (L1 + S). Note that r(A) = A if A does not contains predicate letters
from S. If Γ ⊆ (L1 + S), then Γr := {r(A) | A ∈ Γ}.
Lemma 3.1 For every A ∈ (L1 + S), the formula r(A) is a substitution in-
stance of A.

Proof. Induction on A. 2

Let L := L1 ∗ L2, and let

FL := (WL, RL, DL) and FL1
:= (WL1

, RL1
, DL1

)

be the canonical predicate frames of, respectively, L and L1; let, also,

W e
L := {Γe | Γ ∈ WL}.

Lemma 3.2 If Γ ⊆ L2 is negation-saturated and Henkin, then so is Γe.

Proof. To see that Γe is negation-saturated, assume that A ∈ L(Γ)−Γe. Then,
r(A) /∈ Γ, and so, since Γ is negation-saturated, ¬r(A)(= r(¬A)) ∈ Γ. Thus,
e(r(¬A))(= ¬A) ∈ Γe. The argument for Henkinness is similar. 2

Lemma 3.3 If Γ ⊆ (L1 + S) is negation-saturated and Henkin, then so is Γr.

Proof. Similar to the proof of Lemma 3.2. 2

Lemma 3.4 W e
L ⊆ WL1 .

Proof. Let Γ be an L-place. By Lemma 3.2, Γe is negation-saturated and
Henkin. Clearly, CΓe = CΓ. It remains to show that Γe is L1-consistent.

Suppose not, i.e., Γe ⊢L1
⊥. Then, there exists an L1-derivation

A1, A2, . . . ,⊥ of ⊥ from Γe. Then, as we next show,

r(A1), r(A2), . . . , r(⊥)(= ⊥)

is an L-derivation of ⊥ from Γ. Indeed, if Ai ∈ Γe, then r(Ai) ∈ (Γe)r(= Γ).
If ⊢L1 Ai, then there exists a renaming [a/c] of the constants occurring in Ai

into free variables such that [a/c]Ai ∈ L1. Since L1 ⊆ L1 ∗ L2(= L), surely
[a/c]Ai ∈ L; hence, ⊢L Ai. Since L is closed under substitution, it follows,
by Lemma 3.1, that ⊢L r(Ai). Lastly, the map r clearly commutes with both
(MP) and (Gen). Thus, Γ ⊢L ⊥, contrary to L-consistency of Γ. 2

If Γ is a set of formulas, we denote by Γ the set of sentences from Γ.
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Lemma 3.5 If Γ ∈ W e
L, then L

e ⊆ Γ.

Proof. Let Γ ∈ W e
L. Then, Γ = ∆e, for some ∆ ∈ WL. Since, by [2, Lemma

6.1.4(1)], L ⊆ ∆, it follows that L
e ⊆ ∆e(= Γ). 2

Lemma 3.6 If Γ ∈ WL1
and L

e ⊆ Γ, then Γ ∈ W e
L.

Proof. Suppose that L
e ⊆ Γ ∈ WL1 . We prove that Γr ∈ WL; since Γ = (Γr)e,

it then follows that Γ ∈ W e
L. By Lemma 3.3, Γr is negation-saturated and

Henkin. Clearly, CΓr = CΓ. It remains to show that Γr is L-consistent.
Suppose not, i.e., Γr ⊢L ⊥(= r(⊥)). We will prove that, then, Γ ⊢L1

⊥. To
that end, we show that ∆ ⊢L A and L

e ⊆ ∆e imply ∆e ⊢L1
e(A), for every

∆ ∈ WL and every A ∈ L2. (The required conclusion then follows from the
fact that (Γr)e = Γ.) We proceed by induction on the L-derivation of A from
∆. If B ∈ ∆, then e(B) ∈ ∆e. Suppose, next, that ⊢L B. We may assume
that B does not contain any constants from ∆, and hence any constants from
∆e. Since ⊢L B, there exists a renaming [a/c] of constants into free variables
such that [a/c]B ∈ L. Let B′ := [a/c]B. By (Gen), ∀̄B′ ∈ L. Since, by
assumption, L

e ⊆ ∆e, it follows that e(∀̄B′)(= ∀̄ e(B′)) ∈ ∆e. Thus, we can
add ∀̄ e(B′) and the L1-theorem ∀̄ e(B′) → e(B′) to any L1-derivation from ∆e;
hence, ∆e ⊢L1

e(B′). Now, let [c/a] := [a/c]−1. Then, by Fact 2.2 and by our
assumption about constants, ∆e ⊢L1

[c/a]e(B′)(= e([c/a]B′) = e(B)). Lastly,
the map e clearly commutes with (MP) and (Gen). Hence, Γ ⊢L1

⊥, contrary
to L1-consistency of Γ. 2

Let Re
L := RL1

↾ W e
L.

Lemma 3.7 (W e
L, R

e
L) ⊑ (WL1

, RL1
).

Proof. It follows from Lemma 3.4 and the definition of Re
L that (W e

L, R
e
L) ⊆

(WL1
, RL1

). To see that RL1
(W e

L) ⊆ W e
L, suppose that Γ ∈ W e

L and ΓRL1
∆.

Since Γ ∈ W e
L, it follows, by Lemma 3.5, that L

e ⊆ Γ. Since □1 L ⊆ L,

surely (□1 L)
e(= □1L

e
) ⊆ Γ. Since ΓRL1∆, the definition of RL1 implies that

L
e ⊆ ∆. Hence, by Lemma 3.6, ∆ ∈ W e

L. 2

Proposition 3.8 If FL1 |= L1, then FL1∗L2 |= L1.

Proof. Suppose that FL1
|= L1. Since e is an embedding, Lemma 3.7 means

that the frame (WL1∗L2
, R1) is isomorphic to a generated subframe of FL1

.
Since validity of predicate formulas is preserved under generated subframes [2,
Lemma 3.3.18], it follows that (WL1∗L2 , R1) |= L1 and hence FL1∗L2 |= L1. 2

Lemma 3.9 If FL2 |= L2, then FL1∗L2 |= L2.

Proof. The argument here is analogous to that of Proposition 3.8. We define
surrogates of formulas of the form □1A in the language (L2 + S), and proceed
as before, but swapping the roles of L1 and L2. 2

Theorem 3.10 Let L1 and L2 be predicate modal logics. Then,

FL1
|= L1 & FL2

|= L2 =⇒ FL |= L1 ∗ L2.
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In other words, the fusion of two canonical predicate modal logics is a canonical
predicate modal logic.

Proof. Immediate from Proposition 3.8, Lemma 3.9 and Fact 2.1. 2

Since an analogue of Theorem 3.10 can be proven for polymodal logics, we
obtain the following:

Corollary 3.11 Let L1, . . . , Ln be predicate modal logics. Then,

FL1 |= L1 & . . . & FLn |= Ln =⇒ FL |= L1 ∗ . . . ∗ Ln.

In other words, the fusion of any number of canonical predicate modal logics is
a canonical predicate modal logic.

The previous treatment is likely to extend to logics of constant domains,
with canonicity replaced by C-canonicity [2, Chapter 7]:

Conjecture 3.12 For predicate modal logics, C-canonicity transfers to fu-
sions.

Also, we believe that additional techniques should enable us to prove trans-
fer of Kripke completeness rather than simply canonicity:

Conjecture 3.13 For predicate modal logics, strong Kripke completeness and
Kripke completeness transfer to fusions.
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Abstract

In the expositions of axiomatizations of first-order logic, the (admissible) substitution
played an important role. However, it is usually defined only in the meta-language.
In this paper, inspired by dynamic epistemic logic and modal logic with the assign-
ment operators, we take syntactic substitutions as (dynamic) modalities in the logical
language. Adding this operator to the first-order language complicates the logic, but
we can avoid the meta-language notion of substitution in the axiomatizations. As the
main result, we axiomatize first-order logic with equality enriched with such substi-
tution modalities.

Keywords: substitution, first-order logic, dynamic epistemic logic, completeness

1 Introduction

In most modern expositions of the Hilbert-style proof systems of first-order logic
(FOL), there are always some axiom schemata and rules that use the meta-
language notion of substitution. However, the definitions of substitution and
substitutability are provided in the meta-language, such as in [3]. A natural
question is whether we can include the substitution in the object-language
of logic, thus making α(t/x) a genuine formula schema just like ∀xα. This
motivates this paper.

A similar idea has been well-explored in the field of λ-calculus under the
name of explicit substitution. By having the explicit substitution, one can
bring λ-calculus closer to implementation in practice, without outsourcing a
subtle meta-language notion of substitution. Moreover, this also allows us
to delay substitution operations in reduction, which may be more efficient in
practice. On the other hand, adding explicit substitutions also brings technical
complications, as the substitutions can be nested in the term language, which
may destroy strong normalization when accompanied by the most intuitive β-
rules handling substitutions [10]. This can be overcome in various ways (e.g.,
[16,8]), and it influenced the closely related field of linear logic [4]. 1

Coming back to FOL, there is a body of work in algebraic logic treating sub-
stitutions as algebraic operations based on Cylindric Algebras [7,11], Polyadic

1 There also exists work on coding first-order logic using λ-calculus with substitution atoms
[2].
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Algebras [5], and Quantifier Algebras [12]. The substitution operations are usu-
ally parametrized by two (indexes of) variables, and substitutions with terms
can be handled with more complicated extensions (e.g., [13]). In such works,
the substitution operations are defined by a set of axioms that characterize
some basic properties of substitutions.

In this work, we would like to make substitutions as first-class citizens in
the object language of FOL. In particular, as modal logicians, we have the most
natural way to bring a concept in the meta-language into the object-language:
making it a modality.

In fact, making substitution-like operations as modalities is not a new idea,
as already suggested in [15]. In [18,1], both quantifiers and (simultaneous)
substitutions are treated like modalities, and a complete multi-type display
calculus for a largely extended language of FOL is obtained based on algebraic
semantics. There is also a large body of existing works in logic that make the
semantic counterparts of substitutions as modalities, such as the assignment
operator [x ∶= t] in dynamic logic [6] and epistemic logic [22], and various
factual changing update operators in Dynamic Epistemic Logic [20,17]. How-
ever, the fundamental difference between our approach and these existing ones
is that we treat substitution modalities as syntax-changing operators, while
the above-mentioned works take those assignment-like modalities as model-
changing operators.

Nevertheless, we are inspired by the axiomatic treatments of update modal-
ities. For example, in public announcement logic [14], reduction axioms such
as the following are used to axiomatize the logic by eliminating [φ]:

[φ]p↔ (φ→ p), [φ]¬ψ↔ (φ→ ¬[φ]ψ), [φ] ◻ ψ↔ (φ→ ◻[φ]ψ)

They can also be viewed as recursive definitions of the syntactic relativization
[19]: by following the left-to-right direction of these axioms, a formula [p]ψ
will be rewritten into a formula ψp such that ψp holds in the original model
iff ψ holds in the submodel consisting of the p-worlds. Since the dynamic
operators can be nested, there are two ways to do reductions of [φ], which
can be described as inside-out and outside-in, as discussed in depth in [21],
where the first relies on the replacement of equals and the second relies on
the composition axiom combining two operations into one such as [φ][ψ]χ↔
[φ ∧ [φ]ψ]χ.

In this work, we follow these ideas to define the syntactic substitutions re-
cursively in the system where nested substitutions are allowed in the language.
Adding the substitution operator to propositional logic is relatively straight-
forward, where the rule of uniform substitution (from ⊢ φ infer ⊢ φ(ψ/p)) also
involves the meta-notion of substitution. We can extend the language with
a substitution operator [φ/p] and define the semantics by the corresponding
syntactic substitution. The rule of uniform substitution becomes the rule of
necessitation for the substitution operator. A sound and complete axiomatiza-
tion of propositional logic with explicit substitution can be obtained without
meta-language notions anymore. The resulting logic is identical to the logic of



Wen and Wang 59

[17] where [φ/p] is interpreted as updating the value of p by the value of φ
in the Kripke model. This is no surprise, as the syntactic substitution can be
captured semantically in the propositional setting.

In this paper, we focus on the setting of FOL and define the semantics of
substitution operator [t/x] over both terms and formulas, naturally extending
the so-called standard substitution in [9]. We obtain a sound and complete
system without the notion of substitution in the meta-language and condition
on the substitutability. Compared to the existing work in the algebraic settings
such as [12,1], a notable feature of our work is to keep the language as close as
possible to the standard language of FOL but allow terms with substitutions
to occur in the substitution operators such as [[t/x]g/y].

2 First-Order Logic with Substitution Operators

In this section, we introduce first-order logic with the explicit substitution
modality. First, let us recall the so-called standard substitution for FOL in the
meta-language [9], restricted to a single variable without relettering.

Definition 2.1 (Standard Substitution) The standard substitution (t/x)
in first-order logic is a function that maps terms and formulas of FOL with
equality to terms and formulas respectively, defined as:

y(t/x) ∶=
⎧⎪⎪⎨⎪⎪⎩

x if y ≠ x
t if y = x

c(t/x) ∶= c (ft1 . . . tn)(t/x) ∶= ft1(t/x) . . . tn(t/x)

(Pt1 . . . tn)(t/x)) ∶= Pt1(t/x) . . . tn(t/x) (t1 ≈ t2)(t/x) ∶= t1(t/x) ≈ t2(t/x)
(¬φ)(t/x) ∶= ¬φ(t/x) (φ ∧ ψ)(t/x) ∶= φ(t/x) ∧ ψ(t/x)

(∀yφ)(t/x) ∶=
⎧⎪⎪⎨⎪⎪⎩

∀yφ(t/x) if y does not occur in t

∀yφ otherwise

Now we define the FOL language with explicit substitution modality. Note
that the substitution operators can combine with both terms and formulas.

Definition 2.2 (First-Order Language with Substitutions) Given a set
of variables X, a set of constants C, a set of predicates S, and a set of function
symbols F, LFOS-terms and formulas are defined as follows:

t ∶∶= x ∣ c ∣ ft ∣ [t/x]t
φ ∶∶= (t ≈ t) ∣ P t ∣ ¬φ ∣ (φ ∧ φ) ∣ ∀xφ ∣ [t/x]φ

where x ∈ X, c ∈ C, f ∈ F, P ∈ S, and ≈ is the equality symbol. t denotes a list
of terms. Let T be the set of terms, and let TFO be the set of substitution-
free terms, i.e., first-order terms. Let LFO be the substitution-free fragment of
LFOS, i.e. the standard first-order language.

In this language, we can write formulas involving nested substitutions such as
[[y/x]fx/x]∀z(Px ∧ ∀yRxyz), where [y/x]fx is again a term. The semantics
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of LFOS is based on standard FO-structures A with a domain and an inter-
pretation for non-logical symbols. Given A, we denote the interpretations of
c ∈ C, f ∈ F, P ∈ S as xA, fA, PA respectively. To determine the value of terms
with (nested) substitutions, some care is needed.

Definition 2.3 Given a model (A, σ) where σ is an assignment of variables,
the interpretation Iσ of any LFOS-term t is defined as follows:

● Iσ(x) = σ(x); Iσ(c) = cA; Iσ(ft1 . . . tn) = fA(Iσ(F (t1)), . . . ,Iσ(F (tn)));
● Iσ([t/x]t′) = Iσ(F ([t/x]t′)).
where F is defined as:

F (x) = x F (c) = c F (ft1 . . . tn) = fF (t1) . . . F (tn)
F ([g/x]x) = g F ([g/x]y) = y F ([g/x]c) = c

F ([g/x]fg1 . . . gn) = fF ([g/x]g1) . . . F ([g/x]gn)
F ([t/x]t′) = F ([F (t)/x]F (t′)) if either t or t′ is not in TFO

where g ∈ TFO, i.e., substitution-free.

We can show that for any t ∈ T, F (t) ∈ TFO.

Remark 2.4 Although [t/x] looks like a function “symbol” at the term level,
it behaves differently. For example, for any (unary) function f , Iσ(x) = Iσ(y)
implies Iσ(fx) ≈ Iσ(fy), but Iσ(x) = Iσ(y) does not imply Iσ([z/x]x) =
Iσ([z/x]y) which is equivalent to Iσ(z) = Iσ(y).

The purpose of F is to execute the syntactic substitutions inside-out and
eventually eliminate the substitutions. It is easy to see that if g ∈ TFO then
F (g) = g. Moreover, given g, g′ ∈ TFO, F ([g/x]g′) is exactly the result of doing
substitution g′(g/x) in the meta-language as in Definition 2.1. The last clause
of F is to handle the nested substitutions. For example:

F ([([f1x/x]f2x)/x]f3x) = F ([F ([f1x/x]f2x)/x]F (f3x))
= F ([f2F ([f1x/x]x)/x]f3F (x))
= F ([f2f1x/x]f3x)
= f3f2f1x

Definition 2.5 (Semantics) The semantics is defined as in standard FOL
with the following clause for the substitution formulas:

A, σ ⊧ [t/x]φ ⇐⇒ A, σ ⊧ Tx,F (t)(φ)

where Tx,g ∶ LFOS ∪TFO → LFOS ∪TFO is defined as follows (g ∈ TFO):
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Tx,g(t1 ≈ t2) = F ([g/x]t1) ≈ F ([g/x]t2)
Tx,g(Pt1 . . . tn) = PF ([g/x]t1)) . . . F ([g/x]tn)

Tx,g(¬φ) = ¬Tx,g(φ)
Tx,g(φ1 ∧ φ2) = Tx,g(φ1) ∧ Tx,g(φ2)

Tx,g(∀yφ) =

⎧⎪⎪⎨⎪⎪⎩

∀yTx,g(φ) if y does not occur in g

∀yφ otherwise

Tx,g([t/y]φ) = Tx,g(Ty,F (t)(φ))

Remark 2.6 As F (t) ∈ TFO thus we only need to define Tx,g for g ∈ TFO. Like
F , Tx,g closely resembles the substitution on FO formulas as in Definition 2.1.
It is not hard to verify Tx,g(α) = α(g/x) when g ∈ TFO and α ∈ LFO. The last
clause of Tx,g shows that we do substitution inside-out.

The tricky part about the semantics is again about nested substitutions,
here is an example (x, y, z are distinct):

A, σ ⊧ [[y/x]fx/x]∀z(Px ∧ ∀yRxyz))
⇐⇒ A, σ ⊧ Tx,F ([y/x]fx)∀z(Px ∧ ∀yRxyz)
⇐⇒ A, σ ⊧ Tx,fy(∀z(Px ∧ ∀yRxyz))
⇐⇒ A, σ ⊧ ∀zTx,fy(Px ∧ ∀yRxyz)
⇐⇒ A, σ ⊧ ∀z(Tx,fy(Px) ∧ Tx,fy(∀yRxyz))
⇐⇒ A, σ ⊧ ∀z(Pfy ∧ ∀yRxyz)

Note that the x in ∀yRxyz is not substituted as Tx,fy(∀yRxyz) = ∀yRxyz

Remark 2.7 Note that unlike F , Tx,g(φ) might not be substitution-free as
Tx,g(∀yφ) = ∀yφ where φ may still contain further substitutions, i.e., if not
substitutable then we just stop, which also echos the spirit behind the standard
substitution in Def. 2.1.

Note that in contrast to the propositional case, if [t/x] is given the same
semantics as the assignment operator [x ∶= t] as in dynamic logic [6], then
the logic is different as the assignment operator can always change the model,
in contrast with the syntactic substitution. To see the difference between the
assignment operator and the substitution operator, consider a simple validity
[y/x]∀yPx ↔ ∀yPx in our setting (as the substitution does nothing), the
corresponding formula [x ∶= y]∀yPx↔ ∀yPx is not valid.

3 Axiom System RFSUB and its Completeness

We define the axiom system RFSUB in Table 3. Note that we no longer have
meta-language substitutions, and the conditions for the axioms can be verified
trivially. There are basically three groups of axioms and rules: the standard
ones for first-order logic, the definition of substitutions (restricted to first-order
terms), and the rules NEC,SUBFORM,SUBTERM taking care of the substitutions
w.r.t. arbitrary terms such that we can rewrite them inside-out. Note that in
SUBFORM and SUBTERM, we require the equality between terms in the premises
to be provable, i.e., ⊢ ([fx/y]y) ≈ fx.
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Axiom Schema α ∈ LFO, g ∈ TFO.
TAUT All propositional logic axiom schemas
ID t ≈ t
SUBF t0 ≈ t′0 ∧ ⋅ ⋅ ⋅ ∧ tn ≈ t′n → ft1 . . . tn ≈ ft′1 . . . t′n
SUBI t0 ≈ t′0 ∧ ⋅ ⋅ ⋅ ∧ tn ≈ t′n → (Pt0 . . . tn ↔ Pt′0 . . . t

′
n)

AK ∀x(φ→ ψ)→ (∀xφ→ ∀xψ)
AG α → ∀xα, if x is not free in α
INS ∀xα → [t/x]α
SSVARE ([g/x]x) ≈ g
SSVARU ([g/x]y) ≈ y, y /= x
SSCONST ([g/x]c) ≈ c
SSFUNC ([g/x]ft0 . . . tk) ≈ f[g/x]t0 . . . [g/x]tk
SSATOM [g/x]Pt0 . . . tk ↔ P [g/x]t0 . . . [g/x]tk
SSNEG [g/x]¬φ↔ ¬[g/x]φ
SSCON [g/x](ψ ∧ χ)↔ ([g/x]ψ ∧ [g/x]χ)
SSQUANU [g/x]∀yφ↔ ∀y[g/x]φ, if y does not occur in g
SSQUANE [g/x]∀yφ↔ ∀yφ, if y occurs in g
Rule

MP
φ,φ→ ψ

ψ
UG

⊢ φ
⊢ ∀xφ

NEC
⊢ φ

⊢ [t/x]φ
SUBFORM

⊢ t ≈ t′

⊢ [t/x]φ↔ [t′/x]φ
SUBTERM

⊢ t ≈ t′

⊢ [t/x]t′′ ≈ [t′/x]t′′

Table 1
RFSUB system

We can show that the above axiom system is sound and complete via a
reduction strategy similar to the one for DEL. We can syntactically reduce each
term/formula by using axioms into a semantically equivalent substitution-free
FO-term/formula. The details are left for the full version of this abstract.

As for future work, we can generalize the substitution operator to simulta-
neous substitutions for a list of variables. Then, it may be possible to compose
sequential substitutions into one. We will also compare the logics based on
different widely used notions of substitution for FOL. Note that the equality
≈ played an important role in our axiomatization in the reduction axioms for
terms. What if we do not have the equality symbol in the language? Moreover,
we can investigate first-order modal logic and propositional quantified modal
logic extended with the corresponding substitution operators.
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1 Virtue Ethics as a Foundation for Deontic Logic

This paper considers the following question: What would deontic logic look like
if the underlying ethical theory was neither consequentialist nor deontological,
but aretaic? 3 That is, our starting point is the Aristotelian idea that virtue
consists in hitting the ‘golden mean’ between a vice of deficiency and a vice
of excess of some characteristic. Upon this foundation, Rosalind Hursthouse
made the first step towards a connection between the aretaic and the deontic:

Definition 1.1 (Criterion of Right Action (CRA)) An action is right iff
it is what a virtuous agent would characteristically (i.e., acting in character)
do in the circumstances [2, p. 28].

There are two advantages to this approach: Basing deontic logic on such a
semantics answers a popular criticism of virtue ethics that it cannot provide
moral guidance [2, p. 30] or that, if it can, the guidance that it does provide
is inherently vague. At the same time, it would provide semantics for deontic
logic with an easily understood interpretation, which is something that other
deontic logics often struggle with.

2 Basic Language and Models

Taking inspiration from Meyer [4] we take a set of atomic propositions P and a
set of atomic actions A and define an action language A which supports atomic
actions (a), parallel execution (α & β), and free choice (α + β). Our models
are labeled transition systems M = ⟨W,R, V ⟩, with the usual definitions. We
define transition relations for action expressions:

Ra := {⟨w, v⟩ ∈W ×W | ⟨w, a, v⟩ ∈ R}
Rα&β := Rα ∩Rβ

Rα+β := Rα ∪Rβ
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2 s.l.uckelman@durham.ac.uk
3 This short paper derives from the undergraduate thesis of the first author, supervised by
the second author.
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This yields a multi-modal language L defined by the following grammar:

φ ::= ⊤ | p | ¬φ | φ ∧ ψ | [α]φ

for which truth conditions are standard.
When adding an aretaic component to these semantics, the central concep-

tual move is to focus on characteristics of agents, which are defined as N -tuples
(where N ∈ N) of characteristics, C, which are (1) ordered, (2) bounded, and (3)
dense. As such, the extent of possession of each characteristic in C is modelled
as a value over the real interval [−1, 1] where the lower bound of −1 represents
limiting deficiency, the upper bound of 1 represents limiting excess, and the
midpoint, 0, represents the ‘golden mean’. Char, a characteristic assignment
function, connects actions to the virtues and vices which they instantiate:

Char :W ×A→ [−1, 1]N

Char takes a world and an atomic action and, for each characteristic in C gives
the extent to which it is expected to have been instantiated in order to manifest
the action in those circumstances. Thus we have a model M = ⟨W,R, V, Char⟩.

3 Strong, Weak, and Composite Obligation

Given the CRA, a virtuous agent would, by nature, do whichever action is the
most balanced between the vices of excess and deficiency. This is equivalent to
the output of the following function:

Definition 3.1 (MinVice) The function MinVice :W → P(A), which takes a
world w and returns the set of executable atomic actions that have the minimum
vice according to the norm of their characteristic assignment (the sum of the
absolute values of their entries), is defined as follows:

MinVice(w) = {a ∈ A | there is a v ∈W such that wRav
and for all b ∈ A where there is a v′ ∈W such that wRbv

′,
||Char(w, a)|| ≤ ||Char(w, b)||}

Due to ambiguities in the interpretation what a virtuous agent ‘would do’, with
maximally-virtuous actions being executed either together or as alternatives,
this affords both strong and weak definitions of obligation respectively:

Definition 3.2 (Strong Obligation)

M, w ⊨ OS(a1 & · · ·& an) iff {a1, · · · , an} ⊆ MinVice(w)
and there is a v ∈W such that wR(a1&···&an)v

Definition 3.3 (Weak Obligation)

M, w ⊨ OW (a1 + · · ·+ an) iff {a1, · · · , an} = MinVice(w)

Both of these definitions track an important part of what obligation means, but
are by themselves insufficient, as each definition is only able to accommodate
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one of the connectives from the action language, whereas we want both. Reflect-
ing on these definitions, it becomes clear that the virtuousness of individual
atomic actions is underdetermined as there are different plausible assignments
based on what the agent does otherwise; consequently, we expand the domain of
Char so that it naturally talks about combinations of atomic actions performed
together:

Char :W × P(A) → [−1, 1]N

This allows us to define a composite definition of obligation, incorporating as-
pects of both weak and strong obligation, for which we need to define two
auxiliary functions. The first takes a world and returns all the sets of atomic
actions that can be jointly executed at that world. The second performs the
equivalent of the MinVice function on these sets — it takes a world and re-
turns all the sets of jointly-executable actions which together are assigned the
minimal characteristic norm at that world:

Definition 3.4 The function ActComplex :W → P(P(A)) is defined as

ActComplex(w) = {{a1, · · · , an} ∈ P(A) | there is a v ∈W
such that wR(a1&···&an)v}

Definition 3.5 The function MinViceComplex : W → P(P(A)) (abbreviated
MVC) is defined as:

MVC(w) = {a ∈ ActComplex(w) | for all b ∈ ActComplex(w),
||Char(w,a)|| ≤ ||Char(w, b)||}

The bold type used above indicates sets of atomic actions. We also introduce
a normal form representation for action expressions, which we’ll use to define
truth conditions for the composite obligation of arbitrary action expressions:

Definition 3.6 (Choice Normal Form) An action expression in A is in
Choice Normal Form if it is of the form

((a11 & · · ·& a1n1
) + · · ·+ (am1 & · · ·& amnm

)).

The following lemmas are used to prove that all action expressions can be
represented in Choice Normal Form (proofs of these are straightforward and
omitted due to reasons of space):

Lemma 3.7 Parallel execution is distributive over choice.

Lemma 3.8 Parallel execution is associative.

Lemma 3.9 Choice is associative.

Lemma 3.10 Any action expression in A is equivalent to one in Choice Nor-
mal Form.

We then define a composite obligation by lifting weak obligation to the level
of parallel-executed atomic actions rather than mere atomic actions:
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Definition 3.11 (Composite Obligation) Let α := ((a11& · · ·&a1n1
)+ · · ·+

(am1 & · · ·& amnm
)) be in Choice Normal Form. Then:

M, w ⊨ O(α) iff {{a11, · · · , a1n1
}, · · · , {am1 , · · · , amnm

}}
= MVC(w)

This definition brings together the benefits of both strong and weak obligation.
It also forces us to take a more restricted reading of the obligation operator,
which may at first seem unnatural — every mention of an action complex inside
an obligatory choice must be prefixed with the words ‘just ’ or ‘only ’. That is
to say, free choice is to be interpreted as strictly exclusive such that O(α+ β)
means ‘You ought to do either just α or just β’. This does not diminish the
expressivity of the language, however, because the joint action can always be
included as a third choice such as in O(α+ β + (α& β)).

4 Permission and Prohibition

In traditional deontic logics, obligation often is taken as primitive whilst per-
mission is defined as its dual. Since we do not have action negation, it is
not possible to define permission in this way. Instead, we treat permission as
an independent, primitive operator — one which, nevertheless, still validates
P (α+β) → P (α)∧P (β) (items in a permissible choice must all be individually
permissible) and, at least at first, O(α) → P (α) (what is obligatory is per-
missible). The eventual rejection of this latter premise will become a central
philosophical point. We consider several natural ways to define permission:

Permission as thresholding.

M, w ⊨ P 1(a) iff ||Char(a)|| ≤ k ×N

where k ∈ [0, 1] is a user-defined threshold constant which determines the
relative region of permissibility; k is then scaled by the maximum possible
norm N (i.e. the size of the characteristic vector). This approach is motivated
by the suggestion that virtuous agents are still fallible [6, p. 146]. However,
this is arguably at odds with virtue ethics in terms of psychology.

Permission as virtue in development. Rather than having a region
of actions which are simply ‘good enough’, we can consider the permissible
as forming the realm of virtue in development — the idea being that on a
virtue ethical account, the end goal is to become a perfectly virtuous agent,
so an act is permitted if it contributes to the development of an agent’s virtue
towards that end of being perfectly virtuous. In other words, one often must
pass through stages of imperfection to arrive at virtue:

M, w ⊨ P 2(a1 & · · ·& an) iff there is some {b1, · · · , bm} ∈ MVC(w)
such that {a1, · · · , an} ⊆ {b1, · · · , bm}

M, w ⊨ P 3(a1 & · · ·& an) iff there is some {b1, · · · , bm} ∈ MVC(w)
such that {a1, · · · , an} ∩ {b1, · · · , bm} ≠ ∅
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P 2 begins to capture the idea of virtue in development, but is biased in favour
of agents who are apathetic. P 3 fixes this asymmetry, but at the cost of being
far too permissive. This leads us to our final possibility.

Improvement-based Permission. In order to give a good account of per-
mission as virtue in development, we need representations of different agents’
individual characteristics so that we can determine which actions for them
count as a ‘development’ and which ones lead them further away from virtue
than they already are. Let AgentChar ∈ [−1, 1]N be a vector which repre-
sents the characteristics that the agent actually possesses. If all elements of
AgentChar are zero then they are a perfectly virtuous agent. Our final defini-
tion claims that all actions on the agent’s path towards virtue are permitted:

Definition 4.1 (Improvement-based Permission)

M, w ⊨ P (α) iff ((a11 & · · ·& a1n1
) + · · ·+ (am1 & · · ·& amnm

))
is the Choice Normal Form of α
and for all a ∈ {{a11, · · · , a1n1

}, · · · , {am1 , · · · , amnm
}}

and all i ∈ [[1, N ]], |Char(w,a)i| ≤ |AgentChari|

This makes permission a relative concept whilst keeping obligation fixed for
all agents, and divorces permission from obligation to the extent that O(α) →
P (α) is no longer a theorem. We claim that obligation and permission demon-
strate two distinct connections between virtue and the justification of actions
— obligatory actions are justified as immediate manifestations of virtue whilst
permissible actions are justified as contributions to the cultivation of virtue
over a longer time scale. As such, our logic exposes the reality of cases when
an agent’s impermissible obligations will inevitably harm their moral character.

To complete the set of deontic operators, we can now use propositional negation
to define prohibition (denoted by F for ‘forbid’) similar to the way it is done
traditionally but now excluding both obligation and permission due to their
independence, as F (α) := ¬P (α) ∧ ¬O(α).

5 Conditional Obligation

To illustrate the potential our system has for expressive extensions, we consider
obligations that are conditional on either some aspect of a state of affairs or
partially specified actions. Dyadic deontic logics such as Hansson’s DSDL3 [5]
accommodate the former kind of conditional obligations by giving the deontic
operators a second propositional parameter that serves as the conditions. The
notation is inspired by conditional probability in the sense that ‘It is obligatory
that φ given ψ’ is written as O(φ|ψ) [3] and the system works as follows:

“Hansson presents a possible worlds semantics in which all worlds are ordered
by a preference (betterness) relation. O(φ|ψ) is then defined true if φ is true
in the best ψ-worlds.” [1]

In our system, however, it is actions which are subject to a preference ordering
rather than worlds. It is quite clear that a ψ-world is a world where ψ is true,
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but what is a ψ-action? It seems reasonable to suggest that we resolve this
ambiguity by turning to alethic modalities. This gives us four types of con-
ditions: necessary consequence; possible consequence; atomic action inclusion;
and atomic action exclusion. In Definition 5.3 these are denoted using box,
diamond, plus, and minus symbols respectively, with the former two applied to
a formulae of L and the latter two applied to sets of atomic actions.

Definition 5.1 The function CondActComplex :W ×L×L×P(A)×P(A) →
P(P(A)) is defined as

CondActComplex (w,φ, ψ, c,d) = {{a1, · · · , an} ∈ P(A) |
c ⊆ {a1, · · · , an}
and d ∩ {a1, · · · , an} = ∅
and there is a v ∈W such that wR(a1&···&an)v and M, v ⊨ ψ
and for all v′ ∈W such that wR(a1&···&an)v

′, M, v′ ⊨ φ }

Definition 5.2 The function CondMVC :W ×L×L×P(A)×P(A) → P(P(A))
is defined as

CondMVC(w,φ, ψ, c,d) = { a ∈ CondActComplex(w,φ, ψ, c,d) |
for all b ∈ CondActComplex(w,φ, ψ, c,d),

||Char(w,a)|| ≤ ||Char(w,b)|| }

Definition 5.3 (Conditional Obligation)

M, w ⊨ O(α |2φ,3ψ,+{c1, · · · , cl+},−{d1, · · · , dl−})
iff ((a11 & · · ·& a1n1

) + · · ·+ (am1 & · · ·& amnm
))

is the Choice Normal Form of α
and {{a11, · · · , a1n1

}, · · · , {am1 , · · · , amnm
}}

= CondMVC(w,φ, ψ, {c1, · · · , cl+}, {d1, · · · , dl−})

We have found in our wider exploration that this conditional notation supports
the expression of sophisticated moral affairs, such as contrary-to-duty obliga-
tions. Empty or trivial conditions may be omitted to streamline the notation;
in the most extreme case we have that O(α) ≜ O(α |2⊤,3⊤,+∅,−∅), which
behaves exactly the same as the composite obligation from Definition 3.11.

6 Conclusion and Future work

The primary contributions of this paper are (1) providing a semantics for deon-
tic logic rooted in Aristotelian virtue ethics and (2) three definitions of deontic
operators using these semantics. The semantics presented here generate dis-
tinctively few theorems to connect propositional and deontic operators; this is
a strength in disguise as such theorems have often been the downfall of other
deontic logics where, for example, trivial disjunctions permit diabolical choices.
In the wider work that this short paper is based on, we also explored dynami-
cally updating an agent’s virtue profile to model virtue acquisition and its effect
on deontic statements. Other areas we considered for future work include (1)
expanding our semantics to virtue epistemology [7]; (2) integration with a logic
of norms [1]; (3) multi-agent models; (4) modelling virtue with neural networks.
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