Computational Aspects of Psychometric Methods. With R
- Statistical models and estimation methods involved in psychometric research
- Includes reproducible R code and examples with real datasets
- Interactive implementation in ShinyItemAnalysis application
Errata
First edition
Page 57: In "The graphical visualization of the calculation of this tetrachoric correlation coefficient, similar to Figure 3.1, may be obtained using the draf.tetra() function of the psych package"
should be: "using the draw.tetra() function of the psych package"
Page 98: model1 <- lmer(Score ~ 1 + (1|ID), data = AIBS, REML = TRUE))
should be: model1_REML <- lmer(Score ~ 1 + (1|ID), data = AIBS, REML = TRUE)
Page 107: (G_pxi <- hemp::gstudy(fit_2wayr))
should be: (G_pxi <- hemp::gstudy(model2_REML))
Page 180: fit_rasch_TAM2 <- tam.mml(resp = HCI[, 1:20], model = "Rasch")
should be: fit_rasch_TAM2 <- tam.mml(resp = HCI[, 1:20], irtmodel = "Rasch")
Page 201: CZmathS <- CZmaturaS[, grepl("^b", names(CZmatura))]
should be: CZmathS <- CZmaturaS[, grepl("^b", names(CZmaturaS))]
Thanks to Chen Jiexin and Andreas Kurz.