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Classical Planning
 Given

− Deterministic, fully 
observable and static 
environment

− Actions with defined 
preconditions and effects  
(or operators whose 
instances are actions)

− Initial state
− Goal predicates

 We want
− find a sequence of 

actions transforming the 
state from the initial state 
to the goal state = plan
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Motivation for Learning
 Huge complexity (up to EXPSPACE-complete – 

considering classical representation)
 Planners do not care about plan structures of 

previously generated plans
 Plan analysis may reveal useful knowledge (for 

instance, Macro-Operators, connections between 
operators' predicates and initial or goal predicates)

 Knowledge can be passed directly to domains 
allowing a usage of the best existing planners



  

Dependencies between actions
 Straight dependency

− Earlier action provided some predicate(s) to the given 
action (the last one)

 Dependency
− Transitive closure of straight dependency

 Independency
− Not dependent, the later action does not delete 

precondition predicates the earlier one, the earlier action 
does not delete positive effects the later one 

− Allows the adjacent actions to swap
− Not necessarily complementary to the dependency 

relation



  

Action dependencies - example



  

Usage of action dependencies
 Decomposition to subplans and subproblems
 Plan Optimization (detecting and removing 

actions not necessary to reach goal, inverse 
actions)

 Detection and generation of Macro-
operators



  

Macro-actions and Macro-
operators

 Primitive actions can be assembled into one 
single action – macro-action

 Assemblage of actions ai and aj into ai,j:
− p(ai,j)  =  p(ai)∪(p(aj) – e+(ai)) 
− e-(ai,j) =  (e-(ai)∪e-(aj)) – e+(aj) 
− e+(ai,j) =  (e+(ai)∪e+(aj)) – e-(aj)

 Macro-actions are Macro-operators' instances



  

Identifying actions that can be 
assembled – the main idea

 Adjacent actions can be easily assembled 
without loss of plans validity

 Intermediate actions can be moved before 
(respectively behind) selected actions to 
make them adjacent

 Recall that independent adjacent actions 
can be swapped



  

Identifying actions that can be 
assembled – algorithm sketch

Four different situations for moving the 
intermediate actions (grey-filled) before or after 
one of the boundary actions (black-filled).



  

Matrix of Candidates for 
becoming Macro-operators
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LIFT(H,C,S,P) / 5 5 (H,C,P)
LOAD(H,C,T,P) / 5 1 (H,P) 2 (H,T,P)
DRIVE(T,P1,P2) / 5 2 (T,P2) 3 (T,P2)
UNLOAD(H,C,T,P) / 5 5 (H,C,P)
DROP(H,C,S,P) / 5

Matrix contains a number of pairs of instances of particual operators 
(including shared arguments) that can be assembled in training plans 



  

Inequality constraints

• Sometimes macro-actions, where some 
assigned arguments equal, are not valid 
(cannot be unfolded)

• Can be detected by simulating performance 
of primitive actions

(:action pickup_stack
    :parameters (?x ?y)
    :precondition (and (clear ?x)(ontable ?x)(handempty)(clear ?y))
    :effect (and (clear ?x)(on ?x ?y)(handempty)
            (not (ontable ?x))(not (holding ?x))(not (clear ?y)) )
  )



  

Generation of Macro-operators
 Repeat

− Create-Matrix
− If Select-Candidate then

 Assign Inequality Constraints
 Create-Macro-Operator
 Update-Plans

− EndIf
 Until not candidate-selected



  

Selection criteria
 Operators whose instances usually 

appear (or can appear) consecutively
 Number of assemblages regarding the 

total training plans length is not too low
 Number of arguments of generated 

macro-operators is not too high



Experimental evaluation – an 
approach

 Generate training plans by SGPLAN and 
SATPLAN

 Generate Macro-operators, remove replaced 
primitive operators and reformulate the 
domains 

 Run the planners (SATPLAN, SGPLAN, 
LAMA) both on the original domains and on the 
reformulated domains and compare results.



  

Experimental results (fragment)

SATPLAN

  time (in sec) plan length

  orig upd-SAT upd-SG orig upd-SAT upd-SG

gripper8 >600 8,14 0,03 NA 53 71

gripper9 >600 12,86 0,06 NA 59 79

gripper10>600 19,78 0,04 NA 65 87

gripper11>600 err 0,07 NA err 95

gripper12>600 err 0,06 NA err 103

SGPlan

time (in sec) plan length

orig upd-SG upd-SAT orig upd-SG upd-SAT

Blocks14-0 >600 0,03 0,03 NA 48 48

Blocks14-1 >600 0,03 0,03 NA 44 44

Blocks15-0 >600 0,32 0,32 NA 88 88

Blocks15-1 179,84 0,05 0,05 114 54 54

depots1817 24,56 15,52 20,71 100 104 94

depots4534 >600 0,53 54,71 NA 112 110

depots5656 410,94 0,32 7,70 133 132 82

depots7615 8,48 1,88 2,14 98 102 91



  

Experimental results (fragment)
LAMA

  time (in sec) plan length

orig upd-SG upd-SAT orig upd-SG upd-SAT

depots1817 >600 93,68 >600 NA 122 NA

depots4534 243,61 1,39 9,81 122 67 107

depots5656 >600 0,53 7,70 NA 70 98

depots7615 >600 5,71 61,61 NA 77 78

goldminer-7x7-06 0,22 0,04 0,03 170 31 31

goldminer-7x7-07 0,04 0,04 0,03 65 34 65

goldminer-7x7-08 >600 0,03 0,03 NA 25 26

goldminer-7x7-09 0,14 0,04 0,03 130 29 32

goldminer-7x7-10 0,30 0,04 0,03 176 31 43



  

Discussion

 Removing of primitive operators did not 
affected the solvability of the given problems

 Macro-operators were mostly combined from 
two primitive operators

 Running time were often better in updated 
domains, plan quality sometimes significantly 
better (surprisingly)

 Success of the method depends on kinds of 
domains and particular planners



  

Eliminating unnecessary actions 
 Planners must consider many useless actions
 Existing techniques focus mainly on pruning 

unreachable actions 
 In many cases there exists a connection 

between operators’ instances and initial or 
goal predicates



Entangelement and full 
entanglement

 An operator is entangled by init (goal) with a 
predicate in the given problem if there exists 
plan, where every instance of the operator is 
such that the corresponding instance of the 
predicate in the precondition (positive effects) 
is also present in the set of initial (goal) 
predicates

 Full entanglement extends entanglement for 
every solvable planning problem in the given 
domain
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init goal

on(B,A) on(A,B)

Unstack(X,Y) = 
{ {on(X,Y),clear(X),handempty} //prec
   {on(X,Y),clear(X),handempty} //neg eff
   {holding(X),clear(Y)} } //pos eff

Stack(X,Y) = 
{ {holding(X),clear(Y)} //prec
   {holding(X),clear(Y)} //neg eff
   {on(X,Y),clear(X),handempty} //pos eff
}

Fully 
entangled 
by init 

Fully 
entangled 
by goal



Set of compatible full 
entanglements

 Every full entanglement 
somehow restricts the set of 
feasible plans (if non-static 
predicate involved)

 Full entanglements are 
compatible if for every 
solvable problems there 
remains (after all restrictions) 
at least one feasible plan (for 
instance – ent1, ent2, ent3)

plans

ent4



Reformulating domains and 
problems

 Each static predicate is fully entangled by init
 If operator o is fully entangled by init (goal) with 

non-static predicate p, then
− Create new static predicate p’
− Add p’ to the precondition of o
− If an instance of p is in the initial state (goal predicates), 

then add the corresponding instance of p’ to the initial 
state 

(:action unstack
  :parameters  (?x ?y - block)
  :precondition (and (on ?x ?y) (clear ?x) (emptyhand) (stai_on ?x ?y))
  :effect (and (holding ?x) (clear ?y)
               (not (on ?x ?y)) (not (clear ?x)) (not (emptyhand))))



Heuristic detection of the 
(compatible) full entaglements

 All the detected entanglements in all the 
training plans ⇒ set of the full entanglements

 The algorithm is testing if the conditions of 
entanglement are satisfied in for every 
operator instance and the corresponding 
predicate. 



‘flaws’ ratio

 ‘flaws’ ratio – ratio between the number of 
operator’s instances, where the 
entanglement is broken, and the total number 
of operator’s instances in all the training 
plans

 It weakens the previous heuristics
 It is because planners do not provide optimal 

plans at all



Setting the ‘flaws’ ratio

1. set flaws to n according to our experiments we suggest 
starting with n = 0.1

2. generate the entanglements by the modified algorithm using 
`flaws` ratio flaws

3. compare the generated entanglements to the entanglements 
obtained by the original algorithm (without `flaws`). If same 
then quit 

4. generate a reformulated domain and reformulated training 
problems

5. run the planner on all the reformulated training problems. If 
succeed then quit. Otherwise decrease flaws by 0.01 and go 
to the second step.



Experimental evaluation - 
approach

 Generate training plans by SATPLAN
 Generate reformulated domains and 

problems considering the detected 
entanglements

 Run the planners (SATPLAN, SGPLAN, 
LAMA) both on the original problems and on 
the reformulated problems and compare 
results.



Learning phase

The table shows how many unary and binary 
predicates were added and how many times 
they were added to operators’ preconditions (in 
brackets).



Time comparison (only a 
fragment)

Problem orig ref - no fr ref - w fr
matching-bw-n15a 27,81 19,93 1,95
matching-bw-n15b 34,25 10,18 1,37
matching-bw-n15c 26,80 9,39 1,20
matching-bw-n15d 40,74 14,41 1,45
matching-bw-n15e 59,00 14,62 1,73
matching-bw-n20a >600 189,75 15,00
matching-bw-n20b 245,12 54,35 4,39
matching-bw-n20c 363,36 60,94 5,62
matching-bw-n20d 195,87 43,04 4,31
parking-a >600 399,11 -
parking-b >600 98,13 -
parking-c 304,47 17,68 -
parking-d >600 >600 -
parking-e >600 167,20 -

time (in sec)
SATPLAN

Problem orig ref - no fr ref - w fr
matching-bw-n15a >600 >600 0,25
matching-bw-n15b >600 >600 170,39
matching-bw-n15c >600 20,89 284,65
matching-bw-n15d >600 >600 >600
matching-bw-n15e >600 >600 47,17
matching-bw-n20a >600 >600 >600
matching-bw-n20b >600 >600 0,35
matching-bw-n20c >600 533,89 237,64
matching-bw-n20d >600 10,40 >600

SGPLAN
time (in sec)

Problem orig ref - no fr ref - w fr
depotprob1817 331,03 95,94 3,64
depotprob1916 1,7 0,58 0,14
depotprob4321 4,96 3,69 0,03
depotprob4398 0,23 0,1 0,03
depotprob5646 0,17 0,07 0,02
depotprob5656 >600 >600 3,42
depotprob6178 11,66 6,06 0,06
depotprob6587 0,43 0,19 0,05
depotprob7654 1,48 46,58 12,41
depotprob8715 1,66 0,54 0,17

LAMA
time (in sec)



Plan lengths comparison (only a 
fragment)

Problem orig ref - no fr ref - w  fr
gold-miner-7x7-01 176 31 -
gold-miner-7x7-02 161 28 -
gold-miner-7x7-03 257 32 -
gold-miner-7x7-04 130 41 -
gold-miner-7x7-05 157 39 -
gold-miner-7x7-06 182 33 -
gold-miner-7x7-07 65 34 -
gold-miner-7x7-08 N/A 25 -
gold-miner-7x7-09 130 29 -
gold-miner-7x7-10 176 31 -
storage_11 32 20 -
storage_12 32 20 -
storage_13 38 20 -
storage_14 32 24 -
storage_15 22 20 -

LAMA
plan length

Problem orig ref - no fr ref - w  fr
depotprob1817 100 99 95
depotprob1916 83 N/A 57
depotprob4321 41 35 34
depotprob4398 28 28 28
depotprob5646 26 26 28
depotprob5656 133 70 62
depotprob6178 48 48 37
depotprob6587 28 26 24
depotprob7654 35 33 33
depotprob8715 34 34 36

SGPLAN
plan length



Discussion
 SATPLAN’s running times on reformulated problems were 

almost always better
 SGPLAN’s and LAMA’s running times on reformulated 

problems were occasionally much worse
 Plans quality on reformulated problems were usually the 

same or slightly better (except gold-miner and storage 
(LAMA) – significantly better, parking (SGPLAN) – 
significantly worse)

 All reformulated problems were solvable except two 
thoughtful ones



Putting together
 Macro-operators serve like `shortcuts` in 

planning process
 Macro-operators have many instances – high 

branching factor
 Entanglements can be inherited from primitive 

operators
 Elimination of actions via entanglements 

should be helpful



Entanglements and Macro-
operators

 If a primitive operator o is fully entangled (by 
init or goal) with a predicate p ⇒ a macro-
operator m where o is included in m is also 
fully entangled (by init or goal) with a predicate 
p (if present in o)



Experimental evaluation - 
approach

 `Merge` domains reformulated by macro-
operators and entanglements

 Run the planners (SATPLAN, SGPLAN, 
LAMA) both on the original problems and on 
the reformulated problems and compare 
results.



Number of reachable actions (in 
average)

Domain Macro Entanglements Both

Depots 266% 20% 7%

Zeno 85% 85% 70%

Gold-miner 108% 96% 76%



Experimental results (a fragment)
SATPLAN LAMA

Time (in secs) Time (in secs)

Problem orig macro ent both orig macro ent both

depotprob1817 >600 err >600 >600 331.11 93.68 3.68 0.12

depotprob1916 137.85 err 5.36 0.62 1.74 2.46 0.14 0.05

depotprob4321 5.25 2.07 0.46 0.02 4.94 0.25 0.03 0.01

depotprob4398 1.11 2.76 0.29 0.03 0.23 0.41 0.03 0.01

depotprob4534 >600 err >600 218.62 362.81 1.39 5.86 0.02

depotprob5646 0.38 6.08 0.09 0.14 0.17 0.25 0.02 0.00

depotprob5656 222.28 143.33 5.92 1.10 >600 0.53 3.41 0.02

depotprob6178 6.92 26.11 1.49 0.19 11.61 1.44 0.06 0.02

depotprob6587 3.36 19.02 0.59 0.08 0.42 0.98 0.05 0.02

depotprob7615 >600 err >600 >600 >600 5.71>600 0.06

depotprob7654 10.08 16.45 1.41 0.11 1.45 0.59 12.32 0.01

depotprob8715 36.04 err 8.70 0.96 1.65 6.35 0.17 0.04

depotprob9876 >600 err >600 67.86 580.18 1.27 0.19 0.02



Discussion
 Combining Macro-operators and 

Entanglements brought benefits as we 
expected

 In occasional cases the results were much 
worse (SGPLAN)



Open Issues
 Losing completeness (reformulated 

problems might become unsolvable) – find 
more theoretical aspects

 Better cooperation of the presented learning 
methods (+ some other methods maybe)

 Bypass the necessity of defining selection 
criteria for Macro-operator generation

 Extend the methods for non-classical planning 
(ADL, time, uncertainty etc.)



Conclusions
 Learning for planning seems to be a 

reasonable way to improve the planning 
process

 Presented methods showed that the 
improvement can be significant

 There is still a lot to do !
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