

Learning for Classical Planning

Mgr. Lukáš Chrpa, Ph.D.

Seminar AI 11.3.2010

Outline
 Introduction

− Classical Planning
− Motivation for learning

 Contributions
− Analysis of action dependencies and

independencies in plans
− Generation of Macro-operators
− Eliminating unnecessary operators' instances
− Putting together

 Conclusions & Future research plans

Classical Planning
 Given

− Deterministic, fully
observable and static
environment

− Actions with defined
preconditions and effects
(or operators whose
instances are actions)

− Initial state
− Goal predicates

 We want
− find a sequence of

actions transforming the
state from the initial state
to the goal state = plan

A

B

B

A

A

B

A B B

A

unstack(B,A)

pickup(A) stack(A,B)

pu
tdo

wn(B
)

Motivation for Learning
 Huge complexity (up to EXPSPACE-complete –

considering classical representation)
 Planners do not care about plan structures of

previously generated plans
 Plan analysis may reveal useful knowledge (for

instance, Macro-Operators, connections between
operators' predicates and initial or goal predicates)

 Knowledge can be passed directly to domains
allowing a usage of the best existing planners

Dependencies between actions
 Straight dependency

− Earlier action provided some predicate(s) to the given
action (the last one)

 Dependency
− Transitive closure of straight dependency

 Independency
− Not dependent, the later action does not delete

precondition predicates the earlier one, the earlier action
does not delete positive effects the later one

− Allows the adjacent actions to swap
− Not necessarily complementary to the dependency

relation

Action dependencies - example

Usage of action dependencies
 Decomposition to subplans and subproblems
 Plan Optimization (detecting and removing

actions not necessary to reach goal, inverse
actions)

 Detection and generation of Macro-
operators

Macro-actions and Macro-
operators

 Primitive actions can be assembled into one
single action – macro-action

 Assemblage of actions ai and aj into ai,j:
− p(ai,j) = p(ai)∪(p(aj) – e+(ai))
− e-(ai,j) = (e-(ai)∪e-(aj)) – e+(aj)
− e+(ai,j) = (e+(ai)∪e+(aj)) – e-(aj)

 Macro-actions are Macro-operators' instances

Identifying actions that can be
assembled – the main idea

 Adjacent actions can be easily assembled
without loss of plans validity

 Intermediate actions can be moved before
(respectively behind) selected actions to
make them adjacent

 Recall that independent adjacent actions
can be swapped

Identifying actions that can be
assembled – algorithm sketch

Four different situations for moving the
intermediate actions (grey-filled) before or after
one of the boundary actions (black-filled).

Matrix of Candidates for
becoming Macro-operators

LI
FT

(H
,C

,S
,P

)

LO
AD

(H
,C

,T
,P

)

DR
IV

E(
T,

P1
,P

2)

UN
LO

AD
(H

,C
,T

,P
)

DR
O

P(
H,

C,
S,

P)

LIFT(H,C,S,P) / 5 5 (H,C,P)
LOAD(H,C,T,P) / 5 1 (H,P) 2 (H,T,P)
DRIVE(T,P1,P2) / 5 2 (T,P2) 3 (T,P2)
UNLOAD(H,C,T,P) / 5 5 (H,C,P)
DROP(H,C,S,P) / 5

Matrix contains a number of pairs of instances of particual operators
(including shared arguments) that can be assembled in training plans

Inequality constraints

• Sometimes macro-actions, where some
assigned arguments equal, are not valid
(cannot be unfolded)

• Can be detected by simulating performance
of primitive actions

(:action pickup_stack
 :parameters (?x ?y)
 :precondition (and (clear ?x)(ontable ?x)(handempty)(clear ?y))
 :effect (and (clear ?x)(on ?x ?y)(handempty)
 (not (ontable ?x))(not (holding ?x))(not (clear ?y)))
)

Generation of Macro-operators
 Repeat

− Create-Matrix
− If Select-Candidate then

 Assign Inequality Constraints
 Create-Macro-Operator
 Update-Plans

− EndIf
 Until not candidate-selected

Selection criteria
 Operators whose instances usually

appear (or can appear) consecutively
 Number of assemblages regarding the

total training plans length is not too low
 Number of arguments of generated

macro-operators is not too high

Experimental evaluation – an
approach

 Generate training plans by SGPLAN and
SATPLAN

 Generate Macro-operators, remove replaced
primitive operators and reformulate the
domains

 Run the planners (SATPLAN, SGPLAN,
LAMA) both on the original domains and on the
reformulated domains and compare results.

Experimental results (fragment)

SATPLAN

 time (in sec) plan length

 orig upd-SAT upd-SG orig upd-SAT upd-SG

gripper8 >600 8,14 0,03 NA 53 71

gripper9 >600 12,86 0,06 NA 59 79

gripper10>600 19,78 0,04 NA 65 87

gripper11>600 err 0,07 NA err 95

gripper12>600 err 0,06 NA err 103

SGPlan

time (in sec) plan length

orig upd-SG upd-SAT orig upd-SG upd-SAT

Blocks14-0 >600 0,03 0,03 NA 48 48

Blocks14-1 >600 0,03 0,03 NA 44 44

Blocks15-0 >600 0,32 0,32 NA 88 88

Blocks15-1 179,84 0,05 0,05 114 54 54

depots1817 24,56 15,52 20,71 100 104 94

depots4534 >600 0,53 54,71 NA 112 110

depots5656 410,94 0,32 7,70 133 132 82

depots7615 8,48 1,88 2,14 98 102 91

Experimental results (fragment)
LAMA

 time (in sec) plan length

orig upd-SG upd-SAT orig upd-SG upd-SAT

depots1817 >600 93,68 >600 NA 122 NA

depots4534 243,61 1,39 9,81 122 67 107

depots5656 >600 0,53 7,70 NA 70 98

depots7615 >600 5,71 61,61 NA 77 78

goldminer-7x7-06 0,22 0,04 0,03 170 31 31

goldminer-7x7-07 0,04 0,04 0,03 65 34 65

goldminer-7x7-08 >600 0,03 0,03 NA 25 26

goldminer-7x7-09 0,14 0,04 0,03 130 29 32

goldminer-7x7-10 0,30 0,04 0,03 176 31 43

Discussion

 Removing of primitive operators did not
affected the solvability of the given problems

 Macro-operators were mostly combined from
two primitive operators

 Running time were often better in updated
domains, plan quality sometimes significantly
better (surprisingly)

 Success of the method depends on kinds of
domains and particular planners

Eliminating unnecessary actions
 Planners must consider many useless actions
 Existing techniques focus mainly on pruning

unreachable actions
 In many cases there exists a connection

between operators’ instances and initial or
goal predicates

Entangelement and full
entanglement

 An operator is entangled by init (goal) with a
predicate in the given problem if there exists
plan, where every instance of the operator is
such that the corresponding instance of the
predicate in the precondition (positive effects)
is also present in the set of initial (goal)
predicates

 Full entanglement extends entanglement for
every solvable planning problem in the given
domain

A

B

B

A

init goal

on(B,A) on(A,B)

Unstack(X,Y) =
{ {on(X,Y),clear(X),handempty} //prec
 {on(X,Y),clear(X),handempty} //neg eff
 {holding(X),clear(Y)} } //pos eff

Stack(X,Y) =
{ {holding(X),clear(Y)} //prec
 {holding(X),clear(Y)} //neg eff
 {on(X,Y),clear(X),handempty} //pos eff
}

Fully
entangled
by init

Fully
entangled
by goal

Set of compatible full
entanglements

 Every full entanglement
somehow restricts the set of
feasible plans (if non-static
predicate involved)

 Full entanglements are
compatible if for every
solvable problems there
remains (after all restrictions)
at least one feasible plan (for
instance – ent1, ent2, ent3)

plans

ent4

Reformulating domains and
problems

 Each static predicate is fully entangled by init
 If operator o is fully entangled by init (goal) with

non-static predicate p, then
− Create new static predicate p’
− Add p’ to the precondition of o
− If an instance of p is in the initial state (goal predicates),

then add the corresponding instance of p’ to the initial
state

(:action unstack
 :parameters (?x ?y - block)
 :precondition (and (on ?x ?y) (clear ?x) (emptyhand) (stai_on ?x ?y))
 :effect (and (holding ?x) (clear ?y)
 (not (on ?x ?y)) (not (clear ?x)) (not (emptyhand))))

Heuristic detection of the
(compatible) full entaglements

 All the detected entanglements in all the
training plans ⇒ set of the full entanglements

 The algorithm is testing if the conditions of
entanglement are satisfied in for every
operator instance and the corresponding
predicate.

‘flaws’ ratio

 ‘flaws’ ratio – ratio between the number of
operator’s instances, where the
entanglement is broken, and the total number
of operator’s instances in all the training
plans

 It weakens the previous heuristics
 It is because planners do not provide optimal

plans at all

Setting the ‘flaws’ ratio

1. set flaws to n according to our experiments we suggest
starting with n = 0.1

2. generate the entanglements by the modified algorithm using
`flaws` ratio flaws

3. compare the generated entanglements to the entanglements
obtained by the original algorithm (without `flaws`). If same
then quit

4. generate a reformulated domain and reformulated training
problems

5. run the planner on all the reformulated training problems. If
succeed then quit. Otherwise decrease flaws by 0.01 and go
to the second step.

Experimental evaluation -
approach

 Generate training plans by SATPLAN
 Generate reformulated domains and

problems considering the detected
entanglements

 Run the planners (SATPLAN, SGPLAN,
LAMA) both on the original problems and on
the reformulated problems and compare
results.

Learning phase

The table shows how many unary and binary
predicates were added and how many times
they were added to operators’ preconditions (in
brackets).

Time comparison (only a
fragment)

Problem orig ref - no fr ref - w fr
matching-bw-n15a 27,81 19,93 1,95
matching-bw-n15b 34,25 10,18 1,37
matching-bw-n15c 26,80 9,39 1,20
matching-bw-n15d 40,74 14,41 1,45
matching-bw-n15e 59,00 14,62 1,73
matching-bw-n20a >600 189,75 15,00
matching-bw-n20b 245,12 54,35 4,39
matching-bw-n20c 363,36 60,94 5,62
matching-bw-n20d 195,87 43,04 4,31
parking-a >600 399,11 -
parking-b >600 98,13 -
parking-c 304,47 17,68 -
parking-d >600 >600 -
parking-e >600 167,20 -

time (in sec)
SATPLAN

Problem orig ref - no fr ref - w fr
matching-bw-n15a >600 >600 0,25
matching-bw-n15b >600 >600 170,39
matching-bw-n15c >600 20,89 284,65
matching-bw-n15d >600 >600 >600
matching-bw-n15e >600 >600 47,17
matching-bw-n20a >600 >600 >600
matching-bw-n20b >600 >600 0,35
matching-bw-n20c >600 533,89 237,64
matching-bw-n20d >600 10,40 >600

SGPLAN
time (in sec)

Problem orig ref - no fr ref - w fr
depotprob1817 331,03 95,94 3,64
depotprob1916 1,7 0,58 0,14
depotprob4321 4,96 3,69 0,03
depotprob4398 0,23 0,1 0,03
depotprob5646 0,17 0,07 0,02
depotprob5656 >600 >600 3,42
depotprob6178 11,66 6,06 0,06
depotprob6587 0,43 0,19 0,05
depotprob7654 1,48 46,58 12,41
depotprob8715 1,66 0,54 0,17

LAMA
time (in sec)

Plan lengths comparison (only a
fragment)

Problem orig ref - no fr ref - w fr
gold-miner-7x7-01 176 31 -
gold-miner-7x7-02 161 28 -
gold-miner-7x7-03 257 32 -
gold-miner-7x7-04 130 41 -
gold-miner-7x7-05 157 39 -
gold-miner-7x7-06 182 33 -
gold-miner-7x7-07 65 34 -
gold-miner-7x7-08 N/A 25 -
gold-miner-7x7-09 130 29 -
gold-miner-7x7-10 176 31 -
storage_11 32 20 -
storage_12 32 20 -
storage_13 38 20 -
storage_14 32 24 -
storage_15 22 20 -

LAMA
plan length

Problem orig ref - no fr ref - w fr
depotprob1817 100 99 95
depotprob1916 83 N/A 57
depotprob4321 41 35 34
depotprob4398 28 28 28
depotprob5646 26 26 28
depotprob5656 133 70 62
depotprob6178 48 48 37
depotprob6587 28 26 24
depotprob7654 35 33 33
depotprob8715 34 34 36

SGPLAN
plan length

Discussion
 SATPLAN’s running times on reformulated problems were

almost always better
 SGPLAN’s and LAMA’s running times on reformulated

problems were occasionally much worse
 Plans quality on reformulated problems were usually the

same or slightly better (except gold-miner and storage
(LAMA) – significantly better, parking (SGPLAN) –
significantly worse)

 All reformulated problems were solvable except two
thoughtful ones

Putting together
 Macro-operators serve like `shortcuts` in

planning process
 Macro-operators have many instances – high

branching factor
 Entanglements can be inherited from primitive

operators
 Elimination of actions via entanglements

should be helpful

Entanglements and Macro-
operators

 If a primitive operator o is fully entangled (by
init or goal) with a predicate p ⇒ a macro-
operator m where o is included in m is also
fully entangled (by init or goal) with a predicate
p (if present in o)

Experimental evaluation -
approach

 `Merge` domains reformulated by macro-
operators and entanglements

 Run the planners (SATPLAN, SGPLAN,
LAMA) both on the original problems and on
the reformulated problems and compare
results.

Number of reachable actions (in
average)

Domain Macro Entanglements Both

Depots 266% 20% 7%

Zeno 85% 85% 70%

Gold-miner 108% 96% 76%

Experimental results (a fragment)
SATPLAN LAMA

Time (in secs) Time (in secs)

Problem orig macro ent both orig macro ent both

depotprob1817 >600 err >600 >600 331.11 93.68 3.68 0.12

depotprob1916 137.85 err 5.36 0.62 1.74 2.46 0.14 0.05

depotprob4321 5.25 2.07 0.46 0.02 4.94 0.25 0.03 0.01

depotprob4398 1.11 2.76 0.29 0.03 0.23 0.41 0.03 0.01

depotprob4534 >600 err >600 218.62 362.81 1.39 5.86 0.02

depotprob5646 0.38 6.08 0.09 0.14 0.17 0.25 0.02 0.00

depotprob5656 222.28 143.33 5.92 1.10 >600 0.53 3.41 0.02

depotprob6178 6.92 26.11 1.49 0.19 11.61 1.44 0.06 0.02

depotprob6587 3.36 19.02 0.59 0.08 0.42 0.98 0.05 0.02

depotprob7615 >600 err >600 >600 >600 5.71>600 0.06

depotprob7654 10.08 16.45 1.41 0.11 1.45 0.59 12.32 0.01

depotprob8715 36.04 err 8.70 0.96 1.65 6.35 0.17 0.04

depotprob9876 >600 err >600 67.86 580.18 1.27 0.19 0.02

Discussion
 Combining Macro-operators and

Entanglements brought benefits as we
expected

 In occasional cases the results were much
worse (SGPLAN)

Open Issues
 Losing completeness (reformulated

problems might become unsolvable) – find
more theoretical aspects

 Better cooperation of the presented learning
methods (+ some other methods maybe)

 Bypass the necessity of defining selection
criteria for Macro-operator generation

 Extend the methods for non-classical planning
(ADL, time, uncertainty etc.)

Conclusions
 Learning for planning seems to be a

reasonable way to improve the planning
process

 Presented methods showed that the
improvement can be significant

 There is still a lot to do !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

