Neuroevolution-based Generation of Adaptive Tests

Patric Feldmeier, 23.11.2023

Faculty of Computer Science and Mathematics

Testing Games

Testing Games

Challenges of Game Testing

Randomisation

Challenges of Game Testing

Randomisation

Challenges of Game Testing

Randomisation

Challenging program statements

Neatest

Dynamic Test Suites

Learn to play Validate behaviour

Playing Super Mario Using Neural Networks

- Player (Mario) has to travel to the right as far as possible
- Game Over if the player touches an enemy or falls into an hole
- Mario can be navigated to the left/right using the left/right arrow keys and can jump using the space bar

Playing Super Mario Using Neural Networks

Supervised Optimisation

Problem: requires manually labelled data

Reinforcement Learning

Neuroevolution

Reinforcement Learning

• An agent is placed into an environment in which, it can perform certain actions.

Reinforcement Learning

- An agent is placed into an environment in which, it can perform certain actions.
- Based on the selected action, the environment is updated.

Reinforcement Learning

- An agent is placed into an environment in which, it can perform certain actions.
- Based on the selected action, the environment is updated.
- The agent is assigned a reward (fitness value) based on the reached state after applying one or several actions.
 - → Has to represent the intended goal as closely as possible!

Fitness Function

Measure travel distance

Fitness Function

Measure travel distance + level progress

Neuroevolution

Neural networks

- Mimic a human brain to solve complex tasks
- Must be optimised for each task individually

Neural networks

- Mimic a human brain to solve complex tasks
- Must be optimised for each task individually

Neural networks

- Mimic a human brain to solve complex tasks
- Must be optimised for each task individually

Neural networks

- Mimic a human brain to solve complex tasks
- Must be optimised for each task individually

Neural networks

- Mimic a human brain to solve complex tasks
- Must be optimised for each task individually

Evolving Neural Networks through Augmenting Topologies

Kenneth O. Stanley and Risto Miikkulainen

Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 USA {kstanley, risto}@cs.utexas.edu

Technical Report TR-AI-01-290

June 28, 2001

An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT) that outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.

Neat

Abstract

Neatest

Dynamic Test Suites

Learn to play Validate behaviour

Select a target statement

Fitness = distance to target statement

2. Optimise networks to cover the selected statement using Neuroevolution

3. Validate and improve the robustness of networks

- multiple times using different seeds

Select a target statement

How to select a target?

Dynamic Test Suite

Dynamic Test Suite

Dynamic Test Suite

Generating Dynamic Test Suites

Fitness = distance to target statement

2. Optimise networks to cover the selected statement using Neuroevolution

Fitness = Distance to Target

Fitness = Distance to Target Approach Level = I Start Branch Distance time = 0 repeat until <

go to (random position -

Fitness = Distance to Target

Fitness = Distance to Target

Test Oracle Based on Surprise Adequacy

Test Oracle Based on Surprise Adequacy

- Surprise Adequacy measures how much networks are surprised by the input they receive compared to previous inputs
 - Low ~ similar behaviour ~ correct
 - High ~ suspicious behaviour ~ incorrect
 - Regression testing approach

Evaluation of Neatest

Dataset of 25 Scratch games

Neatest Covers Scratch Games Reliably

- Compares Neatest with random test generation baseline
- Statements are covered if generated test passes the robustness check 10 times Neatest wins games on average 20/30 times

Dynamic Tests are Robust Against Randomisation

- Execute generated static and dynamic tests
- No robustness check
 - Contrary to static suites, dynamic suites do not lose in coverage

Dynamic Networks as Test Oracles

- Mutation analysis on 243835 mutants using 8 mutation operators
 - →High true-positive median of > 60%
 - ► Low false-positive median of 10%

Good but Slow Performance of Neatest

Neatest

2 3 4 5 Time in Hours

Gradient-Descent as Systematic Optimiser

Gradient-Descent as Systematic Optimiser

Human Gameplay Traces as Training Set

Human Gameplay Traces as Training Set

Human Gameplay Traces as Training Set

Evaluation Dataset of 8 Scratch Games

How Many Data Samples Are Required?

Recording Duration

Time in Hours

5

Human Traces Can Only Approximate Optimisation Goal

Human Traces Can Only Approximate Optimisation Goal

Does Neuroevolution Benefit From Gradient-Descent?

(0%, 30%, 60%, 100%)

Time in Hours

100%

5

Gradient-Descent Introduces Human Bias

Does Gradient Descent Affect Speciation?

$=\frac{c_1 D}{N} + \frac{c_2 E}{N} + \frac{c_3 \overline{W}}{C_3 \overline{W}}$

Repeated Explosion in Number of Species

Generations

 $\delta = \frac{c_1 D}{N} + \frac{c_2 E}{N} + c_3 \overline{W}$

Compatibility Threshold Affects Speciation

Generations

$$\delta = \frac{c_1 D}{N} + \frac{c_2 E}{N} + c_2$$

Gradient Descent Affects Speciation

 $\delta = \frac{c_1 D}{N} + \frac{c_2 E}{N} + c_3 \overline{W}$

Gradient Descent Affects Speciation

 $\delta = \frac{c_1 D}{N} + \frac{c_2 E}{N} + c_3 \overline{W}$

What Is the Influence of Varying Player Behaviour?

PlayTest

Play

Planning Phase

Execution Phase

Planning Phase

Planning Phase

Planning Phase

Extracting Tests from PlayTest

Execution Phase

Extracting Tests from PlayTest

Extracting Tests from PlayTest

2) Correlating Success with

Challenges of Game Testing

Neatest

Neuro

evolution

Neural networks

- Mimic a human brain to solve complex tasks
- Must be optimised for each task individually

Gradient-Descent as Systematic Optimiser

