Neatest

Neuroevolution-based Generation of Adaptive
Tests

Patric Feldmeier, 23.11.2023

Testing Games

Testing Games

E0E00EOM

Challenges of Game Testing
® ok

Randomisation ~

Challenges of Game Testing
t 1

Randomisation

Challenges of Game Testing

Randomisation Challenging program statements

Neatest

Dynamic Test Suites

Learn to play

Validate behaviour

Playing Super Mario Using Neural Networks

® Player (Mario) has to travel to the right
as far as possible

e Game Over if the player touches an
enemy or falls into an hole

® Mario can be navigated to the left/right
using the left/right arrow keys and can
jump using the space bar

Playing Super Mario Using Neural Networks

Supervised Optimisation

Problem: requires manually labelled data

B Reinforcement Learning Input

B N euroevolution |

Weights —> Network

|

Prediction

Gradient \ /
Descent

Ground
Truth

Reinforcement Learning

® An agent is placed into an environment
in which, it can perform certain actions.

WORLD T
1-1

IME
283

Reinforcement Learning

® An agent is placed into an environment
in which, it can perform certain actions.

® Based on the selected action, the
environment is updated.

MARIO
004250

1 x05

WORLD TIME
1-1 283

Reinforcement Learning

in which, it can perform certain actions.

® An agent is placed into an environment v>/<:>\<u

® Based on the selected action, the
environment is updated.

® The agent is assigned a reward (fitness
value) based on the reached state after
applying one or several actions.

= Has to represent the intended goal
as closely as possible!

Fithess Function

Measure travel distance

Fithess Function

Measure travel distance + level progress

Neuroevolution

Neuro evolution

Neuro

<
Neural networks >

\ A/

® Mimic a human brain to
solve complex tasks

® Must be optimised for
each task individually

evolution

Neuro

oo
Neural networks &

\ X7

® Mimic alhuman brain
olve complex tasks

® Must be optimised for
each task individually

evolution

Neuro evolution

Population of
Networks

Selection

Parents

Mutation &
Crossover

Children

Neuro evolution

Population of
Networks

Parents

Mutation &
Crossover

Children

Neuro evolution

Population of
Networks

Reinforcement
Learning

Parents

Mutation &
Crossover

Children

Neat

Evolving Neural Networks through Augmenting Topologies

Kenneth O. Stanley and Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712 USA
{kstanley, risto } @cs.utexas.edu

Technical Report TR-AI-01-290

June 28, 2001

Abstract

An important question in neuroevolution is how to gain an advantage from evolving neural network
topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT)
that outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task.
We claim that the increased efficiency is due to (1) employing a principled method of crossover of different
topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from mini-
mal structure. We test this claim through a series of ablation studies that demonstrate that each component
is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT
is also an important contribution to GAs because it shows how it is possible for evolution to both optimize
and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions

over generations, and strengthening the analogy with biological evolution.
S —

Neatest

Dynamic Test Suites

Learn to play

Validate behaviour

Generating Dynamic Test Suites

|. Select a target statement

-

Generating Dynamic Test Suites

2. Optimise networks to cover the selected statement using Neuroevolution

= Fitness = distance to target statement

™y
q_-.

Neuroevolution

Generating Dynamic Test Suites

3.Validate and improve the robustness of networks

= Cover multiple times using different seeds

Neuroevolution

Generating Dynamic Test Suites

|. Select a target statement
How to select a target!? Explore the CDG

-

Explore the CDG

when | receive answer cat =

SEVA Hello cat! el e seconds

forever

Hello bear!

W3

when this sprite clicked

VA Hello bear! [l e seconds
' key space v pressed? _ then

broadcast answer cat » switch costume to smiling bear »

Explore the CDG —

clicked cat?

when this sprite clicked

SEVA Hello bear! Bielg e seconds

when this sprite clicked

VA Hello bear! (ol a seconds

broadcast answer cat -

broadcast?

broadcast answer cat =

when | receive answer cat =

when | receive answer cat -

SEVWA Hello cat! JBfe]s e seconds

4>< Exit >
forever

SEVA Hello cat! el e seconds

forever

key space w pressed? _ then

switch costume to smiling bear -

key space » pressed? _ then

switch costume to smiling bear »

i~ Explore the CDG

clicked cat?

when this sprite clicked

SEVA Hello bear! Bielg e seconds

clicked cat?

broadcast?

N when this sprite clicked broadcast? s Hello bear! Ry e SECONGS

when | receive answer cat =

broadcast answer cat =

say {o]g e seconds
forever when | receive answer cat = SEVA Hello cat! el e seconds

key space w pressed? _ then

key space » pressed? _ then

switch costume to smiling bear

switch costume to smiling bear =

Explore the CDG

when clicked

sotox @) v €D

wait until Time =

repeat until Time

key rigtarrow v pressed . then

move m steps

key leftarrow v pressed _ then

move m steps

say @ for a seconds

stop all =

when clicked

set size to @ %

go to random position »

set y to @

wait until Time

repeat until Time = °
change y by e

if touching Bowl » then

change Points v+ by °

hide

go to random position

set y to @

show

if touching color Q then
or () seconcs

stop all =

Explore the CDG

repeat until time repeat until time

key rightarrow v pressed _ then i key leftarrow v pressed _ then i touching Bowl = then

touching color Q then

say @ 1{o]g ° seconds

m go to random position = set y to @ change Points v by o m

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

/ e \
repeat until time o

if key right arrow = zssed _ then if key left arrow » .essed _ then

say @ 1{o]g o seconds “ v ‘ v

repeat until time

touching Br

touching color J then

l

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o

repeat until time repeat until time

if key right arrow = zssed _ then if key left arrow » .essed _ then

say @ 1{o]g e seconds “ v “ v

go to random position set y to @ change Points v by °

move @ steps

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o
= Deep nodes require meaningful gameplay

repeat until

7

key right arrow = zssed _ then i key left arrow » .essed _ then i / i touching color J then

say @ 1{o]g e seconds

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o
= Deep nodes require meaningful gameplay

repeat until

7

key right arrow = zssed _ then i key left arrow » .essed _ then i / i touching color J then

say @ {o]§ e seconds “ v

|

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o

I

change Points v by e

0000

= Deep nodes require meaningful gameplay

® O ¢
0000

repeat until time repeat until time

if key right arrow = zssed _ then i key left arrow » .essed _ then i / i touching color a J then

say @ for e seconds “ v

|

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o

I

change Points v by e

0000

= Deep nodes require meaningful gameplay

® O ¢
0000

repeat until time repeat until time

if key right arrow = zssed _ then i key left arrow » .essed _ then i / i touching color a J then

say @ for e seconds “ v

Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

. . repeat until time = ° 3
= Deep nodes require meaningful gameplay - -
. . . . O
= Build upon previously optimised networks change Points v by @) o ©
0
®
or seconds °®
/ e)\ @f e | :
repeat until time repeat until time o

K key right arrow = zssed _ then key left arrow .essed _ then
say @ for e seconds “ v

mo@ .

touching Br / touching color j then
go to de° position = change)Y o “

Explore the CDG

Dynamic Test Suite
e Select direct children of covered control nodes

repeat until time = °

I

0000

= Deep nodes require meaningful gameplay

. . . . O
= Build upon previously optimised networks change Points v by @) o
0
O]
or seconds ®
/ e)\ @f ° | :
repeat until time repeat until time o

»

key right arrow = zssed _ then if key left arrow » .essed _ then touching Br touching color j then

[

Generating Dynamic Test Suites

2. Optimise networks to cover the selected statement using Neuroevolution

Neuroevolution

Fitness = Distance to larget

repeat until time = o

touching Bowl » then ' touching color O then

go to random position set y to @ change Points v Dby e m

Fitness = Distance to larget

Approach Level

+

Branch Distance

repeat until time = °

touching color O then

go to random position = set y to @ change Points v by e m

Fitness = Distance to larget

Approach Level

+

Branch Distance

repeat until time = °

Fitness = Distance to larget

Approach Level = |

+

Branch Distance

repeat until time = °

Fitness = Distance to larget

Approach Level = 0

+

Branch Distance

repeat until tinr

Fitness = Distance to larget

Approach Level = 0

+

Branch Distance = 0.4

repeat until tinr

Test Oracle Based on Surprise Adequacy

Apple\(Apple)(Appl
=HHE

e\(Apple\(AppleBowl\(AppleBowl)(Bowl\(Bowl
Size DistX DistY X Y

-0.8 -0.6 -04 -0.2 0.0 0.2

owl | |
l Size l Node Activation Values

—— Reference

0.4

0.6

0.8

Test Oracle Based on Surprise Adequacy

DG

ppl
Dir

ppl
Slz

AppleBowl\(AppleBowl|(Bowl)(Bowl
DistX DistY X Y

-08 -06 -04 -0.2 0.0

0.2

—— Reference
@ Incorrect Program

@
0.4 0.6

Node Activation Values

0.8

Test Oracle Based on Surprise Adequacy

2

e Surprise Adequacy measures how much T
networks are surprised by the input they Righ) [Len (i)
receive compared to previous inputs

= | ow ~ similar behaviour ~ correct 1g)(r20 (u)f21)

= High ~ suspicious behaviour ~ incorrect

Punkt Apple\(Apple\(Apple\(Apple)(AppleBowl\(AppleBowl\(Bowl)(Bowl\(Bowl|(Bowl
UKEI X Y)\ Dir)\ Size)l Distx DistYy)| X)| Y)| Dir | Size

= Regression testing approach

Inputs

Evaluation of Neatest

Dataset of 25 Scratch games

® 000000

Neatest Covers Scratch Games Reliably

e Compares Neatest with random test generation baseline

* Statements are covered if generated test passes the robustness check 10 times

= Neatest wins games on average 20/30 times

. | ll

o LN o LN o LN
mM N N — —

uesy

B Random
i Neatest

3|0V 2eYM
I AassApQaoeds
1ybid||legmous
jeus

3N0300YSOIY

buod

dnuea|puesadQ

T e

2e1Y>deH

T suioienminig

196b0.4

joliledAdde|4

Jybidjeuld

sJeisbul|ed

Jauunyssa|pug

suobeuq

llegabpoqg

Al|eyguassag

J1puatagiin

SYI9aY1Yd23eD

s30d9y1y21ed

so|ddybuiyoie)d

awenulelg

J23004SpJIg

0

S91e1S BuluuIp) paydeay Jo JaquinN

abuljaysiagnezaig

Dynamic Tests are Robust Against Randomisation

* Execute generated static and dynamic tests

* No robustness check

= Contrary to static suites, dynamic suites do not lose in coverage

!

..Iirfrlfr[lr'lrlrfr[fﬂ

[D0O] @skeyd uoijeldsusn 03 JJig abelano)

L

&
5 g
8
wn 0O
— o O o —
o o o o
— — — —

SJONVORUM

AassApQadoeds

1ybid||legmous

) eus

3N0300YS01Y

buod

dnues|HueadQ

dnauii

PBLEARVARIETE

buiyoyediinidg

19660.4

jouaiedAddel4

1ybi4jeurd

sleisbul|jeq

Jauunyssa|pul

suobe.(

llegabpoQ

abullayajiagnezaig

Aleygassaq

Japuataghiin

sa|ddybuiyoie)d

SyIDaYLy2Ied

s10Q9yLy21ed

awenulelg

J193004SpJIg

Kill Rate in %

Dynamic Networks as Test Oracles

e Mutation analysis on 243835 mutants using 8 mutation operators
= High true-positive median of > 60%

= | ow false-positive median of 10%

|

—— E — _I_ I — N

o
o)

©
o

i
N

o
N

©
o

KRM SBD SDM AOR LOR ROR NCM VRM

Good but Slow Performance of Neatest

-— Neatest

100
oL
=
D

2 95
D
>
O
@,

90

0 | 2 3 4 5

Time in Hours

Slow Progress of Stochastic VWeight Mutation

Slow Progress of Stochastic VWeight Mutation

Slow Progress of Stochastic VWeight Mutation

Slow Progress of Stochastic VWeight Mutation

Slow Progress of Stochastic VWeight Mutation

Slow Progress of Stochastic VWeight Mutation

Slow Progress of Stochastic VWeight Mutation

Slow Progress of Stochastic VWeight Mutation

Gradient-Descent as Systematic Optimiser

Gradient-Descent as Systematic Optimiser

A

Human Gameplay Traces as Training Set

Training Example

23]

Human Gameplay Traces as Training Set

Human Gameplay Traces as Training Set

valuation Dataset of 8 Scratch Games

score (D lives score (D

| Dark HP (ELL0D

A

Score |f_‘_).’..‘...‘
00000
) o

Score (D) .

How Many Data Samples Are Required!?

260
195
V)
Ko
al
S
S 130
(4]
)
Q]
a
65

, .

30 Seconds | Minute 3 Minutes

Recording Duration

Too Many Data Samples Impair the Search

3Min — | Min 30 Secs
|00
0 —_—
£ 95
)
&
O
3 90
@,
85
0 | 2 3 4 5

Time in Hours

Human Traces Can Only Approximate Optimisation Goal

Human Traces Can Only Approximate Optimisation Goal

Does Neuroevolution Benefit From Gradient-Descent!?

a)
Weight

Mutation% /\A
~

(0% : ,)

a)

Evolutionary

_ J _

~

Gradient
Descent

Significant Speedups through Gradient-Descent

= Neatest / 0% 30% 607% 100%

100

Coverage in %
O
U

90
0 | 2 3 4 5

Time in Hours

Gradi
ient-D
es
cent Introduces H
uman Bi
1as

U L

Does Gradient Descent Affect Speciation!?

ciD oL __
e
N N

Size per Species

Repeated Explosion in Number of Species

0 3 6 9 12 15 18
Generations

Size per Species

Compatibility Threshold Affects Speciation

0 3 §) 9 12 15 18 21
Generations

Gradient Descent Affects Speciation

0=3 =05 —> 9482% / 5 0,=2 ¢=05 - 9561% / 8

Size per Species
|_I
()
(@)

0 2 4 6 8 10 12 14
Generations

Gradient Descent Affects Speciation

0=3 ¢3=05 - 9482% / 5 0,=2 ¢=05 - 9561% / 8

0 2 4 6 8 10 12 14
Generations

élloo ClD CZE —_—
:% 5 = — 4+ — + C3W
» 0 N N

What Is the Influence of Varying Player Behaviour?

score [lives |

| Dark HP (ELL0D

score (D /90000000
00000
O O

Score (D) .
o
o
O ©

o O 000000
0000000000 :
0000000000

Coverage in %

Player Behaviour Affects Network Optimisation

100

O
00

O
@)

(o)
N

O
N

O
o

00
00

96.59

0%

99.66 ——

97.64

IDO ID1

Total

97.44

ID2

98.78

ID3

97.28

ID4

97.30

ID5

Play [est

S <»

<>

<>

Play [est

Planning Phase Execution Phase

[Planning Phase

24 Planning Phase

Yv [< @ Then
Penguin¥ Touching ¥ Coinw Then Increase Coins v

$ 888488

If
If

E Execution Phase

=
[Zﬂﬂﬁﬂﬁ
i
WM YW
I
"gk’zgggg}’:ﬂ)’zﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂ)ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
I Iy
y %ﬂgg%ﬂgﬁﬁ” gﬂﬁﬂﬁgﬁg%;zﬁgﬂ%g%ggﬂgg%ﬁgﬂg% '
i e i e i e e e B e s i e i e e s e i e e s e o e e

) (1) (o) (v (v (v (v X

X (@l (DN

Y wﬂ%%’%%’f’% :

¥ I s s s s e e s e s s s s s s s e, s e e e .
_

¢ Penguinw Touchingw Bombw Ther —

Extracting Tests from Play Test

Play Planning Phase Execution Phase

Extracting Tests from Play Test

Planning Phase Execution Phase

>’

Static Dynamic

Assertions Tests Tests
g N
rors

B
@

e
@

Extracting Tests from Play Test

Planning Phase

Assertions

Gl

B
@

|) Abstracting The Purpose

2) Correlating Success with
Valuable Test Cases

Static Dynamic
Tests Tests

v>/<:><v

e
_

—_—

Challenges of Game Testing Neuro evolution

Randomisation Challenging program statements

/ﬁ
S
Preogp— Neural networks &<

e

hd

¢ Mimic alhuman brainjto

solve complex tasks

setxto random position v

® Must be optimised for
each task individually

Xy
%

Neatest Gradient-Descent as Systematic Optimiser

Dynamic Test Suites

Learn to play

Validate behaviour

