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Challenges of Game Testing
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Playing Super Mario Using Neural Networks

® Player (Mario) has to travel to the right
as far as possible

e Game Over if the player touches an
enemy or falls into an hole

® Mario can be navigated to the left/right
using the left/right arrow keys and can
jump using the space bar




Playing Super Mario Using Neural Networks




Supervised Optimisation

Problem: requires manually labelled data

B Reinforcement Learning Input
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Reinforcement Learning

® An agent is placed into an environment
in which, it can perform certain actions.
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Reinforcement Learning

® An agent is placed into an environment
in which, it can perform certain actions.

® Based on the selected action, the
environment is updated.
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Reinforcement Learning

in which, it can perform certain actions.

® An agent is placed into an environment v>/<:>\<u

® Based on the selected action, the
environment is updated.

® The agent is assigned a reward (fitness
value) based on the reached state after
applying one or several actions.

= Has to represent the intended goal
as closely as possible!




Fithess Function

Measure travel distance




Fithess Function

Measure travel distance + level progress
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® Mimic a human brain to
solve complex tasks

® Must be optimised for
each task individually

evolution
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Neat

Evolving Neural Networks through Augmenting Topologies

Kenneth O. Stanley and Risto Miikkulainen
Department of Computer Sciences
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Austin, TX 78712 USA
{kstanley, risto } @cs.utexas.edu

Technical Report TR-AI-01-290

June 28, 2001

Abstract

An important question in neuroevolution is how to gain an advantage from evolving neural network
topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT)
that outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task.
We claim that the increased efficiency is due to (1) employing a principled method of crossover of different
topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from mini-
mal structure. We test this claim through a series of ablation studies that demonstrate that each component
is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT
is also an important contribution to GAs because it shows how it is possible for evolution to both optimize
and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions

over generations, and strengthening the analogy with biological evolution.
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Generating Dynamic Test Suites

|. Select a target statement

-




Generating Dynamic Test Suites

2. Optimise networks to cover the selected statement using Neuroevolution

= Fitness = distance to target statement
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Neuroevolution




Generating Dynamic Test Suites

3.Validate and improve the robustness of networks

= Cover multiple times using different seeds

Neuroevolution




Generating Dynamic Test Suites

|. Select a target statement
How to select a target!? Explore the CDG

-




Explore the CDG

when | receive answer cat =

SEVA Hello cat! el e seconds

forever

Hello bear!

W3

when this sprite clicked

VA Hello bear! [l e seconds
' key space v pressed? _ then

broadcast answer cat » switch costume to  smiling bear »




Explore the CDG —

clicked cat?

when this sprite clicked

SEVA Hello bear! Bielg e seconds

when this sprite clicked

VA Hello bear! (ol a seconds

broadcast answer cat -

broadcast?

broadcast answer cat =

when | receive answer cat =

when | receive answer cat -

SEVWA Hello cat! JBfe]s e seconds

4>< Exit >
forever

SEVA Hello cat! el e seconds

forever

key space w pressed? _ then

switch costume to smiling bear -

key space » pressed? _ then

switch costume to smiling bear »



i~ Explore the CDG

clicked cat?

when this sprite clicked

SEVA Hello bear! Bielg e seconds

clicked cat?

broadcast?

N when this sprite clicked broadcast? s Hello bear! Ry e SECONGS

when | receive answer cat =

broadcast answer cat =

say {o]g e seconds
forever when | receive answer cat = SEVA Hello cat! el e seconds

key space w pressed? _ then

key space » pressed? _ then

switch costume to smiling bear

switch costume to smiling bear =



Explore the CDG

when clicked

sotox @) v €D

wait until Time =

repeat until Time

key rigtarrow v pressed . then

move m steps

key leftarrow v pressed _ then

move m steps

say @ for a seconds

stop all =

when clicked

set size to @ %

go to random position »

set y to @

wait until Time

repeat until Time = °
change y by e

if touching Bowl » then

change Points v+ by °

hide

go to random position

set y to @

show

if touching color Q then
or () seconcs

stop all =




Explore the CDG

repeat until time repeat until time

key rightarrow v pressed _ then i key leftarrow v pressed _ then i touching Bowl = then

touching color Q then

say @ 1{o]g ° seconds

m go to random position = set y to @ change Points v by o m



Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes
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Dynamic Test Suite
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e Select direct children of covered control nodes




Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

/ e \
repeat until time o

if key right arrow = zssed _ then if key left arrow » .essed _ then

say @ 1{o]g o seconds “ v ‘ v

repeat until time

touching Br

touching color J then

l




Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o

repeat until time repeat until time

if key right arrow = zssed _ then if key left arrow » .essed _ then

say @ 1{o]g e seconds “ v “ v

go to random position set y to @ change Points v by °

move @ steps



Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o
= Deep nodes require meaningful gameplay

repeat until

7

key right arrow = zssed _ then i key left arrow » .essed _ then i / i touching color J then

say @ 1{o]g e seconds



Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o
= Deep nodes require meaningful gameplay

repeat until

7

key right arrow = zssed _ then i key left arrow » .essed _ then i / i touching color J then

say @ {o]§ e seconds “ v

|



Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o

I

change Points v by e

0000

= Deep nodes require meaningful gameplay

® O ¢
0000

repeat until time repeat until time

if key right arrow = zssed _ then i key left arrow » .essed _ then i / i touching color a J then

say @ for e seconds “ v

|



Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

repeat until time = o

I

change Points v by e

0000

= Deep nodes require meaningful gameplay

® O ¢
0000

repeat until time repeat until time

if key right arrow = zssed _ then i key left arrow » .essed _ then i / i touching color a J then

say @ for e seconds “ v



Explore the CDG

Dynamic Test Suite

e Select direct children of covered control nodes

. . repeat until time = ° 3
= Deep nodes require meaningful gameplay - -
. . . . O
= Build upon previously optimised networks change Points v by @) o ©
0
®
or seconds °®
/ e )\ @f e | :
repeat until time repeat until time o

K key right arrow = zssed _ then key left arrow .essed _ then
say @ for e seconds “ v

mo@ .

touching Br / touching color j then
go to de°  position = change )Y o “




Explore the CDG

Dynamic Test Suite
e Select direct children of covered control nodes

repeat until time = °

I

0000

= Deep nodes require meaningful gameplay

. . . . O
= Build upon previously optimised networks change Points v by @) o
0
O]
or seconds ®
/ e )\ @f ° | :
repeat until time repeat until time o

»

key right arrow = zssed _ then if key left arrow » .essed _ then touching Br touching color j then

[



Generating Dynamic Test Suites

2. Optimise networks to cover the selected statement using Neuroevolution

Neuroevolution




Fitness = Distance to larget

repeat until time = o

touching Bowl » then ' touching color O then

go to random position set y to @ change Points v Dby e m



Fitness = Distance to larget

Approach Level

+

Branch Distance

repeat until time = °

touching color O then

go to random position = set y to @ change Points v by e m



Fitness = Distance to larget

Approach Level

+

Branch Distance

repeat until time = °



Fitness = Distance to larget

Approach Level = |

+

Branch Distance

repeat until time = °



Fitness = Distance to larget

Approach Level = 0

+

Branch Distance

repeat until tinr



Fitness = Distance to larget

Approach Level = 0

+

Branch Distance = 0.4

repeat until tinr



Test Oracle Based on Surprise Adequacy

Apple\(Apple)(Appl
=HHE

e\(Apple\(AppleBowl\(AppleBowl)(Bowl\(Bowl
Size DistX DistY X Y

-0.8 -0.6 -04 -0.2 0.0 0.2

owl | |
l Size l Node Activation Values

—— Reference

0.4

0.6

0.8



Test Oracle Based on Surprise Adequacy

DG

ppl
Dir

ppl
Slz

AppleBowl\(AppleBowl|(Bowl)(Bowl
DistX DistY X Y

-08 -06 -04 -0.2 0.0

0.2

—— Reference
@ Incorrect Program

@
0.4 0.6

Node Activation Values

0.8



Test Oracle Based on Surprise Adequacy

2

e Surprise Adequacy measures how much T
networks are surprised by the input they Righ)  [Len (i)
receive compared to previous inputs

= | ow ~ similar behaviour ~ correct 1g)(r20 (u)f21)

= High ~ suspicious behaviour ~ incorrect

Punkt Apple\(Apple\(Apple\(Apple)(AppleBowl\(AppleBowl\(Bowl)(Bowl\(Bowl|(Bowl
UKEI X Y )\ Dir )\ Size )l Distx DistYy )| X )| Y )| Dir | Size

= Regression testing approach

Inputs



Evaluation of Neatest

Dataset of 25 Scratch games
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Neatest Covers Scratch Games Reliably

e Compares Neatest with random test generation baseline

* Statements are covered if generated test passes the robustness check 10 times

= Neatest wins games on average 20/30 times
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Dynamic Tests are Robust Against Randomisation

* Execute generated static and dynamic tests

* No robustness check

= Contrary to static suites, dynamic suites do not lose in coverage
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Kill Rate in %

Dynamic Networks as Test Oracles

e Mutation analysis on 243835 mutants using 8 mutation operators
= High true-positive median of > 60%

= | ow false-positive median of 10%
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Good but Slow Performance of Neatest

-— Neatest
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Slow Progress of Stochastic VWeight Mutation




Slow Progress of Stochastic VWeight Mutation




Slow Progress of Stochastic VWeight Mutation




Slow Progress of Stochastic VWeight Mutation




Slow Progress of Stochastic VWeight Mutation




Slow Progress of Stochastic VWeight Mutation




Slow Progress of Stochastic VWeight Mutation




Slow Progress of Stochastic VWeight Mutation




Gradient-Descent as Systematic Optimiser




Gradient-Descent as Systematic Optimiser
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Human Gameplay Traces as Training Set

Training Example

23]




Human Gameplay Traces as Training Set




Human Gameplay Traces as Training Set




valuation Dataset of 8 Scratch Games

score (D lives score (D

| Dark HP (ELL0D

A

Score |f_‘_ ).’..‘...‘
00000
) o

Score (D) .




How Many Data Samples Are Required!?
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Too Many Data Samples Impair the Search
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Human Traces Can Only Approximate Optimisation Goal




Human Traces Can Only Approximate Optimisation Goal




Does Neuroevolution Benefit From Gradient-Descent!?

a )
Weight

Mutation% /\A
~

(0% : , )

a )

Evolutionary

\_ J \_

~

Gradient
Descent




Significant Speedups through Gradient-Descent

= Neatest / 0% 30% 607% 100%

100

Coverage in %
O
U

90
0 | 2 3 4 5

Time in Hours
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Does Gradient Descent Affect Speciation!?
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Size per Species

Repeated Explosion in Number of Species

0 3 6 9 12 15 18
Generations



Size per Species

Compatibility Threshold Affects Speciation

0 3 §) 9 12 15 18 21
Generations



Gradient Descent Affects Speciation

0=3 =05 —> 9482% / 5 0,=2 ¢=05 - 9561% / 8

Size per Species
|_I
()
(@)

0 2 4 6 8 10 12 14
Generations



Gradient Descent Affects Speciation

0=3 ¢3=05 - 9482% / 5 0,=2 ¢=05 - 9561% / 8

0 2 4 6 8 10 12 14
Generations
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What Is the Influence of Varying Player Behaviour?

score [ lives |

| Dark HP (ELL0D
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Coverage in %

Player Behaviour Affects Network Optimisation
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Total
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Play [est

Planning Phase Execution Phase




[ Planning Phase




24 Planning Phase
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E Execution Phase
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Extracting Tests from Play Test

Play Planning Phase Execution Phase




Extracting Tests from Play Test

Planning Phase Execution Phase
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Static Dynamic
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Extracting Tests from Play Test

Planning Phase

Assertions

Gl

B
@

|) Abstracting The Purpose

2) Correlating Success with
Valuable Test Cases

Static Dynamic
Tests Tests
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Challenges of Game Testing Neuro evolution

Randomisation Challenging program statements
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¢ Mimic alhuman brainjto

solve complex tasks

setxto random position v

® Must be optimised for
each task individually
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