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Section 1

Preface
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Shielding for Reinforcement Learning
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Figure: Shielding for reinforcement learning framework [Alshiekh et al., 2018]
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Shielding for Reinforcement Learning (Continued)

1 The shield is represented as a finite state reactive system S.
2 To construct the shield we require a safety automaton φs, a safety game is

solved such that S realises the safety specification φ encoded by φs (i.e. S |= φ).

Limitations
1 Knowledge of the safety relevant dynamics of the environment are required a

priori to construct the safety automaton.
2 Solving the safety game can be computationally expensive without additional

assumptions.
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Bounded Prescience Shielding
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Figure: Bounded Prescience Shielding (BPS) [Giacobbe et al., 2021]
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Bounded Prescience Shielding (Continued)

1 A high-fidelity simulator is used to verify the safety and shield policies up to
some bounded look-ahead horizon.

Limitations
1 Rolling out a simulator can be computationally expensive.
2 In most cases BPS cannot be used during training, and only during deployment

for short horizons (H = 5).
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Latent Shielding
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Figure: Latent shielding [He et al., 2021]
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Latent Shielding (Continued)

1 During training the learned world model is used to estimate the probability of a
violation in the near future.

Limitations
1 Injecting noise into the action overestimates the probability - leading to overly

conservative behaviour.
2 Intrinsic punishment and shield introduction schedules are required to

resolve this, but they can be tricky to tune.
3 Limited by how far the world model can be rolled out (i.e. short horizons

H = 15).
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Limitations

1 Classical shielding for RL operates with quite restrictive assumptions: access to
the safety-relevant dynamics of the MDP.

2 Methods such as BPS still assume access to a black-box simulator of the
environment.

3 Other methods (e.g. latent shielding) have a relatively short look-ahead horizon
(H=15).

4 Most shielding methods only evaluate on quite simple grid-world environments.
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Contributions

1 We will introduce a safe exploration problem based on the satisfaction of
bounded safety defined in probabilistic computation tree logic (PCTL).

2 We propose approximate model-based shielding (AMBS), a safe exploration
strategy and model-based RL algorithm that leverages world models, and
improves latent shielding by using safety critics, a cost predictor and a learned
backup policy.

3 We provide PAC-style probabilistic bounds on the probability of accurately
detecting a safety violation and develop a strong theoretical justification for the
use of world models.

4 We apply AMBS to a variety of visual input settings, such as classic Atari games
and continuous control problems from the Safety Gym suite.
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Section 2

Preliminaries
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POMDP with Labels

Visual RL setting are typically modelled as partially observable MDP (POMDP). For our
purposes we also extend the POMDP tuple to include state-dependent labels.

Definition (POMDP with labels)
A POMDP with labels is a 9-tuple M = (S,A,p, ιinit ,R,Ω,O,AP,L) where, S is the set
of states, A is the set of actions, p : S × A × S → [0,1] is the transition function,
ιinit : S → [0,1] is the initial state distribution such that

∫
s∈S ιinit(s) = 1,

R : S ×A → R is the reward function, Ω is a set of observations, O : S ×A×Ω → [0,1]
is the observation function, which defines the probability of an observation
conditional on the previous state-action pair, AP is a set of atomic propositions
which maps to the set of states by the ‘expert’ labelling function L : S → 2AP.

At each timestep t the agent receives an observation ot ∈ Ω, a reward rt ∈ R and a set
of labels L(st) ∈ 2AP.
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POMDP with Labels (continued)

Figure: Visual representation of a POMDP with labels
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Safe Exploration
In addition we are given a propositional safety-formula Ψ, e.g.

Ψ = ¬collision ∧ (red-light ⇒ stop)

for AP = {collision, red-light, stop}. A state s is called safe if it satisfies the
safety-formula Ψ, denoted s |= Ψ, which is determined by applying the satisfaction
relation (from propositional logic),

s |= a iff a ∈ L(s)
s |= ¬Ψ iff s ̸|= Ψ

s |= Ψ1 ∧Ψ2 iff s |= Ψ1 and s |= Ψ2

Goal
Find a policy π that maximises reward, that is π∗ = argmaxπ E[

∑∞
t=0 γ

t · rt ], while
minimising the cumulative number of violations of the safety-formula Ψ during
training and deployment.
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Bounded Safety

Consider some fixed (stochastic) policy π and POMDP M. Together π and M define a
transition system T : S × S → [0,1], where

∫
s′∈S T (s, s′) = 1.

Definition (Bounded Safety)
A finite trace with length n of the transition system T , is a sequence of states
s0 → s1 → ... → sn denoted τ , the i th state of τ is given by τ [i]. A trace τ satisfies
bounded safety if and only if all of its states satisfy the state formula Ψ that encodes
our safety constraints.

τ |= □≤nΨ iff for all 0 ≤ i ≤ n, τ [i] |= Ψ

where □ is the common temporal operator ‘always’ (or ‘globally’)
[Baier and Katoen, 2008] and n is some look-ahead horizon.
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∆-Bounded Safety

We can formalise ∆-Bounded Safety in PCTL.

Definition (∆-Bounded Safety)
A state s ∈ S satisfies ∆-bounded safety as follows,

s |= P≥1−∆(□
≤nΨ) iff µs({τ | τ [0] = s, for all 0 ≤ i ≤ n, τ [i] |= Ψ}) ∈ [1 −∆,1] (1)

where µs is a well-defined probability measure induced by the transition probabilities
T , over the set of traces staring from s and with finite length n.

Alex Goodall, Francesco Belardinelli (ICL) Approximate Model-based Shielding Charles University, Prague 11th April, 2023 17 / 41



Motivating Example

Example: avoiding irrecoverable states [Thomas et al., 2021].

Figure: To detect the unsafe state (pool of acid) at the end of the conveyor belt the agent
needs a sufficient look-ahead horizon. During exploration the first agent (left) may fail to
detect the pool of acid at the end of the conveyor belt and unknowingly venture down an
irrecoverable. The second agent (right) has a sufficient look-ahead horizon and can avoid the
pool of acid during exploration.
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Section 3

Approximate Model Based Shielding (AMBS)
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Key Ideas

• By using [Hafner et al., 2023] we can learn an approximate transition system
T̂ ≈ T that captures the underlying dynamics of the POMDP.

• By sampling traces τ ∈ T we can check ∆-bounded safety, i.e,
s |= P≥1−∆(□≤HΨ); the ∆ parameter meaningfully trades-off safety and
exploration.

• During training and deployment we can shield the agent by overriding ‘unsafe’
actions when necessary.
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World Models

“DreamerV3 learns a world model from experiences and uses it to train an actor critic
policy from imagined trajectories. The world model encodes sensory inputs into
categorical representations and predicts future representations and rewards given
actions.” [Hafner et al., 2023]
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Recurrent State Space Model (RSSM)

Figure: Recurrent State Space Model (RSSM) [Hafner et al., 2023]
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Additional Components (Cost Function)

• Cost predictor ĉt ∼ pθ(· | ht , ẑt)
implemented as an MLP mapping the
learnt latent space ŝt = (ht , ẑt) to
estimated costs ĉt .

• Targets for the cost predictor,

ct =

{
0, if st |= Ψ

C, otherwise
(2)

where C > 0 is a hyperparameter.
• Trained with the usual log likelihood

gradients. Figure: RSSM with costs
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Additional Components (Safety Critics & Backup Policy)
Safety Critics:

• Trained with a TD3-style algorithm [Fujimoto et al., 2018] to estimate the cost
value function,

V C(s) = Eπtask

[ ∞∑
t=0

γt · ct
∣∣ s0 = s

]
(3)

• Used to check ∆-bounded safety with a longer horizon.

Backup Policy:
• The task policy πtask is trained to maximise reward, the backup policy πsafe is

used as a default safe policy, it can be constructed in advance, however in most
cases it must be trained with RL (to minimise costs),

minEπsafe

[ ∞∑
t=0

γt · ct

]
(4)
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The Shielding Procedure

min KL min KL min KL

...

• + • •+ +...+

Safety Critics
Cost

Repeat m times

Figure: Checking ∆-bounded safety
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Full Algorithmic Overview

1 Initialise replay buffer D with M random episodes.
2 Repeat until convergence:

3 Sample a batch B ∼ D and update the RSSM with representation learning.
4 Sample latent trajectories with πtask and train πtask with RL to maximise reward.
5 Using the same trajectories, train the safety critics with maximum likelihood to

predict the expected discounted cost.
6 Sample latent trajectories with πsafe and train πsafe with RL to minimise cost.
7 For K environment interactions:

8 Samples m trajectories in the world model with πtask to check if s |= P≥1−∆(□
≤HΨ)

9 If Prπtask
[
□≤HΨ

]
< 1 −∆, then sample an action a ∼ πsafe play with the backup policy,

else sample an action the task policy a ∼ πtask.
10 Play a in the environment and observe o′, r , L(s), append the experience to D.
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Probabilistic Guarantees
Let µs|=ϕ denote the probability that s |= ϕ, where ϕ = □≤HΨ, note that
s |= P≥1−∆(□≤HΨ) (∆-bounded-safety) if and only if µs|=ϕ > 1 −∆.

Theorem 1 (Fully observable case)
Let ϵ > 0, δ > 0, s ∈ S be given. With access to the true transition system T , with
probability 1 − δ we can obtain an ϵ-approximate estimate of the measure µs|=ϕ, by
sampling m traces τ ∼ T , provided that,

m ≥ 1
2ϵ2 log

(
2
δ

)
(5)

This result gives us a sample complexity bound, that dictates how many traces we
need to sample (from T ) to check ∆-bounded safety with high probability (i.e 1 − δ).
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Probabilistic Guarantees (Continued)

Suppose we only have access to an approximate transition system T̂ . We provide
the following sample complexity bound.

Theorem 2
Let ϵ > 0, δ > 0 be given. Suppose that for all s ∈ S, the total variation (TV) distance
between T (s′ | s) and T̂ (s′ | s) is upper bounded by some α ≤ ϵ/n. That is,

DTV
(
T (s′ | s), T̂ (s′ | s)

)
≤ α ∀s ∈ S (6)

Then with probability 1 − δ we can obtain an ϵ-approximate estimate of the
measure µs|=ϕ, by sampling m traces τ ∼ T̂ , provided that,

m ≥ 2
ϵ2 log

(
2
δ

)
(7)
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Probabilistic Guarantees (Tabular Case)

When does DTV
(
T (s′ | s), T̂ (s′ | s)

)
≤ α ?

Theorem 3
Let α > 0, δ > 0, s ∈ S be given. With probability 1 − δ the total variation (TV) distance
between T (s′ | s) and T̂ (s′ | s) is upper bounded by α, provided that all actions a ∈ A
with non-negligable probability η ≥ α/(|A||S|) (under π) have been picked from s at
least m times, where

m ≥ |S|2

α2 log

(
2|A||S|

δ

)
(8)
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Upper Bound (Partially Observable Case)

Theorem 4
Let bt be a latent representation (belief state) such that p(st | ot≤t ,a≤t) = p(st | bt). Let
the fixed policy π(· | bt) be a general probability distribution conditional on belief
states bt . Let f be a generic f -divergence measure (TV or similar). Then the following
holds:

Df (T (s′ | b), T̂ (s′ | b)) ≤ Df (T (b′ | b), T̂ (b′ | b))

where T and T̂ are the ‘true’ and approximate transition system respectively, defined
now over both states s and belief states b.

This result motivates the use of world models since the RHS appears in the RSSM
loss function.
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Section 4

Experiments
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Atari Games

Environment Safety formula Ψ

Assault ¬hit ∧ ¬overheat
DoubleDunk ¬out-of-bounds ∧ ¬shoot-bf-clear

Enduro ¬crash-car
KungFuMaster ¬loose-life ∧ ¬energy-loss

Seaquest (surface ⇒ diver)¬hit ∧ ¬out-of-oxygen

Figure: Assault
Figure: Double
Dunk

Figure: Enduro Figure: Kung Fu
Master

Figure: Seaquest
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Results [Goodall and Belardinelli, 2023]

Table: Episode return and cumulative violations at the end of training.
DreamerV3 DreamerV3 (AMBS) DreamerV3 (LAG) IQN Rainbow

Assault Best Score ↑ 14738 44467 19832 9959 9632
# Violations ↓ 18745 12638 16802 24462 24019

DoubleDunk Best Score ↑ 24 24 24 24 -
# Violations ↓ 877499 66248 359018 188363 -

Enduro Best Score ↑ 2369 2367 2365 2375 2383
# Violations ↓ 167933 132147 174217 129012 108000

KungFuMaster Best Score ↑ 97000 117200 97200 51600 59500
# Violations ↓ 427476 10936 567559 284909 612762

Seaquest Best Score ↑ 4860 145550 1940 34150 1900
# Violations ↓ 73641 40147 64679 53516 67101
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Qualitative results

Shielded: Unshielded:
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Safety Gym

Safety Gym vehicles:

(a) Point (b) Car

Safety Gym tasks and constraints:

(a) Goal
positions

(b) Hazardous
areas

(c) Vases
.
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Results [Goodall and Belardinelli, 2024]

Table: Episode return and cumulative violations at the end of training.
AMBS + PENL DreamerV3 + LAG DreamerV3

PointGoal1
(1M)

Episode Return ↑ 17.32 ± 3.29 19.15 ± 0.92 21.85 ± 1.26
# Violations ↓ 9354 ± 3734 24996 ± 6627 66146 ± 8873

PointGoal2
(1.5M)

Episode Return ↑ 10.64 ± 2.61 15.78 ± 1.84 21.25 ± 0.65
# Violations ↓ 29720 ± 3850 52157 ± 6151 292606 ± 16062

CarGoal1
(1M)

Episode Return ↑ 8.87 ± 2.95 11.23 ± 4.10 17.42 ± 2.96
# Violations ↓ 11423 ± 1479 28639 ± 4644 87917 ± 2750
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Conclusions

1 AMBS is a general purpose framework for shielding RL policies by simulating and
verifying possible futures with a learned dynamics model or world model
[Hafner et al., 2023].

2 In contrast to latent shielding [He et al., 2021] our algorithm requires minimal
hyperparameter tuning and no schedules and obtains further look-ahead
capabilities with safety critics.

3 We also develop a rigorous set of theoretical results that underpin AMBS.
4 Our empirical results demonstrate that agents can benefit from shielding (AMBS)

in both discrete (Atari) and continuous (Safety Gym) safety-critical domains.
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Future Work

1 What are the challenges associated with more sophisticated safety properties,
e.g. regular safety properties, LTL safety properties? (currently working on this)

2 Investigate different shielding procedures – how can we best leverage the
backup policy, maybe integrate it into the policy gradient of the task policy? Can
we use model predictive control (MPC) or planning as the backup policy?

3 Can we incorporate uncertainty estimation, Bayesian world models
[As et al., 2022], to improve the agent learning and develop an ‘uncertainty
aware’ shielding approach?
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The End
Thank you for listening!
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