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Graphs as a Data Structure
Introduction to Graph Neural Networks
— How to represent structure

— GNNs are local operations
ConvNets are specialized grid GNNs

Aggregation can lead to Oversmoothing

My current project: Sampling-based GNNs

Benchmarking GNNs
A topic often overlooked

multi-agent reinforcement learnin

Case Study: Water Distribution Network
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What are Graphs?

O
* A Graph G consists of a set of nodes V and edges E /
G=(V,E) ~ N
N
o~ >N~ "N
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A Graph G consists of a set of nodes V and edges E
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Nodes V are specified by feature vectors v & R
An edge connects, or relates, two nodes
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Graphs are
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Graphs are Everywhere
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Thing
Images Pixels
Text Words
Molecules Atoms
Ontologies Subject/Object
Social User
Point Cloud 3D-Point

Research Paper

When the data contains multiple manifestations of similar
things and these things are relatable, then it is a graph:

Relation
Proximity
Context/Proximity
Bonds

Predicate
Relationship
Proximity

Citation




What are Graph Neural Networks?
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Node 20 Node 18

e Two nodes in a similar structural context
should be mapped to similar locations

-» This is equivalent to discriminating
subgraphs

 Node 20 and 18 have a similar subgraph,
they should be close in the latent space

- How to compare these subgraphs?
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WL-Test

The Weisfeiler-Lehman Test

e Canonically represents structure

e Algorithm:

W
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Initialization: Color every node similarly Color

c+—1 so

254

for 7 iterations :
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for each node n € N :
Hash the multiset u € N,
of neighboring nodes 0 a2 #89250b 262800
cp < HASH (u € NV,,) o
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#bscclh #0cd66a #614825
Color

B. Weisfeiler, A. Lehman: The reduction of a graph to canonical form and the algebra which appears therein (1968)



The Weisfeiler-Lehman Test

e Canonically represents structure

0-wL

e Algorithm:

Initialization: Color every node similarly

c+—1

for 7 iterations :
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for each node n € N :
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of neighboring nodes
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B. Weisfeiler, A. Lehman: The reduction of a graph to canonical form and the algebra which appears therein (1968)
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The Weisfeiler-Lehman Test

e Canonically represents structure
e Algorithm:

0-wL

Initialization: Color every node similarly e=HASH{® ® @ 0 })
c«+1

for 7 iterations :

for each node n € N :
Hash the multiset u € N,

of neighboring nodes

cp < HASH (u € NV,,)

2-WL

b &

B. Weisfeiler, A. Lehman: The reduction of a graph to canonical form and the algebra which appears therein (1968)
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WL-Test

The Weisfeiler-Lehman Test

e Canonically represents structure

0-wL

e Algorithm:

Initialization: Color every node similarly e=HASH({® ® ® 0 })
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e Two nodes in a similar structural context

should be mapped to similar locations

-» This is equivalent to discriminating
subgraphs

 Node 20 and 18 have a similar subgraph,

/

718
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they should be close in the latent space
- How to compare these subgraphs?
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WL-Test - Graph Convolution

e« A Graph Convolution (GCN) is a
differentiable version of the WL-Algorithm

e Instead of a hash function, a GCN applies
set aggregation and a consecutive MLP

WL node update: @=HASH({® ® @ @ })

GCN node update: n’ = MLPs( Z u)
ueN,

Kipf et al.: Semi-Supervised Classification with Graph Convolutional Networks
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https://arxiv.org/abs/1609.02907

Caffeine

Seed: 442

From Set-Hash to Set-MLP

Nodes Caffeine

Seed: 442

Nodes



What happens locally in a GNN?

* How to replace the Hash function with an MLP




What happens locally in a GNN?

* Node neighborhoods remain the same under permutation




What happens locally in a GNN?

* Node neighborhoods remain the same under permutation

How are we encoding these
neighborhoods?

With a permutation invariant function,
i.e. a function that satisfies:

fiRYVESRY f(X) = f(PX)

X

Permil;u(tation
1(3)-r()\ ™

Neighborhood Node Set




What happens locally in a GNN?

* Node neighborhoods remain the same under permutation

Possible Perm. Invariant Functions that
map a Set onto a vector:

/Sum - Perm. Invariant
v~ Mean - Perm. Invariant

“ v Attention Perm. Invariant
XConcat? - Perm. Sensitive




What happens locally in a GNN?

* Node neighborhoods remain the same under permutation

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

fvi)=¢o | > u
T ueN (v;)

Permutation invariant
aggregation function

A function parameterized (sum/mean/...)

by theta, e.g. an MLP

[1] Zaheer et al. NeurIPS 2017 Deep Sets



Message Passing Principle

* Node neighborhoods remain the same under permutation

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

fvi)=¢o | > u
T ueN (v;)

Permutation invariant
aggregation function

A function parameterized (sum/mean/...)

by theta, e.g. an MLP

[1] Zaheer et al. NeurIPS 2017 Deep Sets



Message Passing Principle

* Node neighborhoods remain the same under permutation

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

1. Message Generation

f(vi) =|¢o ( >
ueN(v;)

2. Message aggregation

[1] Zaheer et al. NeurIPS 2017 Deep Sets



Message Passing Principle

* Node neighborhoods remain the same under permutation

Caffeine Nodes

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

1. Message Generation
AN

Fovi) =leo [ D>
ueN(v;)

2. Message aggregation

Replicate across the space of
the graph (weights shared)

[1] Zaheer et al. NeurIPS 2017 Deep Sets



Message Passing Principle

* Node neighborhoods remain the same under permutation

Caffeine Nodes

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

1. Message Generation
AN

Fovi) =leo [ D>
ueN(v;)

2. Message aggregation

The expressivity of a GNN is tied to
the injectivity of this aggregation
function.

[1] Zaheer et al. NeurIPS 2017 Deep Sets



Expressivity of the Aggregation Function

Input sum - multiset mean - distribution max - set

¢ ¢
R P

(a) Mean and Max both fail (b) Max fails (¢) Mean and Max both fail
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[1] Xu et al. (2018) How Powerful are Graph Neural Networks?



Message Passing Principle
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Message Passing Principle
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Message Update
1-Hop
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Step 0

Graph Neural Networks

GNN;

Step 1

GNN;

Node Predictions

Step 2

Nodes



Step 0

Graph Neural Networks

GNN;

Step 1

GNN;

Step 2

Graph Prediction

o2 m)
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Nodes




Graph Neural Networks

Edge Predictions

Step 0 Step 1 Step 2

== GNN; —» == GNN; —»




Latent Space of a GCN [1.1]
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Dimension 0

[1.1] Blog-Post (Video) https://tkipf.github.io/graph-convolutional-networks/
[1.2] Kipf et al. (2017) https://arxiv.org/abs/1609.02907

Input

Hidden layer Hidden layer
el EL
¢ L] * ® o
’\é RelU -—-«.
° I‘; ° _' -\ °

RelLU

Model: GCN [1.2]
Time: Training Epochs
Embedding Size: 2

Qutput



Example: Graph Attention Network [1]

e This is the GAT - Graph Attention Network
* A parameterized attention function scales neighbors prior to aggregation

e This attending to node neighbors helps focusing on discriminative nodes

Attention Function
weights each neighbor

hy = oo || Y |ay(u,v)h}™
ueN (v)

2. Message aggregation

[1] Velickovic et al. (2017) Graph Attention Networks



Example: Images are Graphs

@ \IV /.
SIS

Image Image Graph 1-Hop Subgraph



Example: Images are Graphs
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Example: Images are Graphs

Pixel 5 is connected to Pixel 1
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Example: Images are Graphs

Pixel 5 is connected to Pixel 6
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Example: Images are Graphs
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Pixel
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Convolution Priors
* Locality:
Applies a local kernel operation onto a neighborhood of pixels
* Translational Symmetry:
A pattern is recognized independent of it’s location
* Cannonical Orientation: Que
Allows us to impose an ordering on the pixels

A

reshape

EESFRGRERREEYRAOM RwNES
Pixel
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Pixel

20 20
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012345678 931011121314151617 181920 21222324
Pixel




FUNCTIONAL GROUPS ARE GROUPS OF ATOMS IN ORGANIC MOLECULES THAT ARE RESPONSIBLE FOR THE CHARACTERISTIC CHEMICAL REACTIONS OF THOSE
IN THE GENERAL FORMULAE BELOW, ‘R’ REPRESENTS A HYDROCARBON GROUP OR HYDROGEN, AND ‘X’ REPRESENTS ANY HALOGEN ATOM.
' HYDROCARBONS . SIMPLE OXYGEN HETEROATOMICS . HALOGEN HETEROATOMICS . CARBONYL COMPOUNDS . NITROGEN BASED . SULFUR BASED ‘ . . ..-..

O,

Ryt (e C R,

ALKANE ALKENE ALKYNE ALCOHOL ETHER EPOXIDE
Naming: -ane Naming: -ene Naming: -yne Naming: -ol Naming: -oxy -ane Naming: -ene oxide
e.g. ethane e.g. ethene e.g. ethyne e.g. ethanol e.g. methoxyethane e.g. ethene oxide

I
P
R OR
ALDEHYDE KETONE CARBOXYLIC ACID ACID ANHYDRIDE ESTER AMIDE
Naming: -al Naming: -one Naming: -oic acid Naming: -oic anhydride Naming: -yl -oate Naming: -amide
e.g. ethanal e.g. propanone e.g. ethanoic acid e.g. ethanoic anhydride e.g. ethyl ethanoate e.g. ethanamide
AMINE NITRILE IMINE ISOCYANATE
Naming: -amine Naming: -nitrile Naming: -imine Naming: -yl isocyanate
e.g. ethanamine e.g. ethanenitrile e.g. ethanimine e.g. ethyl isocyanate
© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM Image Source: https://chemistry.com.pk/infographics/functional-groups-in-organic-chemistry/

Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.



Questions so far?

NNNNN

1. Message Generation
AN

®
ueN (v;)
O °
.\ . 2. Message aggregation
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Deep Graph Neural Networks?

* Repetitive Aggregations are smoothing out the signal! The signal looses it’s details!

- ) Nodes become indistinguishable
e This is the Oversmoothing Problem [1]

e Oversmoothing happens proportional to graph diameter and node degree [2]

Step 0 Step 10 Step 20 Nodes
®
o
[ ]
®
o
®
o
@
o
@
®
e
®
[1] Oono et al. (2020) https://arxiv.org/abs/1905.10947 °

[2] M. Bronsteins Post (2020) https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59



Deep Graph Neural Networks?

* Repetitive Aggregations are smoothing out the signal! The signal looses it’s details!
Nodes become indistinguishable

e This is the Oversmoothing Problem [1]

Oversmoothing happens proportional to graph diameter and node degree [2]

Model 2-Layer 4-Layer 8-Layer 16-Layer  32-Layer  64-Layer

GCN-res 88.18+159 86.50+187 84.83+193 78.60+428 59.82+774 39.71+5.15
PairNorm  79.984330 82.32+279 81.52+4366 82291262 81914245 81.72+28
NodeNorm 89.53+120 8B8.60+136 88.02+167 8841+125 8B.30+130 8B7.40+206

[1]1 Oono et al. (2020) https://arxiv.org/abs/1905.10947
[2] M. Bronsteins Post (2020) https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59



(©ver-)Smoothing is good sometimes!

Case-Study: Water Distribution Systems (WDS) [1]

Inference Task:

* Only few installed pressure sensors Pressure Sensors

* Infer the pressure at all other nodes (~ 5% of nodes)
Tee
. ) ‘ L ang S 3 [
[ ] 1 L ! ‘ 'l
' 3 : T
[ ] e 'Mt
[ J -0-9—9® ‘b
1' *—® " > )

[1]1 L Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587



(©ver-)Smoothing is good sometimes!

Case-Study: Water Distribution Systems (WDS) [1]

45 Message Passing Layers

Inference Task:

Message generation Sum aggr. MLP .
f.—,:;o - * Only few installed pressure sensors
Bl.m _— * Infer the pressure at all other nodes
Edge I | I node
indices - features
(E) Y)
Ed
featlgfes ‘l I Linear layer
(F)
Multiple GCN layers Pressure Sensors
Lliar;eearr (“' 5% OF nOdES)
Table 4. Mean errors across nodes and samples on L-Town.
Error (x1077°)
Model All | Sensor | Non-sensor ¢
Smooth Data oo
baseline [ChebNet 255+ 2.87 | 238+355 | 255+ 2.83 =
ours |m-GCN (45 x 1) 0.39 + 0.37 0.43 + 0.52 0.39 + 0.36 ot
ours |m-GCN (10 x 5) 0.83 £+ 0.68 0.74 + 0.59 0.83 £+ 0.69
Noisy Data i
baseline [ChebNet 292 + 3.35 2778 + 4.02 293 + 3.32
ours |m-GCN (45 x 1) 0.54 £+ 0.75 0.64 £ 1.06 0.53 £ 0.73
ours |m-GCN (10 x 5) 0.90 + 0.82 0.81 + 0.74 0.90 + 0.83

[1]1 L Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587



(©ver-)Smoothing is good sometimes!

Case-Study: Water Distribution Systems (WDS) [1]

45 Message Passing Layers

Estimated
I I node
features

Linear layer

Mes: ge generatiol Sum aggr.
}+ [

Multiple GCN layers

Linear
layer

* Architecture: 45 Layers - Very deep GNN
* Empirically: Less Layers results in Performance drop
* Intuition: Water in a WDS smoothes out perturbations

over the space of the graph — GCN-smoothing might
be beneficial here.

Inference Task:
* Only few installed pressure sensors
* Infer the pressure at all other nodes

Pressure Sensors
(~ 5% of nodes)

1

Loe

[1]1 L Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587




Beyond Aggregation-Based Methods

In other applications oversmoothing can prevent learning

Real-world graphs can be noisy, aggregating noise can prevent learning
Information probably not uniformly distributed on a graph

Graph sampling can focus computational resources to specific subgraphs

My current project: Sampling-based GNNs!



Sampling-Based GNN

Idea: Instead of aggregating neighborhoods, sample the neighborhood intelligently

®
©
clele

"

sample sample sample sample
O—O0—0O—0O0—
Motivation: Sampling-Based GNN GCN

- Aggregation helps with encoding structure, but causes problems
- Sampling individual neighbors reduces over-squashing and over-smoothing

- Information on a graph is not necessarily dense, but may be sparse (e.g. Molecules)



Conceptualizing the Idea

» Differentiable Exploration of Graphs by Independent ‘Samplers’, here Ants
e This allows multiple extensions that GCNs cannot apply
— Communication between samplers visiting the same node (Doubles the receptive field)
- Update of nodes on the sampling trajectory

—  Out-of-the-box explainability by observing information flow (?)



® Sampling-Based GNN

©
e We can use neighborhood attention just like a GAT to score nodes

sample sample sample sample _
o A Nt Nty N For each node u € N,

y = MLP(Ty|hy)

a=[-0.5, 0.2, -0.8, 0.4]

1. Compute edge logits of
neighborhood
(similar to a GAT)

a, = MLP(h,|h,)



® Sampling-Based GNN

©
e We can use neighborhood attention to score nodes

sample sample sample sample _
o A Nt Nty N For each node u € N,

s =1[1,0,0,..,0]

y = MLP(Ty|hy)

St aq o

Selecting the highest alpha,
would yield a gradient for

ONLY that neighbor.
a=[-0.5,0.2, -0.8, 0.4]

1. Compute edge logits of
neighborhood
(similar to a GAT)

a, = MLP(h,|h,)



® Sampling-Based GNN

e We can use neighborhood attention to score nodes

sample sample sample sample _
o - - " @ For each node u € N,
S,=[1,0,0,..,O] a'U :MLP(h/U|hu)
g e We can use a relaxation of argmax: Softmax with temperature
St aq o .
at,ev
(0) p; = softmax (—)
-
Categorical 7=0.1 7=05 7=10 7=10.0
a=[-0.5,0.2, -0.8, 0.4] ‘ I I I i

1. Compute edge logits of

neighborhood '
(similar to a GAT) l I

ay, = MLP(h,|h,) category

Figure From: https://fabianfuchsml.qgithub.io/gumbel/



® Sampling-Based GNN

e We can use neighborhood attention to score nodes

sample sample sample sample _
o - - " @ For each node u € N,
S;=[1,0,0,..,O] av — MLP<h’U|h’U,)
g e We can use a relaxation of argmax: Softmax with temperature

St aq e .

Ot e
(0) p; = softmax (—”)

-

e Thisis the still a relaxation, but we want only a single node to be sampled
from this distribution

a=[-0.5, 0.2, -0.8, 0.4]

1. Compute edge logits of
neighborhood
(similar to a GAT)

a, = MLP(h,|h,)

Figure From: https://fabianfuchsml.qgithub.io/gumbel/



.&. Straight-Through Gumbel-Softmax
S ®

e The Gumbel-Softmax is a reparameterizable
Slliple . SIS o SAE o SApie ® categorical probability function
e« We use the Gumbel-Softmax Trick to sample
w] 2~ Gumbel(0,1) one node from the edge distribution
ol &
an Y
a y4 + 52
: p: = softmax (M>
A4
- — <1 = one-hot (argmay,, ey i)
Y
L— ,@
\J
St+1
a=1[-0.5,0.2, -0.8, 0.4] s;e1 =10,1,0, .., 0]
1. Compute edge logits of 2. Sample Gumbel softmax 3. Result: winner-takes-all
neighborhood to find the next neighbor neighborhood sample.

(similar to a GAT)

(non-deterministic)

a, = MLP(h,|h,)

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation


https://arxiv.org/abs/1308.3432

.&. Straight-Through Gumbel-Softmax
S ®

sample sample sample sample @
P zi ~ Gumbel(0,1)
Y
ar )
(0%) H
A
“
i V
- -
Y
.............. -
\/
St+1
a=[-0.5,0.2, -0.8, 0.4] si+1 =10,1,0, .., 0]
1. Compute edge logits of 2. Sample Gumbel softmax
neighborhood to find the next neighbor
(similar to a GAT) (non-deterministic)

a, = MLP(h,|h,)

e This way we can generate walks along the
graph that are trainable

e Integrating the walk with a sequential model
yields the node embedding

Zt,ev + at,ev
Pt = softmax | ———2%
T

© ® s'*1 = one-hot (argmaxvev N pt)

h,= ) sit'h,

veEN (u)
st = MLP(s' + h))

3. Result: winner-takes-all
neighborhood sample.

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation


https://arxiv.org/abs/1308.3432

® Straight-Through Gumbel-Softmax

e This way we can generate walks along the
sample sample sample sample @ graph that are tralnable

e Integrating the walk with a sequential model
yields the node embedding

zZj ~ Gumbel(0,1)

Zt,ev + C_ét,ev
Pt = softmax | ———2"%

-
t+1
s = one-hot (argmaxy, < Pt)
hi} = Z Si_‘_lhv
vEN (u)
_ , _ s't! = MLP(s" +h))
Argmax is non-differentiable,
a=[-05,0.2, -0.8, 0.4] st+1 =10, | in the backward pass, we
simply bypass it and use a
1. Compute edge logits of 2. Sample Gy pjased gradient all
neighborhood to find the ne
(similar to a GAT) (non-determir\\

a, = MLP(h,|h,)

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation


https://arxiv.org/abs/1308.3432

Sampling-Based GNN ®

sample sample sample

1. Part: Sampling the neighborhood intelligently

- We can now sample the neighborhood and optimize the
predicted distribution (ST-Gumbel-Softmax)

2. Part: Integrating the Node Features from the path
- Using a Sequential Model

Potential 3. Part: Sampler Communication

- When two samplers are on the same node — exchanging state features would
double the receptive field

Potential 4. Part: Trail Information

— Comparable to Ant colony optimization, the samplers can leave information at the nodes before
they leave

sample

&—©



Sampling Trajectories — MolHIV Dataset

Prediction: 0 <-> Label: 1 Prediction: 1 <-> Label: 1

Prediction: 1 <-> Label: 1

Preliminary Results — Experiments Still Running

Open Question: What's the best way to generate explanations from

the sampling trajectories?
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This section focuses on node-level tasks

cKmarking GNNs
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YOLOv3
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Image Sources

Kitti: https://github.com/topics/kitti-dataset?l=c CelebA: https://www.tensorflow.org/datasets/catalog/celeb_a
ImageNet: https://paperswithcode.com/dataset/imagenet MNIST: https://en.wikipedia.org/wiki/MNIST_database
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A Model that performs well on ImageNet is
likely to also perform well on your own photos,
but maybe not suited for dash-cam footage.

- Different Domains / Sizes / Tasks

YO

YOLOv3

N

CN

B Tasa (D" <oC I | S
Image Sources

Kitti: https://github.com/topics/kitti-dataset?l=c CelebA: https://www.tensorflow.org/datasets/catalog/celeb_a
ImageNet: https://paperswithcode.com/dataset/imagenet MNIST: https://en.wikipedia.org/wiki/MNIST_database



Benchmarking GNNs

* Variable Structure greatly increases the number of Attributes of a
Benchmark

e |t is less intuitive what model suits which need

Task Task
Diameter
Size /
Image b Allow arbitrary Graph DePendency Range
Dataset —> omain . Dataset
Homophily €¢—
/ Structure / ~ pomain
Size Structure Relevance

Feature Relevance



Benchmarking GNNs

Variable Structure greatly increases the number of Attributes of a

Benchmark

It is less intuitive what model suits which need

— Still an open question and not well understood

Task

Image

Dataset =—J» Domain

I'd

Size

Allow arbitrary
Structure

Task
Diameter
Size

/ Dependency Range

Graph
Homophily €— _Pateset

& ~» pomain

Structure Relevance
Feature Relevance



* Atypical table header at the end of a paper:

Benchmarking GNNs

Model Cora

Pubmed Citeseer < The MNISTs of Graphs:

Some baselines
Some Related Work
Presented Work

Citation Networks

Table 1: Average node classification test accuracy results over X seeds.

What do these benchmarks tell us about
a model?

Task

Diameter
Size /
N

Graph /yDependency Range
HOmophi[y k Dataset

v ™ pomain

Structure Relevance
Feature Relevance



Pitfalls of Relying on Cora and Co.

e In this benchmark, GCN performance seems to correlate with homophily

— The tendency that edges connect similar nodes

* This aligns well with the smoothing property which might explain the difference in performance

Table 1: Results on node classification datasets sorted by their homophily level. Top three models are
coloured by First, Second, Third. Our models are marked NSD.

Texas Wisconsin Film Squirrel  Chameleon Cornell Citeseer Pubmed Cora

Hom level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81

#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708

#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278

#Classes 5 5 5 5 5 5 7 3 6
. GraphSAGE  82.4346.14  81.18+4556  34.23+0.99 41.61+0.74 58.73+168  75.95+5.01  76.04+1.30 88.45+050  86.90+1.04
Two Spatlal GCN 55.1445.16 | 51.7643.06  27.32+1.10 53.43+2.01  64.824224 60544530  76.50+1.36  88.42+050  86.98+1.27
Graph Models | GAT 52.1646.63 | 49.414+400  27.444080  40.721155  60.26+250  61.8945.05  76.55+1.23  87.30+1.10  86.33+10.48
MLP 80.81+475  85.29+3.31  36.53+0.70  28.77+1.56 46.21+2.99 81.89+6.40 74.02+190 87.16x0.37  75.69+2.00

Tabel derived from Bodnar et al. (2022) Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs



Homophily - Heterophily

e Tendency that edges connect similar nodes
* Not formalized, different ways to compute this
* Asimple formulation:

Homophile Graph Heterophile Graph

e T

H=0.98




Pitfalls of Benchmarking GNNs [1]

Relative Avg.

accuracy rank

GCN 99.4 2.3
MoNet 99.0 2.7
GS-mean 98.3 2.7
GAT 95.9 3.6
GS-meanpool 93.0 5.2
GS-maxpool 91.1 6.4
LabelProp NL  89.3 7.4
LabelProp 86.6 7.7
LogReg 80.6 8.8
MLP 77.8 8.8

(a) Relative accuracy and average rank.

Planetoid split CORA CiteSeer = PubMed
GCN 81.9+0.8 69.5+£0.9 79.0+0.5
GAT 828+05 71.0+06 77.0+1.3
MoNet 822+0.7 700+£06 77.7+0.6
GS-maxpool 774+1.0 67.0+1.0 76.6+0.8

IAnother split I CORA CiteSeer = PubMed

GCN 79.0+0.7 68.6+1.1 69.5+1.0
GAT 779+0.7 67.7+12 69.5+0.6
MoNet 779+0.7 66.8+£13 70.7+0.5
GS-maxpool 745+06 63.1+£12 70.3+038

(b) Different split leads to a completely different ranking of models.

Table 2: (a) Relative accuracy scores and ranks averaged over all datasets. See text for the definition.
(b) Model accuracy on the Planetoid split from [Yang et al! [2016] and another split on the same

datasets. Different splits lead to a completely different ranking of models.

Different Data-Splits can lead to significantly different results
— Simpler Architectures even outperform more sophisticated ones
— Usually the data splits are the same across papers

[1] Oleksandr et al. (2019) Pitfalls of Graph Neural Network Evaluation



Pitfalls of Benchmarking GNNs [1]

* Another finding:
Different weight initialization methods can
produce vastly different results as well %

60

* A complete hyperparameter search with
cross validation for each configuration?

40

test accuracy (%)

w5

[1] Oleksandr et al. (2019) Pitfalls of Graph Neural Network Evaluation
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Google’s ETA Prediction
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Derrow-Pinion et al. (2021) ETA Prediction with Graph Neural Networks in Google Maps
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Evaluation runs on LAX (Horizon 3600)

Evaluation runs on TYO (Horizon 0)
—— Adam, no EMA —— Adam, no EMA
—— MetaGradients, no EMA —— MetaGradients, no EMA
—— MetaGradients, EMA=0.99 —— MetaGradients, EMA=0.99
53.00 51.00
|
52.50 || 50.50
w w
0w 0
= =
o -4 ‘
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400 49.00
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Training iterations (millions)

Training iterations (millions)

Figure 3: Validation RMSE during training, with and without MetaGradients and EMA decay, aggregated across five seeds. Both
methods contribute to variance reduction. Results shown for two metro/horizon setups — same trends hold elsewhere.

Applying stabilising techniques such as MetaGradients and EMA
[(Exponential Moving Average)] was a necessary addition to make
the GNNs production-ready.

Derrow-Pinion et al. (2021) ETA Prediction with Graph Neural Networks in Google Maps



LH

| asked ChatGPT

What aspects of benchmarking graph neural networks are important?

Benchmarking graph neural networks is an important part of evaluating their
performance and comparing different models. Some of the key aspects to consider when
benchmarking graph neural networks include the quality of the graph data used for
training and evaluation, the specific tasks and metrics used to evaluate the performance
of the model, and the computational resources required to train and evaluate the model.
Additionally, it is important to consider the scalability of the model and its ability to

generalize to new, unseen data.



S

What are the pitfalls on GNN evaluation?

There are several potential pitfalls to be aware of when evaluating the performance of a

graph neural network (GNN). Some of the most common pitfalls include the following:

1.

Using the wrong evaluation metric: It is important to use evaluation metrics that are
appropriate for the specific task and type of data being considered. For example,
accuracy may be a good metric for evaluating a GNN that is used for node
classification, but it may not be appropriate for evaluating a GNN that is used for link

prediction.

. Failing to account for the underlying structure of the graph: GNNs are designed to take

advantage of the structure of the graph data they operate on, so it is important to
carefully consider how this structure affects the performance of the GNN. For example,
a GNN may perform well on a particular type of graph, but poorly on a different type of

graph with a different structure.

. Failing to account for the diversity of the data: The performance of a GNN may vary

depending on the diversity of the data it is applied to. It is important to evaluate a GNN

on a diverse set of data to ensure that it can generalize to different types of graphs.

. Failing to account for the size of the graph: The performance of a GNN may vary

depending on the size of the graph it is applied to. It is important to evaluate a GNN on

arange of graph sizes to ensure that it can handle graphs of different sizes.

Overall, it is important to carefully consider these and other potential pitfalls when

evaluating the performance of a GNN, in order to accurately assess its capabilities and

limitations.



S

There are several potential pitfalls to be aware of whq

graph neural network (GNN). Some of the most comm

. Using the wrong evaluation metric: It is important £

. Failing to account for the underlying structure of the

What are the pitfalls on GNN evaluation? / ]
There is not really a good

way to quantify this.
Also, we have features
AND structure.

™

_

appropriate for the specific task and type of data being con
accuracy may be a good metric for evaluating a GNN that i
classification, but it may not be appropriate for evaluati
prediction.
ph: GNNs are designed to take
advantage of the structure of the graph data they operate on, so it is important to

carefully consider how this structure affects the performance of the GNN. For example,
a GNN may perform well on a particular type of graph, but poorly on a different type of

graph with a different structure.

. Failing to account for the diversity of the data: The performance of a GNN may vary

depending on the diversity of the data it is applied to. It is important to evaluate a GNN

on a diverse set of data to ensure that it can generalize to different types of graphs.

. Failing to account for the size of the graph: The performance of a GNN may vary

depending on the size of the graph it is applied to. It is important to evaluate a GNN on

arange of graph sizes to ensure that it can handle graphs of different sizes.

Overall, it is important to carefully consider these and other potential pitfalls when
evaluating the performance of a GNN, in order to accurately assess its capabilities and

limitations.



Jointly Benchmarking Datasets and Models

Taxonomy of Benchmarks in Graph Representation

Learning
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Graph Perturbations

Perturb datasets by several means and look at the performance
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Graph Perturbations

Perturb datasets by several means and look at the performance

e iz N
P o F
Feature Augmentations <
(a) original (b) LowPass (c) MidPass (d) HighPass (e) NoNodeFtrs (f) NodeDego
.o %%

A D - S R R
e
-fé 5 -q:'g «FJ

¢ =t = rat
P, 7 ~/r g% @
Structure Augmentations Structure and Feature Augmentations

(g) NoEdges (h) FullyConn (1) Frag. k=1 (G)Frag. k=2 (k) Frag. k=3 (1) FiedlerFrag



WebKB-Cor 7%  81%  85% |} 109% 103% 100% 99%

—— WebKB-Wis 83% 89% 96% JI101%  99% 99% 99% 0.88
95% 97% 97% 99% 99% 99% 99% 0.71
T-1 76% 90% 97% 96% J103% 98% 99% 98% 0.66

97% 105% 100% 103% f} 99% 100% 100% 100%

o
~
[{e]

94% 100% 97%  99% J| 95% 98% 99% 99% |JGEE

77% | 89% 100% 97% 97% [198% 99% 99% 100% |[JEEEH

76% | 93% 99% 97% 98% || 99% 99% 100% 99%

— Coau-CS 80% 97% 100% 99%  99% || 99% 100% 100% 100%

— Coau-Phy 88% 99% 100% 99%  100% || 99% 100% 100% 100%

_[ FBPP 87% 99% 100% 100% 100% | 94% 97% 98%  98%

LFMA 87% 98% 99% 9% 97% |1 93% 97% 97% 97% (JEK&H

CF-Cora I 83% 96% 100% 90% 93% || 94% 97%  98%  98%
_[ CF-CoraML | 83%  98%  99% 94% 97% |} 95% 99% 99%  99% |[JEEE

CF-DBLP 85% 96% 100% 94% 97% |1 93% 97% 98% 98% |JEEEH
T-2 Flickr 85% 95% 102% 95%  97% || 92% 93% 94% 94% |02
_ WikiNet-squir | 96%  111% 112% 99% 102% [} 101% 101% 102% 102% | 0.64

Github 94% 100% 101% 99% 99% || 97% 98% 98% 99% |[JEEN

Am-Phot 96%  99% 100% 99%  100% || 99% 100% 100% 100%

Am-Comp | 97% 100% 100% 100% 100% || 98%  99%  99%  100%
Twitch-PT | 100%  95% 102% 96%  96% || 98% 96%  95% 102% | 0.64
Twitch-DE | 100% 98% 101% 98%  98% || 96% 96% 96% 100% | 0.71
Twitch-ES 96% 92% 101% 98%  97% || 95% 96% 97% 98% | 0.69
Twitch-EN 93% 92% 100% 97%  97% || 98% 99% 97% 98% | 0.65

- WebKB-Tex | 98% 101% | 84%  88% 114% ||105% 98% 97% 101% (BN
SIS B & £ O g Ll @

‘;Obe(’( ‘\obé) \,'55t§2 ®\§ \2\\@8 ééobq «® Q@Q Q&Q’ ogq‘oo

PO




WebKB-Cor 7%  81%  85% |} 109% 103% 100% 99%

—— WebKB-Wis 83% 89% 96% JI101%  99% 99% 99% 0.88
95% 97% 97% 99% 99% 99% 99% 0.71
T-1 76% 90% 97% 96% J103% 98% 99% 98% 0.66

97% 105% 100% 103% f} 99% 100% 100% 100%

o
~
[{e]

94% 100% 97% 99% |} 95% 98% 99%  99% (|HEER
77% | 89% 100% 97% 97% [198% 99% 99% 100% |[JEEEH
76% 93% 99% 97%  98% f] 99%  99% 100%  99%
L Coau-CS 80% 97% 100% 99%  99% || 99% 100% 100% 100%
— Coau-Phy 88% 99% 100% 99%  100% || 99% 100% 100% 100%
_[ FBPP 87% 99% 100% 100% 100% | 94% 97% 98%  98%
LFMA 87% 98% 99% 9% 97% |1 93% 97% 97% 97% (JEK&H
CF-Cora I 83% 96% 100% 90% 93% f| 94% 97% 98%  98%
_[ CF-CoraML | 83% 98% 99% 94% 97% || 95% 99% 99% 99% [[JGEE
CF-DBLP 85% 96% 100% 94% 97% |1 93% 97% 98% 98% |JEEEH
T-2 Flickr 85% 95% 102% 95% 97% |} 92% 93% 94% 94% [072
_ WikiNet-squir | 96%  111% 112% 99% 102% || 101% 101% 102% 102% | 0.64
Github 94% 100% 101% 99% 99% || 97% 98% 98% 99% |[JEEN
Am-Phot 96% 99% 100% 99% 100% |} 99% 100% 100% 100%
Am-Comp 97% 100% 100% 100% 100% f| 98%  99%  99%  100%
Twitch-PT 100% 95% 102% 96%  96% [l 98% 96% 95% 102% | 0.64
Twitch-DE 100% 98% 101% 98%  98% || 96% 96% 96% 100% | 0.71
Twitch-ES 96% 92% 101% 98% 97% || 95% 96% 97% 98% | 0.69
Twitch-EN 93% 92% 100% 97% 97% |} 98% 99% 97% 98% | 0.65
————— WebKB-Tex | 98% 101% | 84% | 88%  114% |1105% 98% 97% 101% [MENEH
Feature Augmentations Stricture &
Augmentations 0*;:%0




WebKB-Cor

—— WebKB-Wis

— Coau-CS
— Coau-Phy

FBPP

{ LFMA

CF-CoraML

CF-DBLP

T-2 Flickr

-3 WikiNet-squir
Github
Am-Phot
Am-Comp
Twitch-PT
Twitch-DE
— Twiitrh EQ

80%
88%
87%
87%
83%
83%
85%
85%
96%
94%
96%
97%
100%
100%

QROL

76%
97%
94%
89%
93%
97%
99%
99%
98%
96%
98%
96%
95%
111%
100%
99%
100%
95%
98%

Q2oL

7%
83%
95%
90%
105%
100%
100%
99%
100%
100%
100%
99%
100%
99%
100%
102%
112%
101%
100%
100%
102%
101%

1N10L

81%
89%
97%
97%
100%
97%
97%
97%
99%
99%
100%
98%
90%
94%
94%
95%
99%
99%
99%
100%
96%
98%

QoL
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Benchmarking Takeaways

* Cora, Pubmed, Citeseer — the MNISTs of Graphs
— Often demanded by reviewers
— High variance depending on splits and hyperparameters
— Testing only on these provides a narrow view of the performance of GNNs
* We don’t have a solid understanding what aspects graph benchmarks evaluate

— The Benchmark Taxonomy is a great start

— It is still not very clear what is the best and most fair
method to evaluate GNNs



Thank You So Much!
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