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● Graphs as a Data Structure
● Introduction to Graph Neural Networks

– How to represent structure

– GNNs are local operations

● ConvNets are specialized grid GNNs
● Aggregation can lead to Oversmoothing
● Case Study: Water Distribution Networks
● My current project: Sampling-based GNNs
● Benchmarking GNNs

A topic often overlooked



  

What are Graphs?

● A Graph G consists of a set of nodes V and edges E
G = (V, E)
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Graphs are Everywhere
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When the data contains multiple manifestations of similar 
things and these things are relatable, then it is a graph:

 Thing Relation

Images Pixels – Proximity

Text Words – Context/Proximity

Molecules Atoms – Bonds

Ontologies Subject/Object – Predicate

Social User – Relationship

Point Cloud 3D-Point – Proximity

Research Paper – Citation



  

What are Graph Neural Networks?

● Functions that embeds nodes 
based on structure and node 
features

● Two nodes in a similar structural 
context should be mapped to 
similar locations

Node Embedding Space



  

● Two nodes in a similar structural context 
should be mapped to similar locations
→ This is equivalent to discriminating 
     subgraphs

● Node 20 and 18 have a similar subgraph, 
they should be close in the latent space

→ How to compare these subgraphs?

d-dimensional Latent space



  

● Canonically represents structure
● Algorithm:

The Weisfeiler-Lehman Test

B. Weisfeiler, A. Lehman: The reduction of a graph to canonical form and the algebra which appears therein (1968)
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● A Graph Convolution (GCN) is a 
differentiable version of the WL-Algorithm

● Instead of a hash function, a GCN applies 
set aggregation and a consecutive MLP

WL node update:

GCN node update:

WL-Test - Graph Convolution

Kipf et al.: Semi-Supervised Classification with Graph Convolutional Networks

https://arxiv.org/abs/1609.02907


  

From Set-Hash to Set-MLP

Seed: 442 Seed: 442



  

● How to replace the Hash function with an MLP

What happens locally in a GNN?

Seed: 442 Seed: 442



  

What happens locally in a GNN?

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

No canonical ordering of 
nodes in a neighborhood



  

What happens locally in a GNN?

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

No canonical ordering of 
nodes in a neighborhood

How are we encoding these 
neighborhoods?

With a permutation invariant function, 
i.e. a function that satisfies:

Permutation 
Matrix

Neighborhood Node Set



  

What happens locally in a GNN?

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

No canonical ordering of 
nodes in a neighborhood

Possible Perm. Invariant Functions that 
map a Set onto a vector:

Sum - Perm. Invariant
Mean - Perm. Invariant
Attention - Perm. Invariant
Concat? - Perm. Sensitive



  

What happens locally in a GNN?

● Node neighborhoods remain the same under permutation

Seed: 442 Seed: 442

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

A function parameterized 
by theta, e.g. an MLP

Permutation invariant 
aggregation function 
(sum/mean/...)

[1] Zaheer et al. NeurIPS 2017 Deep Sets



  

Message Passing Principle

● Node neighborhoods remain the same under permutation
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Message Passing Principle
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Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

2. Message aggregation

[1] Zaheer et al. NeurIPS 2017 Deep Sets

1. Message Generation



  

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

Message Passing Principle

● Node neighborhoods remain the same under permutation

.

.

.

[1] Zaheer et al. NeurIPS 2017 Deep Sets

2. Message aggregation

1. Message Generation

Replicate across the space of 
the graph (weights shared)



  

Parameterized Set Aggregation [1]:

Graph Neural Networks Backbone

Message Passing Principle

● Node neighborhoods remain the same under permutation

.

.

.

[1] Zaheer et al. NeurIPS 2017 Deep Sets

2. Message aggregation

The expressivity of a GNN is tied to 
the injectivity of this aggregation 
function.

1. Message Generation



  

Expressivity of the Aggregation Function

[1] Xu et al. (2018) How Powerful are Graph Neural Networks?



  

Message Passing Principle



  

Message Passing Principle

Computing Graph → Structural Sensitivity!



  

Graph Neural Networks

GNN1 GNN2

Node Predictions



  

Graph Neural Networks

GNN1 GNN2

Node Predictions

Graph Prediction



  

Graph Neural Networks

GNN1 GNN2

Graph Prediction

Node PredictionsEdge Predictions



  
[1.1] Blog-Post (Video) https://tkipf.github.io/graph-convolutional-networks/
[1.2] Kipf et al. (2017) https://arxiv.org/abs/1609.02907 

Latent Space of a GCN [1.1]
D

im
en

si
on

 1

Model: GCN [1.2]
Time: Training Epochs
Embedding Size: 2

Dimension 0



  

● This is the GAT - Graph Attention Network
● A parameterized attention function scales neighbors prior to aggregation
● This attending to node neighbors helps focusing on discriminative nodes

Example: Graph Attention Network [1]

2. Message aggregation

Attention Function
weights each neighbor

[1] Veličković et al. (2017) Graph Attention Networks



  

Example: Images are Graphs

Image Image Graph 1-Hop Subgraph
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Example: Images are Graphs

Image Adjacency Matrix 1-Hop Subgraph
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Pixel 5 is connected to Pixel 6



  

Example: Images are Graphs

Image Adjacency Matrix 1-Hop Subgraph

This this the circulant 
matrix used in ConvNets 
implementations, 
(different color denotes 
different kernel weight)



  

Convolution Priors
● Locality: 

Applies a local kernel operation onto a neighborhood of pixels
● Translational Symmetry: 

A pattern is recognized independent of it’s location
● Cannonical Orientation:

Allows us to impose an ordering on the pixels

Cannonical

Pixel Ordering



  
Image Source: https://chemistry.com.pk/infographics/functional-groups-in-organic-chemistry/

Local Motivs / Primitives that can be learned by 
Local Functions



  

Questions so far?

2. Message aggregation

1. Message Generation



  

Deep Graph Neural Networks?

● Repetitive Aggregations are smoothing out the signal!

● This is the Oversmoothing Problem [1]

● Oversmoothing happens proportional to graph diameter and node degree [2]

The signal looses it’s details!
Nodes become indistinguishable

[1] Oono et al. (2020) https://arxiv.org/abs/1905.10947
[2] M. Bronsteins Post (2020) https://towardsdatascience.com/do-we-need-deep-graph-neural-networks-be62d3ec5c59
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(Over-)Smoothing is good sometimes!

Pressure Sensors 
(~ 5% of nodes)

Inference Task:
● Only few installed pressure sensors
● Infer the pressure at all other nodes

Case-Study: Water Distribution Systems (WDS) [1]

[1] I. Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587
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45 Message Passing Layers
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ours
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ours
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(Over-)Smoothing is good sometimes!

Pressure Sensors 
(~ 5% of nodes)

Inference Task:
● Only few installed pressure sensors
● Infer the pressure at all other nodes

Case-Study: Water Distribution Systems (WDS) [1]

45 Message Passing Layers

[1] I. Ashraf, L. Hermes, B. Hammer (2022) Spatial Graph Convolution Neural Networks for Water Distribution Systems; https://arxiv.org/abs/2211.09587

● Architecture: 45 Layers - Very deep GNN
● Empirically: Less Layers results in Performance drop
● Intuition: Water in a WDS smoothes out perturbations 

over the space of the graph → GCN-smoothing might 
be beneficial here.



  

Beyond Aggregation-Based Methods

● In other applications oversmoothing can prevent learning
● Real-world graphs can be noisy, aggregating noise can prevent learning
● Information probably not uniformly distributed on a graph
● Graph sampling can focus computational resources to specific subgraphs
● My current project: Sampling-based GNNs!



  

GCNSampling-Based GNN

Sampling-Based GNN

● Idea: Instead of aggregating neighborhoods, sample the neighborhood intelligently

● Motivation:

– Aggregation helps with encoding structure, but causes problems

– Sampling individual neighbors reduces over-squashing and over-smoothing

– Information on a graph is not necessarily dense, but may be sparse (e.g. Molecules)



  

Conceptualizing the Idea

● Differentiable Exploration of Graphs by Independent ‘Samplers’, here Ants
● This allows multiple extensions that GCNs cannot apply

– Communication between samplers visiting the same node (Doubles the receptive field)

– Update of nodes on the sampling trajectory

– Out-of-the-box explainability by observing information flow (?)



  

Sampling-Based GNN

● We can use neighborhood attention just like a GAT to score nodes

– For each node



  

Sampling-Based GNN

● We can use neighborhood attention to score nodes

– For each node

Selecting the highest alpha, 
would yield a gradient for 
ONLY that neighbor.



  

Sampling-Based GNN

● We can use neighborhood attention to score nodes

– For each node

● We can use a relaxation of argmax: Softmax with temperature

Figure From: https://fabianfuchsml.github.io/gumbel/



  

Sampling-Based GNN

● We can use neighborhood attention to score nodes

– For each node

● We can use a relaxation of argmax: Softmax with temperature

● This is the still a relaxation, but we want only a single node to be sampled
from this distribution

Figure From: https://fabianfuchsml.github.io/gumbel/



  

Straight-Through Gumbel-Softmax

● The Gumbel-Softmax is a reparameterizable
categorical probability function 

● We use the Gumbel-Softmax Trick to sample 
one node from the edge distribution

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

https://arxiv.org/abs/1308.3432


  

Straight-Through Gumbel-Softmax

● This way we can generate walks along the 
graph that are trainable

● Integrating the walk with a sequential model 
yields the node embedding

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

https://arxiv.org/abs/1308.3432


  

Straight-Through Gumbel-Softmax

● This way we can generate walks along the 
graph that are trainable

● Integrating the walk with a sequential model 
yields the node embedding

[1] Bengio et al.: Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

Argmax is non-differentiable, 
in the backward pass, we 
simply bypass it and use a 
biased gradient

https://arxiv.org/abs/1308.3432


  

Sampling-Based GNN

● 1. Part: Sampling the neighborhood intelligently
– We can now sample the neighborhood and optimize the

predicted distribution (ST-Gumbel-Softmax)
● 2. Part: Integrating the Node Features from the path

– Using a Sequential Model
● Potential 3. Part: Sampler Communication

– When two samplers are on the same node – exchanging state features would 
double the receptive field

● Potential 4. Part: Trail Information

– Comparable to Ant colony optimization, the samplers can leave information at the nodes before 
they leave



  

Sampling Trajectories – MolHIV Dataset

Preliminary Results – Experiments Still Running
Open Question: What’s the best way to generate explanations from

the sampling trajectories?



  

Benchmarking GNNs

Size

Homophily

Task

Domain       

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset



  

Benchmarking GNNs

Size

Homophily

Task

Domain       

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset

This section focuses on node-level tasks



  

Image Benchmarks

Image Sources
Kitti: https://github.com/topics/kitti-dataset?l=c CelebA: https://www.tensorflow.org/datasets/catalog/celeb_a
ImageNet: https://paperswithcode.com/dataset/imagenet MNIST: https://en.wikipedia.org/wiki/MNIST_database



  

Image Benchmarks

Image Sources
Kitti: https://github.com/topics/kitti-dataset?l=c CelebA: https://www.tensorflow.org/datasets/catalog/celeb_a
ImageNet: https://paperswithcode.com/dataset/imagenet MNIST: https://en.wikipedia.org/wiki/MNIST_database

A Model that performs well on ImageNet is 
likely to also perform well on your own photos, 
but maybe not suited for dash-cam footage.

→ Different Domains / Sizes / Tasks



  

● Variable Structure greatly increases the number of Attributes of a 
Benchmark

● It is less intuitive what model suits which need

Allow arbitrary

Structure

Benchmarking GNNs
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● Variable Structure greatly increases the number of Attributes of a 
Benchmark

● It is less intuitive what model suits which need

→ Still an open question and not well understood

Allow arbitrary

Structure

Benchmarking GNNs
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Benchmarking GNNs

● A typical table header at the end of a paper:

● What do these benchmarks tell us about 
a model?

Size

Homophily

Task

Domain         

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset

The MNISTs of Graphs:
Citation Networks



  

Pitfalls of Relying on Cora and Co.

● In this benchmark, GCN performance seems to correlate with homophily

– The tendency that edges connect similar nodes

● This aligns well with the smoothing property which might explain the difference in performance

Tabel derived from Bodnar et al. (2022) Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs 

Two Spatial 
Graph Models



  

Homophily - Heterophily

● Tendency that edges connect similar nodes

● Not formalized, different ways to compute this

● A simple formulation:



  

Pitfalls of Benchmarking GNNs [1]

Different Data-Splits can lead to significantly different results
→ Simpler Architectures even outperform more sophisticated ones

→ Usually the data splits are the same across papers
[1] Oleksandr et al. (2019) Pitfalls of Graph Neural Network Evaluation



  

Pitfalls of Benchmarking GNNs [1]

● Another finding: 
Different weight initialization methods can
produce vastly different results as well

● A complete hyperparameter search with 
cross validation for each configuration?

[1] Oleksandr et al. (2019) Pitfalls of Graph Neural Network Evaluation



  

Google’s ETA Prediction

Derrow-Pinion et al. (2021) ETA Prediction with Graph Neural Networks in Google Maps



  

Google’s ETA Prediction

Derrow-Pinion et al. (2021) ETA Prediction with Graph Neural Networks in Google Maps

     Applying stabilising techniques such as    MetaGradients and EMA
   [(Exponential Moving Average)]       was a necessary addition to make

  the GNNs production-ready.
“



  

I asked ChatGPT



  



  

There is not really a good
way to quantify this.

Also, we have features 
AND structure.



  

Jointly Benchmarking Datasets and Models



  

Graph Perturbations

● Perturb datasets by several means and look at the performance



  

Graph Perturbations

● Perturb datasets by several means and look at the performance

Feature Augmentations

Structure Augmentations Structure and Feature Augmentations



  

Benchmarking the Benchmarks



  

Benchmarking the Benchmarks

Feature Augmentations Structure 
Augmentations



  

Benchmarking the Benchmarks

Feature Augmentations Structure 
Augmentations

● Some benchmarks heavily rely on informative node features
● Many Benchmarks don’t actually focus heavily on structure.
● Authors Propose to benchmark on Datasets from each of these clusters T-1, T-2, T-3



  

Benchmarking the Benchmarks

● Perturbe datasets by several means and look at the performance



  

Benchmarking Takeaways

● Cora, Pubmed, Citeseer – the MNISTs of Graphs
– Often demanded by reviewers

– High variance depending on splits and hyperparameters

– Testing only on these provides a narrow view of the performance of GNNs

● We don’t have a solid understanding what aspects graph benchmarks evaluate 
– The Benchmark Taxonomy is a great start

→ It is still not very clear what is the best and most fair 
method to evaluate GNNs 



  

Thank You So Much!

Any Questions?Size

Homophily

Task

Domain         

Diameter

Feature Relevance
Structure Relevance

Dependency Range
Graph

Dataset
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