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Image classification

Input: RGB Image
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Semantic segmentation
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Domain Shift

Change of distribution: Training (=source) Ps — deployment (target) Pr

source
distribution

X - input space, covariates
Y - output space
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learnt decision boundary on source — and target — distributions
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Detecting Domain Shift

Supervised learning works well on training data distribution, but performance
may drop arbitrarily under domain shift.

Detection of domain shift can be based on;

1. Performance on a subset of labelled target data — expensive, how often?
2. |Input properties — is it indicative of model performance?
3. Classifier outputs properties — directly related to performance

Related: Novel class detection, anomaly detection

Suggested paper:
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift



https://proceedings.neurips.cc/paper_files/paper/2019/file/846c260d715e5b854ffad5f70a516c88-Paper.pdf

Dealing with Domain Shift

Options:
e Get new data, retrain (=remove the domain shift)
e Finetune on a small amount of data (=supervised domain adaptation)
e Prior shift: Prior shift adaptation ie based on confusion matrices
e Covariate shift: Most computer vision works

Link: Impossibility Theorems for Domain Adaptation Which assumptions
suffice to provide performance guarantees on the success of domain
adaptation algorithms?



https://proceedings.mlr.press/v9/david10a/david10a.pdf

Domain Adaptation (DA)

Motivation: Domain shift is the reason why a classifier performing well on the
evaluation set performs poorly at deployment

Domain shift is common - few things do not change over time.

Examples:

e adapting a general LLM to medical documents
e diagnostics during an epidemic of a new disease
e people aging (personal identification system)




Prior Shift Adaptation

D - decision, Y - ground truth

Confusion matrix COIIy with values of P(D=i|Y=Kk)
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Domain Adaptation Scenarios

There are many realistic formulations, assuming whether

e labelled target data are available at training time -
domain shift known in advance

e we have access to the training (source) data

e target distribution is static or changes continually

e samples at deployment time considered separately or all at once



domain adaptation

train
S
T
test
T

S - source distribution data
T - target distribution data

domain generalization



Domain generalization

Visualization of style statistics
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Domain Generalization with MixStyle (arxiv)

Observation: Visual domain is closely related to style, which is encoded by
bottom CNN layers.

ldea: Increase domain diversity of source data by style-mixing low-level
features, inspired by adaptive instance normalization.

instance normalization adaptive instance normalization
x — u(zx) z — p(z)
=y AdalN(z) = :
IN(z) = v— @ + B alN(z) = o(y) o@) T (y)
mixStyle
Ymiz = Ao (z) + (1 — A)o(2) x — u(x)

Bosin = )\,u(:z:) -+ (1 — /\)'u,(j) MixStyle(z) = 7mimw + Bmix


https://arxiv.org/pdf/2104.02008.pdf

supervised DA

train
SL
TL
test
T

S - source distribution data
T - target distribution data

semi-supervised DA

L - labelled data
U - unlabelled data

unsupervised DA



Fourier Domain Adaptation for Semantic Segmentation

Link: arxiv

Unsupervised domain adaptation by replacing low-level frequencies of source
images with those of target images

Source Image

Inverse FFT
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Target Image

Source Image in Target Style
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https://arxiv.org/pdf/2004.05498.pdf

Unsupervised Domain Adaptation by Backpropagation

Link; https://proceedings.mlr.press/v37/ganin15.pdf
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Multiply domain-classifier branch gradient to ensure similar feature
distribution across domains



https://proceedings.mlr.press/v37/ganin15.pdf
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domain adaptation
train

test

S - source distribution data
T - target distribution data

M - model
D - domain

continual domain adaptation
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online domain adaptation (continual) test-time adaptation
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Online Domain Adaptation for Semantic Segmentation

in Ever-Changing Conditions
Link: https://arxiv.org/pdf/2207.10667.pdfarxiv
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https://arxiv.org/pdf/2207.10667.pdf

Target
samples Xx¢

Buffer
samples Xrp

Buffer
labels yrp

Complicated pipeline involving many different steps

Switching Policy
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Test-Time Adaptation (TTA)

Unsupervised, source-free (no training domain data) domain adaptation
Most methods are inspired by semi-supervised learning

Possible methods classifications:

/\

e input space adaptation e |earnable parameter adaptation via
e feature space adaptation self-supervised losses
e output space adaptation e input/feature statistics adaptation,

ie. batch-norm mean and variance
e prototype-based adaptation



Input Space Adaptation



Back to the Source: Diffusion-Driven Test-Time Adaptation

Link: arxiv

(a) Setting: Multi-Target Adaptation (b) Cycle-Consistent Paired Translation (c) DDA (ours): Many-to-One Diffusion


https://arxiv.org/pdf/2207.03442.pdf

corrupted forward reverse+ DDA
image +reverse refinement
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Feature Space Adaptation



Test-Time Training with Masked Autoencoders

Link: NeurlPS
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Source: He, Kaiming, et al. "Masked autoencoders are scalable vision learners.” Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.


https://proceedings.neurips.cc/paper_files/paper/2022/file/bcdec1c2d60f94a93b6e36f937aa0530-Paper-Conference.pdf

Model: Shared encoder, separate reconstruction and classification heads
Training time: Optimize classification and reconstruction loss jointly
Test time: Optimize shared encoder via reconstruction loss

Works with as little as a single image!

Oriinal Image

Masked Image

Reconstruction: 0.63  Reconstruction: 0.60  Reconstruction: 0.58
Classification: 4.81 Classification: 2.88 Classification: 2.36

Step 0 Step 50 Step 500



Output Space Adaptation



Test-time adaptable neural networks for robust medical
image segmentation (link)

Learn a network translating output in the target domain to resemble outputs

in the source domain. The translated output is used as supervision to update
the image normalization module.
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https://www.sciencedirect.com/science/article/pii/S1361841520302711

Batch-Norm (BN) Statistics and
Prototype-Based Adaptation



Dynamically Instance-Guided Adaptation: A
Backward-free Approach for Test-Time Domain
Adaptive Semantic Segmentation (link)

Distribution adaptation module - mixes instance and source BN statistics

Semantic adaptation module - combines historical and instance-level

prototypes to adjust predictions
Source DIGA
Model Model

E_Feature
Head

Xt
—>



https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_Dynamically_Instance-Guided_Adaptation_A_Backward-Free_Approach_for_Test-Time_Domain_Adaptive_CVPR_2023_paper.pdf

Distribution adaptation
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Semantic adaptation
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Our Work



Single Image Test-Time Adaptation for Segmentation

State of research on Test Time Adaptation (TTA) for segmentation
e each work uses a very different setup
e comparison to few outdated baselines

Our work

e adaptation to a single, isolated image at test-time
o no issues with catastrophic forgetting, source parameters always restored
o simplified setup for method analysis and comparison
e no assumptions about network architecture
o BN-based methods can't be used
e diverse set of methods inspired by other tasks and domains
o methods based on optimizing a self-supervised loss function



Segmentation and Domain Shift

image

prediction

training domain

domain shift

Segmentation - assign a label to
each pixel

Predicted by SAMP!;
SegmentAnything Model trained on a
billion of masks released in April ‘23,
SoTA
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TTA with Self-Supervised Loss Functions

TTA
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TTA hyper-parameters

Hyper-parameters considered: Number of adaptation iterations, learning rate,
self-supervised loss parameters.

Deployment domain shift unknown — Use training set + synthetic corruptions



Synthetic Corruptions

Evaluation and hyper-parameter tuning
in a controlled environment.

shot noise
brightness
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ENT: Entropy Minimization (Baseline)

N
W,y = argmin Z s; - log(s;)

Wn,On -
ns¥n i—1

W, Pn parameters of the normalization layers of the encoder and
the decoder, respectively
_ P w : _ : :
s=dj oe (x) segmentation prediction of input image x
Si segmentation prediction for pixel i

N total number of pixels 42



REF: Mask-Refinement-Based TTA

clean
e * frozen
= %k trainable
4 segmenter
corrupted
LN =
segmenter Refinar

\ _

No prior knowledge about domain shift kind

— images altered with targeted adversarial perturbations to produce
corrupted segmentation.

43



dloU: Deeep loU surrogate

#  frozen
sk trainable
Segmenter
%
Segmenter

Surrogate

Corruptions not known in advance - adversarial attack is used to corrupt the

images!
44



Domain Shift Simulation; Adversarial Attack

Iteratively optimize an imperceptible perturbation of the image to change the
model output. First iterations lead to very realistic mask corruptions.

. . mask before mask early mask after image after
~Inputimage attack during attack attack attack

e

adversarial attack 45



ADV: Adversarial Transformation

wk, ok = argmin Ly (s,s')

W'n.a'von
Wn,¥n parameters of the normalization layers of the encoder and
the decoder, respectively
s=df o e’ () segmentation prediction of clean image x
g = d:f o ew(x’) segmentation prediction of corrupted image x’

Lxr(s,d) reverse KL divergence loss
46



AugCo: Augmentation Consistency

Only self-train on pixels with consistent between augmentations (crop, color
jitter) or with high prediction confidence
prediction on cropped

cropped prediction

consistent mask

STs -
-

confident mask _ consistent | confident
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Experiments
Training (source) domain:

Synthetic driving dataset (GTA5S)

TTA learning rate, number of iterations:
Training set + synthetic corruptions

Deployment (unknown target domain):

e Real driving dataset (cityscapes)
e Real adverse weather condition driving
datasets (ACDC) e




iteration 1 iteration 3 iteration 5 iteration 7 iteration 9

Figure 11. Evolution of masks over iterations of a projected gradient descent adversarial attack on the input image, the target being mask
inversion for all of the classes. These masks serve as training data for the refinement module.



Validation: Results and Insights



Overall-optimal hyper-parameters
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Per-type-per-severity-optimal hyper-parameters
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Loss functions matter

All (when applicable) baseline methods improve by using soft loU loss instead
of cross entropy, most likely because of large class imbalance.

PL Ref AugCo
params | full full norm norm | full full norm norm| full full norm norm
loss ce iou ce iou | ce iou ce iou | ce iou ce iou
NA 35.18 35.18 35.18 35.18|35.18 35.18 35.18 35.18|35.18 35.18 35.18 35.18

TTA o
Aaps

35.54 37.21 35.60 37.09
036 2.03 042 190

35.18 38.69 36.88 36.50
—e 351 1.70 1.32

3527 35.66 3535 35.39
0.09 048 0.17 0.21




loU Error of TTA Methods on All Corruptions (~600 images)
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Oracle - best method per
image is known

Oracle+ - best method and
iteration per image is
known

NA - non-adapted results

clean - non-corrupted
images

All methods except for
oracle+ are evaluated in
the last iteration (10) with
the best overall learning

rate for that method
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Deployment (test) Results
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citysc'apes acdé—fog acdc—vnight acdc-rain
method

dataset metric NA Ref PL Ent AugCo
Citvecangs  MIOUs 3440 3471 37.14 3511 3545
YSCAPES - ToU, 2871 28.64 3070 29.09 29.48
mloU; 32.03 3598 35.67 33.93 31.82
ACDC-og | 10, 24.87 2729 27.52 2600 24.69
.. mloU; 13.60 14.12 15.09 14.13 14.15
ACDC-night 75, 1077 1096 11.53 1068 11.01
ACDC.raiy  ™IOUs 33.52 3561 37.17 3505  34.36
mloU, 26.15 27.40 28.47 2689 26.66
mloU; 31.54 35.60 34.15 31.89 31.81
ACDC-snow 10, 2528 28.09 27.17 2539 2545

acdc-snow




Qualitative Refinement Results



ground truth non-adapted iteration 1 iteration 3 iteration 5 iteration 7 ground truth




ground truth  non-adapted iteration 1 iteration 3 iteration 5 iteration 7 ground truth




ground truth non-adapted iteration 1 iteration 3 iteration 5 iteration 7 ground truth




ground truth  non-adapted iteration 1 iteration 3 iteration 5 iteration 7 ground truth
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