# Test-Time Adaptation for Segmentation

Klara Janouskova

### About me

• PhD student at Visual Recognition Group,

CTU in Prague, 2023-?

Supervisor: Jiri Matas

- Previous experience
  - Equilibre Technologies: Financial time-series
  - Technion Vista Lab: Test-Time Adaptation for Segmentation with Chaim Baskin and Alex Bronstein
  - IBM Research Zurich: Model-Assisted Labelling for Visual Inspection of Bridges with Mattia Rigotti, Ioana Giurgiu and Cristiano Malossi
  - UAB Barcelona: Weakly-supervised scene-text recognition with Dimosthenis Karatzas and Lluis Gomez



### Talk Outline

- Domain shift and domain adaptation
- Domain adaptation scenarios and methods
- Test-time adaptation (TTA)
- Single-Image Test-Time Adaptation for Segmentation: Our work

Collaborators:

Jiri Matas, Visual Recognition Group, CTU in Prague

**Chaim Baskin, Tamir Shor**, *Technion - Israel Institute of Technology* 

### Image classification

### Input: RGB Image



**Output: Class probabilities** 

**Dog: 0.95** Cat: 0.05 Plane: 0

### Semantic segmentation

#### Input: RGB Image



#### Output: Pixel level classification



### Domain Shift

Change of distribution: Training (=source)  $P_S \rightarrow$  deployment (target)  $P_T$ 



learnt decision boundary on source — and target — distributions

### Detecting Domain Shift

Supervised learning works well on training data distribution, but performance may drop arbitrarily under domain shift.

Detection of domain shift can be based on:

- 1. Performance on a subset of labelled target data  $\rightarrow$  expensive, how often?
- 2. Input properties  $\rightarrow$  is it indicative of model performance?
- 3. Classifier outputs properties  $\rightarrow$  directly related to performance

Related: Novel class detection, anomaly detection

Suggested paper: <u>Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift</u>

## Dealing with Domain Shift

Options:

- Get new data, retrain (=remove the domain shift)
- Finetune on a small amount of data (=supervised domain adaptation)
- Prior shift: Prior shift adaptation ie based on confusion matrices
- Covariate shift: Most computer vision works

Link: Impossibility Theorems for Domain Adaptation Which assumptions suffice to provide performance guarantees on the success of domain adaptation algorithms?

### Domain Adaptation (DA)

Motivation: Domain shift is the reason why a classifier performing well on the *evaluation set* performs poorly at deployment

Domain shift is common - few things do not change over time.

Examples:

- adapting a general LLM to medical documents
- diagnostics during an epidemic of a new disease
- people aging (personal identification system)



### **Prior Shift Adaptation**

D - decision, Y - ground truth

Confusion matrix  $C_{d|y}$  with values of P(D=i|Y=k)

$$p_{\mathcal{T}}(\mathbf{x}|Y) = p_{\mathcal{E}}(\mathbf{x}|Y) = \frac{p_{\mathcal{T}}(Y|\mathbf{x})p_{\mathcal{T}}(\mathbf{x})}{p_{\mathcal{T}}(Y)} = \frac{p_{\mathcal{E}}(Y|\mathbf{x})p_{\mathcal{E}}(\mathbf{x})}{p_{\mathcal{E}}(Y)}$$
$$p_{\mathcal{E}}(Y|\mathbf{x}) = p_{\mathcal{T}}(Y|\mathbf{x})\frac{p_{\mathcal{E}}(Y)p_{\mathcal{T}}(\mathbf{x})}{p_{\mathcal{T}}(Y)p_{\mathcal{E}}(\mathbf{x})} \propto p_{\mathcal{T}}(Y|\mathbf{x})\frac{p_{\mathcal{E}}(Y)}{p_{\mathcal{T}}(Y)}$$
$$p(D = i) = \sum_{k=1}^{K} p(D = i|Y = k)p(Y = k)$$
$$p(D) = \mathbf{C}_{d|u}p(Y)$$





Milan Šulc previous speaker

$$\widehat{p}(\omega_i | \mathbf{x}) = \frac{\frac{\widehat{p}(\omega_i)}{\widehat{p}_t(\omega_i)} \widehat{p}_t(\omega_i | \mathbf{x})}{\sum_{j=1}^n \frac{\widehat{p}(\omega_j)}{\widehat{p}_t(\omega_j)} \widehat{p}_t(\omega_j | \mathbf{x})}$$

$$\hat{p}_{\mathcal{E}}(Y) = \hat{\mathbf{C}}_{d|y}^{-1} \hat{p}_{\mathcal{E}}(D)$$

### **Domain Adaptation Scenarios**

There are many realistic formulations, assuming whether

- labelled target data are available at training time domain shift known in advance
- we have access to the training (source) data
- target distribution is static or changes continually

• samples at deployment time considered separately or all at once



S - source distribution data T - target distribution data

### Domain generalization



### Domain Generalization with MixStyle (arxiv)

Observation: Visual domain is closely related to style, which is encoded by bottom CNN layers.

Idea: Increase domain diversity of source data by style-mixing low-level features, inspired by adaptive instance normalization.

instance normalization

$$\mathrm{IN}(x) = \gamma \frac{x - \mu(x)}{\sigma(x)} + \beta$$

mixStyle

$$\gamma_{mix} = \lambda \sigma(x) + (1 - \lambda)\sigma(\tilde{x})$$
  
 $\beta_{mix} = \lambda \mu(x) + (1 - \lambda)\mu(\tilde{x})$ 

#### adaptive instance normalization

AdaIN
$$(x) = \sigma(y) \frac{x - \mu(x)}{\sigma(x)} + \mu(y).$$

$$MixStyle(x) = \gamma_{mix} \frac{x - \mu(x)}{\sigma(x)} + \beta_{mix}$$



T - target distribution data

L - labelled data U - unlabelled data

### Fourier Domain Adaptation for Semantic Segmentation

#### Link: <u>arxiv</u>

Unsupervised domain adaptation by replacing low-level frequencies of source images with those of target images



### Unsupervised Domain Adaptation by Backpropagation

Link: https://proceedings.mlr.press/v37/ganin15.pdf



Multiply domain-classifier branch gradient to ensure similar feature distribution across domains



#### domain adaptation

#### continual domain adaptation



#### online domain adaptation

#### (continual) test-time adaptation



S - source distribution data M - model B - batch

### Online Domain Adaptation for Semantic Segmentation in Ever-Changing Conditions Link: <u>https://arxiv.org/pdf/2207.10667.pdf</u>arxiv





Complicated pipeline involving many different steps

# Test-Time Adaptation (TTA)

Unsupervised, source-free (no training domain data) domain adaptation

Most methods are inspired by semi-supervised learning

Possible methods classifications:

- input space adaptation
- feature space adaptation
- output space adaptation

- learnable parameter adaptation via self-supervised losses
- input/feature statistics adaptation, ie. batch-norm mean and variance
- prototype-based adaptation

# Input Space Adaptation

### Back to the Source: Diffusion-Driven Test-Time Adaptation

Link: <u>arxiv</u>



(a) Setting: Multi-Target Adaptation

(b) Cycle-Consistent Paired Translation

(c) DDA (ours): Many-to-One Diffusion





# Feature Space Adaptation

### Test-Time Training with Masked Autoencoders

Link: <u>NeurIPS</u>



Source: *He, Kaiming, et al.* "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

**Model**: Shared encoder, separate reconstruction and classification heads **Training time**: Optimize classification and reconstruction loss jointly **Test time**: Optimize shared encoder via reconstruction loss Works with as little as a single image!



# **Output Space Adaptation**

# Test-time adaptable neural networks for robust medical image segmentation (<u>link</u>)

Learn a network translating output in the target domain to resemble outputs in the source domain. The translated output is used as supervision to update the image normalization module.



# Batch-Norm (BN) Statistics and Prototype-Based Adaptation

### Dynamically Instance-Guided Adaptation: A Backward-free Approach for Test-Time Domain Adaptive Semantic Segmentation (<u>link</u>)

Distribution adaptation module - mixes instance and source BN statistics

Semantic adaptation module - combines historical and instance-level prototypes to adjust predictions



### Distribution adaptation



### Semantic adaptation



# Our Work

### Single Image Test-Time Adaptation for Segmentation

State of research on Test Time Adaptation (TTA) for segmentation

- each work uses a very different setup
- comparison to few outdated baselines

Our work

- adaptation to a single, isolated image at test-time
  - no issues with catastrophic forgetting, source parameters always restored
  - simplified setup for method analysis and comparison
- no assumptions about network architecture
  - BN-based methods can't be used
- diverse set of methods inspired by other tasks and domains
  - methods based on optimizing a self-supervised loss function

# Segmentation and Domain Shift

training domain



domain shift



**Segmentation** - assign a label to each pixel

Predicted by SAM<sup>[5]</sup>: SegmentAnything Model trained on a billion of masks released in April '23, SoTA

### TTA with Self-Supervised Loss Functions



## TTA hyper-parameters

Hyper-parameters considered: Number of adaptation iterations, learning rate, self-supervised loss parameters.

Deployment domain shift unknown → Use training set + synthetic corruptions

### Synthetic Corruptions

Evaluation and hyper-parameter tuning ු in a controlled environment.





level

## ENT: Entropy Minimization (Baseline)

$$\omega_n^\star, \varphi_n^\star = \operatorname*{argmin}_{\omega_n, \varphi_n} \sum_{i=1}^{N} \mathbf{s}_i \cdot \log(\mathbf{s}_i)$$

- $\omega_n, \varphi_n$  parameters of the normalization layers of the encoder and the decoder, respectively
- $s = d_s^{\varphi} \circ e^{\omega}(x)$  segmentation prediction of input image x
  - segmentation prediction for pixel *i*
  - N total number of pixels

# REF: Mask-Refinement-Based TTA



No prior knowledge about domain shift kind

 $\rightarrow$  images altered with targeted adversarial perturbations to produce corrupted segmentation.

## dIoU: Deeep IoU surrogate



Corruptions not known in advance - adversarial attack is used to corrupt the images!

# Domain Shift Simulation: Adversarial Attack

Iteratively optimize an imperceptible perturbation of the image to change the model output. First iterations lead to very realistic mask corruptions.



adversarial attack

### **ADV: Adversarial Transformation**

$$\omega_n^{\star}, \varphi_n^{\star} = \underset{\omega_n, \varphi_n}{\operatorname{argmin}} \mathcal{L}_{\operatorname{KL}}(\mathbf{s}, \mathbf{s}')$$

 $\omega_n, \varphi_n$  parameters of the normalization layers of the encoder and the decoder, respectively

 $\mathbf{s} = d_s^{\varphi} \circ e^{\omega}(x)$  $\mathbf{s}' = d_s^{\varphi} \circ e^{\omega}(x')$  $\mathcal{L}_{\mathrm{KL}(\mathbf{s},\mathbf{s}')}$  segmentation prediction of clean image x

segmentation prediction of corrupted image x'

s') reverse KL divergence loss

### AugCo: Augmentation Consistency

Only self-train on pixels with consistent between augmentations (crop, color jitter) or with high prediction confidence



### Experiments

### Training (source) domain:

Synthetic driving dataset (GTA5)



### TTA learning rate, number of iterations:

Training set + synthetic corruptions

#### **Deployment (unknown target domain)**:

- Real driving dataset (cityscapes)
- Real adverse weather condition driving datasets (ACDC)





Figure 11. Evolution of masks over iterations of a projected gradient descent adversarial attack on the input image, the target being mask inversion for all of the classes. These masks serve as training data for the refinement module.

# Validation: Results and Insights

### **Overall-optimal hyper-parameters**



### Per-type-per-severity-optimal hyper-parameters



### Loss functions matter

All (when applicable) baseline methods improve by using soft IoU loss instead of cross entropy, most likely because of large class imbalance.

|                   | PL    |              |       |       | Ref         |       |       |       | AugCo |       |       |       |
|-------------------|-------|--------------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|
| params            | full  | full         | norm  | norm  | full        | full  | norm  | norm  | full  | full  | norm  | norm  |
| loss              | ce    | iou          | ce    | iou   | ce          | iou   | ce    | iou   | ce    | iou   | ce    | iou   |
| NA                | 35.18 | 35.18        | 35.18 | 35.18 | 35.18       | 35.18 | 35.18 | 35.18 | 35.18 | 35.18 | 35.18 | 35.18 |
| $TTA_{\alpha^*}$  | 35.54 | <u>37.21</u> | 35.60 | 37.09 | 35.18       | 38.69 | 36.88 | 36.50 | 35.27 | 35.66 | 35.35 | 35.39 |
| $\Delta_{ m ABS}$ | 0.36  | 2.03         | 0.42  | 1.90  | $-\epsilon$ | 3.51  | 1.70  | 1.32  | 0.09  | 0.48  | 0.17  | 0.21  |

### IoU Error of TTA Methods on All Corruptions (~600 images)



**Oracle** - best method per image is known

**Oracle+** - best method and iteration per image is known

**NA** - non-adapted results

**clean** - non-corrupted images

All methods except for oracle+ are evaluated in the last iteration (10) with the best overall learning rate for that method

# Deployment (test) Results



#### method

| dataset    | metric                                  | NA    | Ref   | PL    | Ent   | AugCo |
|------------|-----------------------------------------|-------|-------|-------|-------|-------|
| Cityscapes | $m\overline{IoU}_i$                     | 34.40 | 34.71 | 37.14 | 35.11 | 35.45 |
| Cityseapes | $m\overline{IoU}_c$                     | 28.71 | 28.64 | 30.70 | 29.09 | 29.48 |
| ACDC for   | $m\overline{IoU}_i$                     | 32.03 | 35.98 | 35.67 | 33.93 | 31.82 |
| ACDC-log   | $m\overline{IoU}_c$                     | 24.87 | 27.29 | 27.52 | 26.00 | 24.69 |
| ACDC night | $m\overline{IoU}_i$                     | 13.60 | 14.12 | 15.09 | 14.13 | 14.15 |
| ACDC-mgm   | $\mathrm{m}\overline{\mathrm{IoU}}_{c}$ | 10.77 | 10.96 | 11.53 | 10.68 | 11.01 |
| ACDC main  | $m\overline{IoU}_i$                     | 33.52 | 35.61 | 37.17 | 35.05 | 34.36 |
| ACDC-rain  | $\mathrm{m}\overline{\mathrm{IoU}}_{c}$ | 26.15 | 27.40 | 28.47 | 26.89 | 26.66 |
|            | $m\overline{IoU}_i$                     | 31.54 | 35.60 | 34.15 | 31.89 | 31.81 |
| ACDC-Snow  | $m\overline{IoU}_c$                     | 25.28 | 28.09 | 27.17 | 25.39 | 25.45 |

# **Qualitative Refinement Results**

|         | ground truth | non-adapted | iteration 1 | iteration 3 | iteration 5 | iteration 7 | ground truth |
|---------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|
| image 1 |              |             |             |             |             | Ba cipi     |              |
|         |              |             |             |             |             |             |              |
| image 2 |              |             |             |             |             |             |              |
|         |              |             |             |             |             |             |              |
| image 3 |              |             |             |             |             |             |              |
|         |              |             |             |             |             |             |              |







THANK YOU!