Improving Numerical Weather Forecasts by Clustering

Pavel Krč

Institute of Computer Science Academy of Sciences of the Czech Republic

Nov 6, 2014

Introduction Irradiation modeling Multi-model prediction

Traditional (judgmental) forecasting

Forecast made by expert(s) using solely measurements and own knowledge/experience.

- Analyzing and modifying synoptic maps by hand
- Spot observations from previous day(s)
- Mostly general circulation
- Typical outputs:
 - Greater areas (hundreds of km)
 - Daily averages and/or extremes

Introduction Irradiation modeling Multi-model prediction

Numerical weather prediction (NWP)

source: Australian Boureau of Meteorology

- State variables on a grid
- Navier-Stokes equations, thermodynamics
- L. F. Richardson, 1920's:

2 points, 6 hours forecast \Rightarrow 6 weeks computation

イロト イポト イヨト イヨト

L. F. Richardson , 1931

• Nowadays: resolution in order of km, weeks ahead

Richardson's NWP

Introduction Irradiation modeling Multi-model prediction

Nested domains

- Global models
 - data assimilation
 - probabilistic forecast
- Mesoscale models (LAM)

<ロト < 四ト < 回ト < 回ト

 grid nudging, nestdown and nesting

Introduction Irradiation modeling Multi-model prediction

Parametrizations

- Parametrization = (statistical) simplification
- Processes of too small scale
- Modular
- Configuration and tuning

Example

Convection, PBL, ground surface, microphysics, radiative transfer.

Introduction Irradiation modeling Multi-model prediction

Modeling radiative transfer

Important inputs

Solar geometry, albedo, atmospheric water, aerosols, ozone

Main processes

- Absorption
- Scattering
- Reflection

Subgrid level

Image: 0

Introduction Irradiation modeling Multi-model prediction

Deficiencies of all-purpose NWPs

Model variables

state (prognostic) variables \times derived (diagnostic) variables

- Not all model variables are regularly and properly evaluated
- Even derived variables might be tuned for model internals (e.g. radiation → heat fluxes)
- Well-captured overall weather state doesn't imply precise prediction of each variable

Postprocessing

- Measured error in many variables can be reduced by statistical postprocessing
 - local bias (spatial representativity)
 - similar weather patterns
- Shortwave irradiance errors: stratification (E. Lorenz et al.)
 - solar zenith angle ϑ_t
 - clearness (clear-sky) index k_t

$$GHI_t = ETR_t \cdot k_t \cdot \cos \vartheta_t$$

Introduction Irradiation modeling Multi-model prediction

Multi-model prediction

- Combination of models with uncorrelated errors = strong improvement
 - different initial & boundary conditions
- Some improvement even with strongly correlated models
- MM5 and WRF: various radiation schemes and model versions

Pavel Krč Improving NWP by Clustering

Weather classification and clustering

- Localized weather classification
 - Pasquill-Gifford stability class
- Synoptic classification
 - standardized, yet based subjective similarity
- NWP based clustering
 - analog ensembles (probabilistic forecast)

Weather classification and clustering Experiment design Input data

Experiment design

Idea: Combine weather type clustering, postprocessing and multi-model forecasting

Goals: Explore relative advantages of different NWPs under different weather conditions, outline possible model improvement

Conditions:

- Clustering input variables based on loosely defined target (expected relative model performance)
- High dimensionality of input data
- Explanatory result expected shouldn't use e.g. PCA

ヘロト 人間 とくほ とくほとう

Method

- Use CART regression tree (forest) learning with vector of model deviations as a target variable
- Identify clusters defined by leaf nodes
- Optimize weights for linear combination of models within each cluster
 - bias removed directly
 - relative model performance expected indirectly (depth and branching limits)

Input data

Measurements:

- Hourly averages of global horizontal irradiation (GHI)
- 15 professional weather stations operated by CHMI

Forecasts:

- Four NWP models: MM5 3.6, MM5 3.7, WRF 2.2, WRF 3.4
- Identical nested domains
 - 9×9 km horizontal resolution covering Czech Republic
 - $27\times27~{\rm km}$ covering central Europe
 - NCEP GFS initial and boundary conditions
- Simulated operational regime
 - new forecast every 6 hours, 48 hour horizon
 - May 2011 to April 2012

Split by date: 20×18 -day segments (15 days training + 3 days validation)

Meteorological variables for clustering

Meteorological variables:

- Air temperature at 2 m
- Air humidity at 2 m
- Wind at 10 m
- Precipitation amount
- Surface air pressure
- Planetary boundary layer height
- Water vapor & different precipitation types
 - low, medium and high altitude

Other predictors:

- Clearness index
- Extraterrestrial solar radiation
- Solar geometry
- Season indicator
- Latitude and longitude
- Terrain height

Experiment results and control results

	RMSE $[W \cdot m^{-2}]$	
Model	in-sample	out-sample
MM5 3.6		158.0
MM5 3.6 ⊙	140.4	144.0
MM5 3.7		146.5
MM5 3.7 ⊙	141.4	149.3
WRF 2.2		140.7
WRF 2.2 ⊙	123.1	121.6
WRF 3.4		167.9
WRF 3.4 ⊙	131.4	133.7
Simple combination	115.1	115.4
Combination of \odot	114.3	115.7
Stratified combination	113.6	115.8
Random forests	106.3	113.2

 \odot = bias correction on stratified data

Further research

- Complex spatial information
 - only point forecasts used so far
 - spatial averages, differences and variances: metalearning of sizes and (relative) positions of areas
- Purposely excluded: localized learning
 - usually huge improvement against local measurements
 - not so usable for analyzing behavior