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Optimization

optimization (minimization) is finding such x? ∈ Rn that

f (x?) = min
∀x∈Rn

f (x)

“near-optimal” solution is usually sufficient

f(x)

x
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Optimization of black-box functions

black-box functions

x f(x)

f

only evaluation of the function value, no derivatives or
gradients→ no gradient methods available

we consider continuous domain: x ∈ Rn
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Optimization of empirical black-box functions

empirical function:
assessing the function-value via an experiment
(measuring, intensive calculation, evaluating a prototype)
evaluating such functions are expensive (time and/or
money)
search cost ∼ the number of function evaluations
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EA’s for empirical black-box optimization

evolutionary algorithms (EA’s) used in this study
EA’s often manage to escape from local optima
but usually use many function evaluations
(at least in comparison with gradient methods like BFGS)

f(X)

i

Re f(X)

CrSe

Mu?

X*

Johann Dréo (CC)
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EA’s for empirical black-box optimization

what can help with decreasing
the number of function evaluations:

utilize already measured values
(at least prevent measuring the same thing twice)
learn the shape of the function landscape
or learn the (global) gradient or step direction & size

f(X)

i

Re f(X)

CrSe

Mu?

X*
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Model-based methods accelerating the convergence

several methods are used in order to decrease
the number of objective function evaluations needed by EA’s

1 Surrogate modelling
2 Estimation of Distribution Algorithms (EDA’s)
3 Efficient Global Optimization (EGO)
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Surrogate modelling

Surrogate modelling
technique which builds an approximating model
of the fitness function landscape
the model provides a cheap and fast,
but also inaccurate replacement of the fitness function
for part of the population
inaccurate approximating model can deceive the optimizer

from the EUMC presentation "Viscous optimization of bulkers and tankers" (Mattia Brenner, June 17, 2010)
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Estimation of Distribution Algorithms (EDA)

Estimation of Distribution Algorithms
the model represents a distribution of solutions
in the input space
new candidate solutions are generated via
sampling the model
better solutions are selected for being represented
by the model in the next generation
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Stochastic search of Evolutionary algorithms

Stochastic black box search
initilize distribution parameters θ
set population size λ ∈ N
while not terminate

1 sample distribution P(x|θ)→ x1, . . . , xλ ∈ Rn

2 evaluate x1, . . . , xλ on f
3 update parameters θ

(A. Auger, Tutorial CMA-ES, GECCO 2013)

schema of most of the evolutionary algorithms and EDA
algorithms
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Gaussian Process

GP is a stochastic approximation method based on Gaussian
distributions

from infpy documentation

GP can express uncertainty of the prediction in a new point x:
it gives a probability distribution of the output value
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Gaussian Process

from infpy documentation

given a set of N training points XN = (x1 . . . xN)>, xi ∈ Rd,
and measured values yN = (y1, . . . , yN)>

of a function f being approximated

yi = f (xi), i = 1, . . . ,N

GP considers vector of these function values as a sample
from N-variate Gaussian distribution

yN ∼ N(0,CN)
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Gaussian Process

X = (x1 . . . xN)>, xi ∈ Rd N training data points
y = (y1, . . . , yN)>, yi = f (xi) measured function values

y ∈ RN considered to be a realisation of a N-dimensional
Gaussian distribution with a covariance matrix CN and zero
mean

y ∼ N(0,CN)

Covariance CN is determined by
covariance function cov(xi, xj) and its hyperparameters
training data points XN

forming the density of the Gaussian p(y|XN)
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Gaussian Process covariance

covariance CN is given by

CN = K + σ2I
where K is a matrix of covariance function values
and σ2 is the signal noise.

Covariance functions are defined on pairs from the input space

(K)ij = cov(xi, xj), xi,j ∈ Rd

expressing the degree of correlations between two points’
values; typically decreasing functions on two points distance

d(xi,xj)

cov(xi,xj)
1
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Gaussian Process covariance

The most frequent covariance function is squared-exponential

(K)ij = covSE(xi, xj) = θ exp
(
−1
2`2 (xi − xj)

>(xi − xj)

)
with the parameters (usually fitted by MLE)

θ – signal variance (scales the correlation)
` – characteristic length scale
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Gaussian Process covariance

Another usual option is Matérn covariance, which is for
r = (xi − xj)

(K)ij = covMatern
ν=5/2(r) = θ

(
1 +

√
5r
`

+
5r2

3`2

)
exp

(
−
√

5r
`

)
.

with the parameters (same as for squared exponential)
θ – signal variance
` – characteristic length scale
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Gaussian Process covariance

from Michael Osborne: An Introduction to Fitting Gaussian Processes to Data (presentation)
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Gaussian Process prediction

Making predictions
Prediction y∗ in a new point x∗ is made by adding this new point
to the matrix XN and vector yN .

This gives an (N + 1)-dimensional Gaussian with density

p(yN+1 |XN+1) =
1√

(2π)N+1 det(CN+1)
exp(−1

2
y>N+1C−1

N+1yN+1)

where CN+1 is the covariance matrix

CN+1 =

(
CN k
k> κ+ σ

)
which is CN extended with

k – covariances between x∗ and XN

κ+ σ – variance of the new point itself (with added signal
noise)
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Gaussian Process prediction

Making predictions
Because yN is known and the inverse C−1

N+1 can be expressed
using inverse of the training covariance CN

−1,

the density in a new point marginalize to 1D Gaussian density

p(y∗ |XN+1, yN) ∝ exp

(
−1

2
(y∗ − ŷN+1)2

s2
yN+1

)

with the mean and variance
given by

ŷN+1 = k>CN
−1yN ,

s2
yN+1

= κ− k>CN
−1k.
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Efficient Global Optimization (EGO)

EGO
needed: specific kind of
surrogate model which
can express uncertainty
of the prediction in a
new point
EGO uses Kriging /
Gaussian processes
(GP)
for any given input x, it
gives a probability
distribution of the output
value
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Efficient Global Optimization (EGO)

the resulting output for a
specified input x is a 1-D
Gaussian with

mean at the predicted
value
standard deviation
expressing
uncertainty of this
prediction

probability of improvement (PoI) is the probability that the
function value will be lower than a specified target T

PoIT(x) = Φ

(
T − f̂ (x)

σ̂(x)

)
= P(f̂ (x) 5 T)
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Efficient Global Optimization (EGO)

EGO
1 dataset D← generate a random initial sample and

evaluate it
2 build a GP/Kriging model f̂ using D
3 xmax ← maximize PoI(x) (from the GP model)
4 evaluate x
5 D = D ∪ {x}
6 repeat from step 2

maximizing the PoI is a way of balancing between exploration of
the input space and exploitation of the local optima
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Model Guided Sampling Optimization

main idea of MGSO:
consider the PoI(x) to be a function proportional to a
probability density
sample this density to get a population of candidate
solutions (like EDAs)

motivation: not getting trapped in local minima while exploring
the search space
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Model Guided Sampling Optimization

EGO MGSO
1 dataset D← generate a random initial sample and

evaluate it
2 build a GP model f̂ using D
3 xmax ← maximize PoI(x) (from the GP model)
4 :)
5 sample the PoI(x) resulting in a new population P
6 find the minimum xmin = arg min f̂ (x) of the GP and add to P
7 evaluate x
8 D = D ∪ {x}
9 evaluate all x ∈ P

10 D = D ∪ P
11 repeat from step 2
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Probability of improvement

PoI of 2D Rastrigin, N = 40
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PoIT(x) = Φ

(
T − f̂ (x)

σ̂(x)

)
= P(f̂ (x) 5 T)

no explicit formula for
PoI(x,T, f̂ )

improvement in a new point
x is probable when

not many samples
around, i.e. large σ at x
promising area is
searched, i.e. low f (x)

different way of generating
new points

EGO: find the maximum
of PoI→ one solution
MGSO: sample the PoI
→ multiple solutions
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Implementation issues

Numerical instability

adding a new sampled point
(x′, f (x′)) can cause the
Gaussian process’ covariance
matrix be close to
semi-positive indefinite
such points are rejected
already during sampling and
new points are sampled
instead

Lukáš Bajer, Andrej Kudinov GPs in evolutionary black-box optimization 27



Optimization of expensive black-box functions
MGSO

Surrogate CMA-ES

Introduction to MGSO
Experimental results on Niching functions
Experimental results on BBOB functions

Implementation issues

Degeneration of PoI

PoI degenerates close to a
discrete distribution in later
phases of the optimization
happens when the input space
is well explored
partially solved by cropping
the input space to a region
around the so-far optimum
and rescaling the input space
to get better numerical
resolution for sampling
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[ ... to be continued ... ]
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Experimental results on BBOB

MGSO was also tested on three benchmark functions
from the BBOB testbed

sphere Rosenbrock
Rastrigin

(CC) Wikimedia Commons

three dimensionalities: 2D, 5D, 10D
compared to CMA-ES and Tomlab’s EGO implementation
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Results in 2-D

Sphere, 2D
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Results in 5-D
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Results in 10-D

Sphere, 10D
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Stochastic search of Evolutionary algorithms

Stochastic black box search
initilize distribution parameters θ
set population size λ ∈ N
while not terminate

1 sample distribution P(x|θ)→ x1, . . . , xλ ∈ Rn

2 evaluate x1, . . . , xλ on f
3 update parameters θ

(A. Auger, Tutorial CMA-ES, GECCO 2013)

schema of most of the evolutionary strategies (and EDA
algorithms)
as well as CMA-ES (Covariance Matrix Adaptation ES)
– current state of the art in continuous optimization
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The CMA-ES
Input: m ∈ Rn, σ ∈ R+, λ ∈ N
Initialize: C = I (and several other parameters)
Set the weights w1, . . . wλ appropriately

while not terminate

1 xi = m + σyi, yi ∼ N(0,C), for i = 1, . . . , λ sampling

2 m←
∑µ

i=1 wi xi:λ = m + σyw where yw =
∑µ

i=1 wi yi:λ update
mean

3 update C
4 update step-size σ
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Covariance matrix adaptation

eigenvectors of the covariance matrix C are the principle
components – the principle axes of the mutation ellipsoid
CMA-ES learns and updates a new Mahalanobis metric
successively approximates the inverse Hessian on
quadratic functions
– transforms ellipsoid function into sphere function
– it somehow holds for other functions, too (up to some
degree)

b1

b2
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Is CMA-ES the best for everything?

CMA-ES is state-of-the-art optimization algorithm,
especially for rugged and ill-conditioned objective functions
however, not the fastest if we can afford
only very few objective function evaluations

what we have already seen:
use a surrogate model!
however, original evaluated solutions are available
only along the search path
solution: construct local surrogate models
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The Surrogate CMA-ES

Input: m ∈ Rn, σ ∈ R+, λ ∈ N
Initialize: C = I (and several other parameters)
Set the weights w1, . . . wλ appropriately

while not terminate

1 xi = m + σyi, yi ∼ N(0,C), for i = 1, . . . , λ sampling

2 evaluate with the original fitness & build a model

3 evaluate with the model fitness

4 update m,C, σ
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The Surrogate CMA-ES

Input: g (generation), fM (model), A (archive), nREQ, σ, λ, m, C
1: xk ∼ N

(
m, σ2C

)
k = 1, . . . , λ {CMA-ES sampling}

2: if g is original-evaluated then
3: yk ← f (xk) k = 1, . . . , λ {fitness evaluation}
4: A = A ∪ {(xk, yk)}λk=1
5: if |X| ≥ nREQ then
6: X← TransformToTheEigenvectorBasis(X, σ, C)
7: fM ← trainModel(X, y)
8: end if
9: else

10: X← TransformToTheEigenvectorBasis(X, σ, C)
11: yk ← fM(xk) k = 1, . . . , λ {model evaluation}
12: end if
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[ ... to be continued ... ]
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Experimental results on BBOB (5 D)
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Experimental results on BBOB (10 D)

0 1 2 3
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n 

of
 fu

nc
tio

n+
ta

rg
et

 p
ai

rs

GP5-CMAES

GP1-CMAES

CMA-ES

saACMES

best 2009f1-24,10-D

Lukáš Bajer, Andrej Kudinov GPs in evolutionary black-box optimization 42



Optimization of expensive black-box functions
MGSO

Surrogate CMA-ES

CMA-ES
Surrogate CMA-ES
Experimental results

Experimental results on BBOB (20 D)
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The best results on subset of BBOB (5 D)
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The best results on subset of BBOB (20 D)
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Results on #3 Rastrigin separable
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Results on #8 Rosenbrock
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Results on #10 Ellipsoid function
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Optimization of expensive black-box functions
MGSO

Surrogate CMA-ES

CMA-ES
Surrogate CMA-ES
Experimental results

Thank you!
bajer@cs.cas.cz
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Testing

Tested approaches:

Model Guided Sampling Optimization (MGSO),

CMA-ES with Gaussian process as a surrogate model
(S-CMA-ES).
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Testing

Testing functions

Testing was performed on 20 versions of 12 multimodal fitness
functions from CEC 2013 competition:

Characterized by a high number of local optima;

Some functions high-dimensional (up to 20D).

→ difficult optimalization task
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Testing
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MGSO

Part I

MGSO testing
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MGSO

Examined parameters

Two covariance functions:

Kiso
SE – isometric squared exponential,

Kard
SE – squared exponential with automatic relevance

determination.
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MGSO

Observations

Both covariance functions had similar effect on the
performance.

MGSO achieved better results than CMA-ES in a vast
majority of functions.

The considerable performance was achieved in the case of
most low-dimensional (2D-5D) functions.

In the case of high-dimensional functions (10D-20D), the
speed-up was comparable to CMA-ES.
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MGSO
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MGSO
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S-CMA-ES

Part II

S-CMA-ES testing
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S-CMA-ES

Examined parameters

Four covariance functions:

Kiso
SE – isometric squared exponential,

Kard
SE – squared exponential with automatic relevance

determination,

KMatérn – with ν = 5
2 ,

KMatérn – with ν = 1
2 , a.k.a. exponential covariance function.
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S-CMA-ES

Evolution control strategies

S-CMA-ES evolution control (EC) strategies:

individual-based,

generation-based.
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S-CMA-ES

Generation-based EC strategy

Evolution control settings:

number of consecutive generations evaluated by a model,

multiplication factor of CMA-ES’ step size.
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S-CMA-ES

Individual-based EC strategy

Evaluates only a part of the population using the original fitness
function:

1 Pre-sample some individuals and train the model;

2 Create the extended population by sampling from the model;

3 Evaluate a fraction of the individuals from the extended
population using the original fitness function;

4 Cluster the rest of the extended population and add best
point to the final population;
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S-CMA-ES

Individual-based EC strategy

Evolution control settings:

number of pre-sampled individuals evaluated by the fitness
function (used for model training),

size of the extended population,

amount of points chosen from the extended population to be
evaluated by the fithess function.
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S-CMA-ES

S-CMA-ES observations

Individual-based EC strategy:

peformed worse in the case of all functions.

Generation-based EC strategy:

showed the performance improvement in the case of almost all
functions,

performed better using more consequent model-evaluated
generations, unmodified step size and Kiso

SE covariance
function.
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S-CMA-ES
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S-CMA-ES
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S-CMA-ES and MGSO comparison

Part III

S-CMA-ES and MGSO comparison
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S-CMA-ES and MGSO comparison
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S-CMA-ES and MGSO comparison
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