Deep Learning in Go - Overview

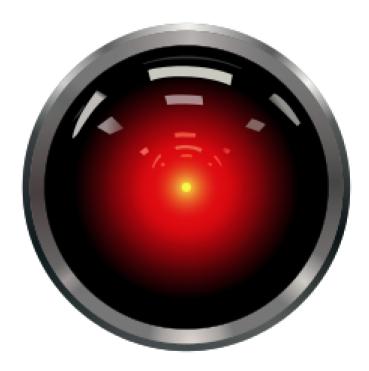
Josef Moudřík

sui @ 13.4.2017

j.moudrik@gmail.com

Overview

- Go
- AI v Go
- DL v AI v Go
- JM v DL v AI v Go



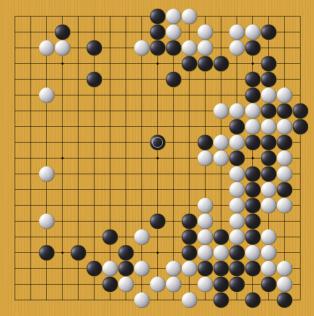
Alpha Go 2016

Go

• ~ Nejstarší hra na světě

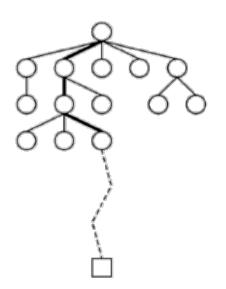
=> hodně záznamů her

- Hrací deska 19 × 19
- černé a bílé kameny
- jednoduchá pravidla
- kameny se nehýbou
- komplikované pozice
- tahy mají dalekosáhlé globální důsledky



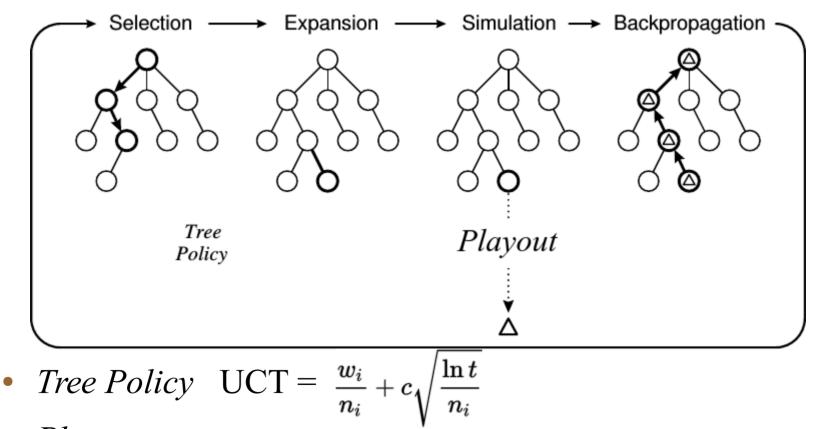
AI v Go

- velký větvící faktor (#dalších tahů ~250)
- hluboký strom (|hra| ~ 150 tahů)
- není jasná heuristika evaluace pozic (vs. šachy)
- 3 období:
 - gofai rule-based, domain knowledge ručně (~10kyu)
 - MCTS tree-search + playouts (~5dan)
 - DL + MCTS (~???)



MCTS

Heuristické stromové prohledávání



- Playout
- v praxi těžké: domain knowledge, optimalizace parametrů,...

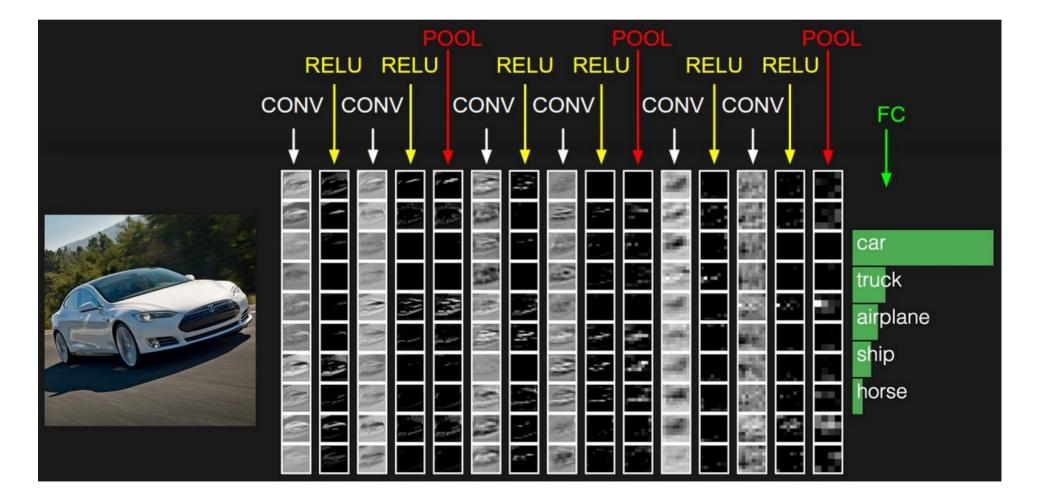
Deep Learning

- Deep Learning ^{IMHO} == učení reprezentací
- Goal:

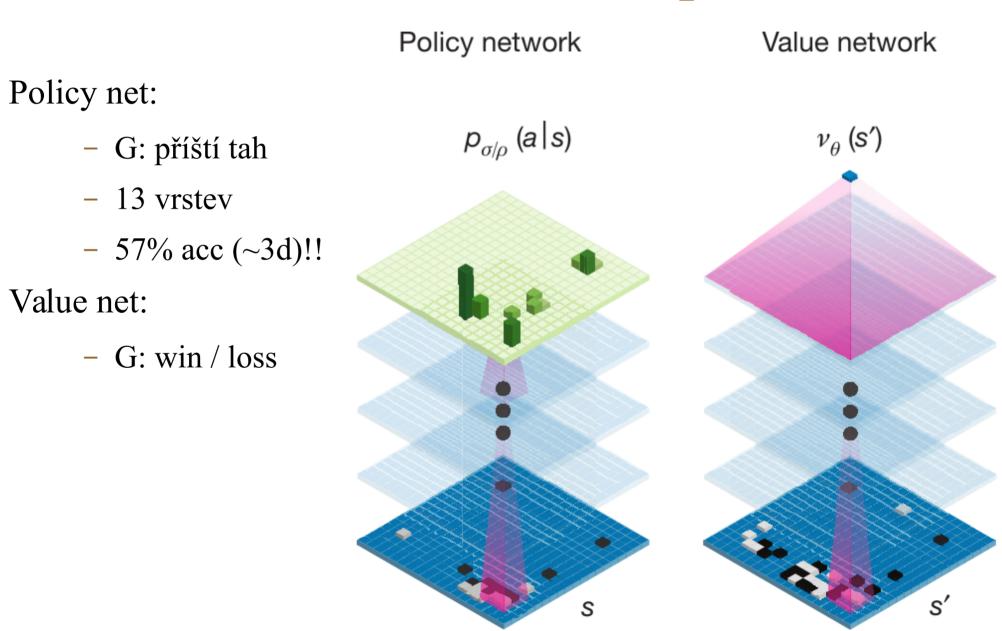
- modely, které mají dobré (sémantické) reprezentace

- Means:
 - hluboké modely s mnoha stupni volnosti
 - hodně dat
 - chytré učící algoritmy
 - GPU / TPU

Konvoluční sítě



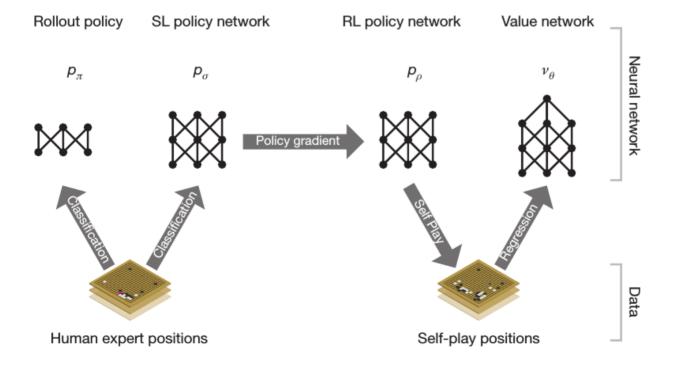
DL + *MCTS* + *scale* == *Alpha Go*



DL + *MCTS* + *scale* == *Alpha Go*

SL Policy net (logloss)
 RL Policy net, self-play (logloss)
 SL Value net, self-play (logloss)

$$\Delta \sigma \propto \frac{\partial \log p_{\sigma}(a \mid s)}{\partial \sigma}$$
$$\Delta \rho \propto \frac{\partial \log p_{\rho}(a_t \mid s_t)}{\partial \rho} z_t$$
$$\Delta \theta \propto \frac{\partial v_{\theta}(s)}{\partial \theta} (z - v_{\theta}(s))$$



DL + MCTS + scale == Alpha Go

- Dohromady:
 - Policy net šířka stromu
 - Value net (+ playouts) hloubka stromu
 - VELKÝ cluster pro učení
 - RL ~ 30 000 000 self-play her
 - turnaj 1202 CPU, 176 GPU



Determining Player Skill in the Game of Go with Deep Neural Networks

Josef Moudřík¹ Roman Neruda²

¹Charles University in Prague Faculty of Mathematics and Physics J.Moudrik@gmail.com

²Institute of Computer Science Academy of Sciences of the Czech Republic roman@cs.cas.cz

TPNC 2016 DOI: 10.1007/978-3-319-49001-4_15

Moudřík, Josef Determining Player Skill in the Game of Go with DL

- Introduction: Go, Computer Go, Deep Learning
- Motivation
- Dataset
- Augmentation & Downsampling
- Model Architecture
- Experiments
- Conclusions

Introduction: Game of Go

- One of the oldest games.
- 2 players, perfect information, deterministic rules.
- $\bullet\,$ Board size of 19 \times 19 intersections.
- Goal: control the board
 - enclose territory, capture enemy.

• Go Al is hard:

- high branching factor,
- no clear evaluation function.

• Recently solved by Google AlphaGo,

• a combination of Monte Carlo Tree Search with **deep learning**. [Silver et al., 2016]

- Differentiable neural network models,
- large number of parameters,
- deep error is back-propagated through many steps.

• Convolutional Neural Networks:

- hierarchical model based on learning convolutional kernels,
- great for data with spatial structure e.g. images, sound spectrograms, Go boards.
- Learns increasingly abstract hierarchical representations.

Introduction: Motivation

- Strength of Go players is measured by rating:
 - a numerical quantity rating is assigned to each player,
 - updated after each game, using win/loss information.
 - Rating is used to e.g. pair opponents with similar strength.
- Rating converges slowly for new players, causing problems such as badly matched opponents and rating deflation.
- Can we use more information (than the win/loss bit) from each game?

Introduction: Motivation

- Strength of Go players is measured by rating:
 - a numerical quantity rating is assigned to each player,
 - updated after each game, using win/loss information.
 - Rating is used to e.g. pair opponents with similar strength.
- Rating converges slowly for new players, causing problems such as badly matched opponents and rating deflation.
- Can we use more information (than the win/loss bit) from each game?
- Maybe the game record itself?!

Introduction: Motivation

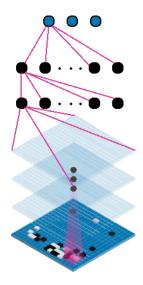
- Strength of Go players is measured by rating:
 - a numerical quantity rating is assigned to each player,
 - updated after each game, using win/loss information.
 - Rating is used to e.g. pair opponents with similar strength.
- Rating converges slowly for new players, causing problems such as badly matched opponents and rating deflation.
- Can we use more information (than the win/loss bit) from each game?
- Maybe the game record itself?!
- **Our Work:** Use Deep Learning to predict player's strength from a board position, aiming to improve convergence of rating systems.

- 188,700 Games from Online Go Server (OGS).
- this makes for 3,426,489 pairs (X, y), where
 - y is one of 3 classes based on strength,
 y ∈ {strong, intermediate, beginner}
 - X is encoding of position and last 4 moves, represented as a volume of size $13 \times 19 \times 19$:
 - 4 planes of liberties of current player,
 - 4 planes of liberties of opponent,
 - 1 plane for empty intersections,
 - 4 planes marking the last 4 moves.

- Techniques to reduce over-fitting and improve generalization.
- **Sub-sampling:** on average, take every 5th position from each game (uniformly randomly).
- Augmentation: each sample is randomly transformed into 1 of its 8 symmetries during training.
- Equalization: y classes are equally represented in the training set (throwaway superfluous examples).

Model Architecture

- Input layer,
- 1 Convolutional layer of 512 filters of size 5 × 5,
- 3 Convolutional layer of 128 filters of size 3 × 3,
- 2 fully connected layers of 128 neurons,
- Output layer, 3-way Softmax.
- All layers (except for the final one) have ReLU activation.
- Trained with mini-batched SGD with Nesterov momentum.



Img. adapted from [Silver et al., 2016].

• Baseline case, accuracy 71.5%

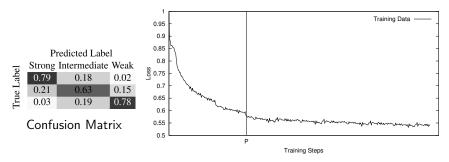


Figure: Training Loss Evolution

Experiments and Results Single Position

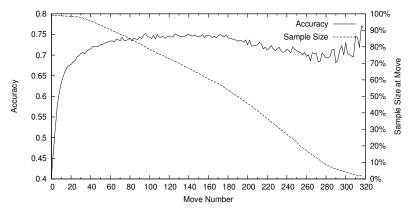


Figure: Dependency of accuracy and sample size on move number.

Table: Summary of results. Augmentation (ensemble of 8 symmetries), Cropped (skip first 30 moves), Weighted (proportionaly to avg. Acc. for given move).

Model	Acc.	Acc. (Top-2)
Single Position	71.5 %	94.6%
Single Position (A)	72.5 %	94.9%
Aggregated per Game, mode (A)	76.8 %	N/A
Aggregated per Game, sum (A)	77.1 %	96.4%
Aggregated per Game, sum (A, C)	77.7 %	96.7%
Aggregated per Game, sum (A, W)	77.9 %	96.8%

- We have used Deep Learning to predict player's strength from a single game position (= little information).
- The method is applicable to whole games by aggregating individual predictions.
- Works nicely for 3 target classes, more data would be good to move towards accurate regression.
- Will be experimentally deployed on Online Go Server (hopefuly) soon.

References I

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with deep neural networks and tree search. *Nature*, 529(7587):484–489.