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About Me

.I'm a PhD student at Heriot-Watt & University of Edinburgh in
the UK.

.My Research is focused on control for Autonomous
Underwater Vehicles.

.l want to bridge the gap between “classic”’ control methods
with “modern” machine learning.



Objective

As part of my PhD, the goal is to design new controllers for
Autonomous Under Water Vehicles (AUVS).
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Challenges

UNIVERSITY

.Underwater environments exhibit complex non-linear &
coupled dynamics.

.Communication is difficult. After a couple of meters there is
only acoustic signal with low bandwidth.

.The environment is harsh for human operators.
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Adaptive
.Reliable
-Robust

.Data Efficient




Controller Choice

.Model Based

.Task Agnostic & Optimal Control
.Theoretical Guarantees

.Designed For Non-Linear Systems
-MIMO controller



Model Predictive Control

Model Predictive Controller
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Model Predictive Path Integral

MPPI Controller
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MPC/MPPI Properties

MPC

-Model Based

-Task Agnostic
-Extensively studied
-Theoretical Guarantees

-Feed Forward (trajectory
optimization + obstacle
avoidance)
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MPPI
~Gradient Free

-Work naturally with None-
Linear Systems

-Robust to Noise (modelling &
Environment)
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.Recap + 5 min of questions on MPPI
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A Few Robotics Key Words

Reference Frame: The Main frame in which all the robot are
located. Usually a Local Inertial Frame.

.Robot Pose: Defines position and orientation of the robot in a
Frame.
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Problem

We’'re focused on learning a dynamical model for a Non-
Linear Model Predictive Controller (MPPI) with applications to
Autonomous Underwater Vehicles (AUVS).

.The requirements for the model are the following:

-Model Accuracy, needs to be effectively representing the
AUV.

-Model Stability over many prediction steps.
-Fast inference time to work with the controller.
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Challenges

.There are multiple challenges to acquire this model.
-Long term prediction is subject to compounding errors.

-Underwater environment are highly coupled across degrees
of freedom and highly non-linear.

-System ldentification is a long and fastidious task that
require much time, effort & human Knowledge.

-Learning rigid body motion is complex for Machine Learning
algorithms.
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Fossen Model Introduction

(Madded + Myp)V = (Cadded + Crb) (V)v + D(v)v 4+ g(n) + Tetrd

-Added Mass and Inertial Mass ( 72 Parameters )
.Coriolis Forces ( Computer from Mass Matrices )

.Damping Forces ( 72 Parameters, for simpler models )
.Restoring Forces ( 8 Parameters )
.Force Input.

.Total of 152 model parameters. 18
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Approach

-We investigate a Neural Network approach solution.

.The model is aware of Rigid body motion before learning by
using a Lie Group Math Library.

.Designed a new loss function based on Lie Groups.
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Lie Groups

-What are Lie Groups?

-Lie Groups are Groups but also smooth (differentiable)
manifolds.

-A Smooth manifold is a space that locally resembles a linear
space.

-A group Is a set with composition operation that respect the
following axioms: Closurg, Jdenfity, Inverse and Associativity.
XoY=ZeM
EoX=XoE=X
Xox'=x1lox=¢
(Xo)Y)oZ=X0o(YoZ2)
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.The particular group of interest for us is SE(3).

.SE(3) can be used to define rigid body motion within a single
mathematical object.

.In robotics, a SE(3) element is usually referred to as the pose
of a robot.

21
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Lie Group Tangent Space

=

.The Tangeant space of a Lie Group at its origin is called the
Lie Algebra.

.The Lie Algebra corresponds to the world frame, wether a
Tangeant space at a given element corresponds to the Qecegy
frame.

.In the context of SE(3) for Rigid Body motion, its Lie Algebra
corresponds the velocity times time in world frame.

.The Tangent space at any point in a Lie Group Is a vector
space that is isomorphic to the Euclidean space - we can

o . . 22
renresent it into a Fuclidean snace that are suited for Neural



A Few Useful Operations

Exp(°t) :5¢(3) — SE(3
(

Log(X) :SE(3) — se(3
X & vét =Y = X o Exp(*vét)
Xo)Y=Log(X 1o))="tecTHxSE(3)
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Gradients on Lie Groups

.Derivatives for the SE(3) Lie Group are clearly defined.

.The computed gradient are constrained to the Lie Group’s
topology.

For SO(3) elements, the Jacobian is a vector of size 3 even
though the rotation matrix is a 3*3 matrix. If we compute the
gradients without the SO(3) knowledge we would have a
gradient of size 9 without SO(3) constraint.
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Loss Function |

.We designed a loss functions that works on an entire
trajectory.

It Is composed of 3 different quantities:
-The pose Loss

-The velocity Loss

-The velocity delta Loss.
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Loss Function Il
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Step Model
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Trajectory Model

G, " Inv Log G, » Inv Log Gy 3 Inv Log

Network
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Results |: Simulation Data
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Results II: Real Data
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Stonefish Simulator

.New underwater simulator.
-Huge set of sensors
.Accurate modelisation of underwater physics through CAD

.Currently working on photo-realistic images



Live Demo + Discussion &
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