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About Me

●I’m a PhD student at Heriot-Watt & University of Edinburgh in 
the UK.

●My Research is focused on control for Autonomous 
Underwater Vehicles.

●I want to bridge the gap between “classic” control methods 
with “modern” machine learning.
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Objective

●As part of my PhD, the goal is to design new controllers for 
Autonomous Under Water Vehicles (AUVs).
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Challenges

●Underwater environments exhibit complex non-linear & 
coupled dynamics.

●Communication is difficult. After a couple of meters there is 
only acoustic signal with low bandwidth.

●The environment is harsh for human operators.
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Objective

●Adaptive

●Reliable

●Robust

●Data Efficient
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Controller Choice

●Model Based

●Task Agnostic & Optimal Control

●Theoretical Guarantees

●Designed For Non-Linear Systems

●MIMO controller
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Model Predictive Control
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Model Predictive Path Integral
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MPC/MPPI Properties

●MPC
–Model Based
–Task Agnostic
–Extensively studied
–Theoretical Guarantees
–Feed Forward (trajectory 
optimization + obstacle 
avoidance)

●MPPI
–Gradient Free
–Work naturally with None-
Linear Systems
–Robust to Noise (modelling & 
Environment)
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Early Results: I
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Early Results: II
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Questions?

●Recap + 5 min of questions on MPPI
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A Few Robotics Key Words 

●Reference Frame: The Main frame in which all the robot are 
located. Usually a Local Inertial Frame.

●Robot Pose: Defines position and orientation of the robot in a 
Frame.
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Problem

●We’re focused on learning a dynamical model for a Non-
Linear Model Predictive Controller (MPPI) with applications to 
Autonomous Underwater Vehicles (AUVs).

●The requirements for the model are the following:
–Model Accuracy, needs to be effectively representing the 
AUV.
–Model Stability over many prediction steps.
–Fast inference time to work with the controller.
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Challenges

●There are multiple challenges to acquire this model:
–Long term prediction is subject to compounding errors.
–Underwater environment are highly coupled across degrees 
of freedom and highly non-linear.
–System Identification is a long and fastidious task that 
require much time, effort & human Knowledge.
–Learning rigid body motion is complex for Machine Learning 
algorithms.
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Fossen Model Introduction

●Added Mass and Inertial Mass ( 72 Parameters )

●Coriolis Forces ( Computer from Mass Matrices )

●Damping Forces ( 72 Parameters, for simpler models )

●Restoring Forces ( 8 Parameters )

●Force Input.

●Total of 152 model parameters. 18



Approach

●We investigate a Neural Network approach solution.

●The model is aware of Rigid body motion before learning by 
using a Lie Group Math Library.

●Designed a new loss function based on Lie Groups.
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Lie Groups

●What are Lie Groups?
–Lie Groups are Groups but also smooth (differentiable) 
manifolds.
–A Smooth manifold is a space that locally resembles a linear 
space.
–A group is a set with composition operation that respect the 
following axioms: Closure, Identity, Inverse and Associativity.
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Lie Group SE(3)

●The particular group of interest for us is SE(3).

●SE(3) can be used to define rigid body motion within a single 
mathematical object.

●In robotics, a SE(3) element is usually referred to as the pose 
of a robot.
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Lie Group Tangent Space

●The Tangeant space of a Lie Group at its origin is called the 
Lie Algebra.

●The Lie Algebra corresponds to the world frame, wether a 
Tangeant space at a given element corresponds to the body 
frame.

●In the context of SE(3) for Rigid Body motion, its Lie Algebra  
corresponds the velocity times time in world frame.

●The Tangent space at any point in a Lie Group is a vector 
space that is isomorphic to the Euclidean space → we can 
represent it into a Euclidean space that are suited for Neural 22



A Few Useful Operations 
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Gradients on Lie Groups

●Derivatives for the SE(3) Lie Group are clearly defined.

●The computed gradient are constrained to the Lie Group’s 
topology.

●For SO(3) elements, the Jacobian is a vector of size 3 even 
though the rotation matrix is a 3*3 matrix. If we compute the 
gradients without the SO(3) knowledge we would have a 
gradient of size 9 without SO(3) constraint.
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Loss Function I

●We designed a loss functions that works on an entire 
trajectory.

●It is composed of 3 different quantities:
–The pose Loss
–The velocity Loss
–The velocity delta Loss.
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Loss Function II
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Step Model
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Trajectory Model
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Results I: Simulation Data

29



Results II: Real Data
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Stonefish Simulator

●New underwater simulator.

●Huge set of sensors

●Accurate modelisation of underwater physics through CAD

●Currently working on photo-realistic images



Live Demo + Discussion
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