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MOTIVATION
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• cross-linking and internet of things → more and more data 
volume and flow

• decentralised collection of data

• high requirements on data privacy → GDPR

• data exploitation for business models requires resolving 
the conflict between data use and data protection

• goal: enable data use while ensuring data protection
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MOTIVATION

Source(s): IoT Analytics - Cellular IoT&LPWA Connectivity Market 
Tracker 2010-25

Source(s): https://www.jet-software.com/datenmaskierung/gdpr/
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MOTIVATION

Source(s): IoT Analytics - Cellular IoT&LPWA Connectivity Market Tracker 2010-25
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MOTIVATION

Source: https://www.heise.de/news/Bundeswirtschaftsminister-Gaia-X-als-weltweiter-
Goldstandard-fuer-Cloud-Dienste-4774826.html
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MOTIVATION
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STATE OF RESEARCH
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STATE OF RESEARCH

[Verbraeken et. al., 2020]
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STATE OF RESEARCH

Source: Bellavista, P., Foschini, L., & Mora, A. (2021). Decentralised learning in federated deployment environments: A system-level survey. ACM Computing Surveys (CSUR), 54(1), 1-38.
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STATE OF RESEARCH

Aggregation Masking Encryption

Basic Idea

hiding individual data in 
those of many by 

aggregating data that is 
distributed in time or 

space

requesting node receives only aggregated data
        individual data points no longer identifiable or traceable

aggregation can also be seen as transformation in a certain 
way
        models can be learned/trained locally
        learned weights of the model (here aggregation) are                   
        used to train the global model
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STATE OF RESEARCH

Aggregation Masking Encryption

Basic Idea

hiding individual data in 
those of many by 

aggregating data that is 
distributed in time or 

space

depending on the implementation, decentralised nodes in the 
network still receive original data 
(cf. SMART [He et al., 2007])
        possible attacker could impersonate neighbouring
        nodes in the network

depending on the algorithm, only certain aggregation functions are 
possible (Min, Max, Mean, Sum …)
        [Zhang et al., 2019] offers a wide range of applicable
        functions (increases possibilities)
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STATE OF RESEARCH

Aggregation Masking Encryption

original data is enriched 
so that the exact 

distribution as well as 
the absolute data values 

do not match the 
original

Basic Idea
by inserting random values (camouflage-values) no clear 
statement can be made, which data was really collected/measured

relatively easy and computational efficient

a consideration must be made as to how far the data set can be 
manipulated
       How much loss of information can be tolerated?
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STATE OF RESEARCH

Aggregation Masking Encryption

original data is first 
encrypted and aggregated 
with other encrypted data 

(→Term: Secure 
Aggregation)

[Zhang, 2011]

Basic Idea
there are procedures that decrypt the data again at the destination 
node, or not

in 2nd approach, homomorphic encryption is used to learn on the 
encrypted data
         the values are encoded, but relations between different values
         are still identifiable

high data transfer is needed

high computation capacity required at the edge nodes for encryption/
decryption
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DIFFERENTIALLY PRIVATE LEARNING FROM LABEL 
PROPORTIONS (DP-LLP)
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LLP - OVERVIEW

Conditions Approach

• limited memory (IoT)

• less data overhead for algorithm

• less computation capacity at the 
decentralised nodes

local data is not aggregated over 
multiple nodes of a graph, but is 
time-referenced for each node

→each node can only identify its 
own original data, if only modified 
data is passed to external properties

[Stolpe et. al., 2015]
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LLP - OVERVIEW

• data cannot be send between all 
nodes inside the network (would 
be to much data traffic)

• algorithm assumes, close 
locations have similar behaviour 
(also in prediction)

• therefore we need to have 
knowledge about distances

[Stolpe et. al., 2015]
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LLP - BASIC ALGORITHM

[Stolpe et. al., 2015]
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LLP - BASIC ALGORITHM

1. Assignment Step

2. Update Step

S(t)
i = {xp : xp − m(t)

i

2
≤ xp − m(t)

j

2
∀j,1 ≤ j ≤ k}

m(t+1)
i =

1

S(t)
i

∑
xj∈S(t)

i

xj
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LLP - BASIC ALGORITHM

[Stolpe et. al., 2015]
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LLP - DATA LEAKAGE
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DIFFERENTIALLY PRIVATE LEARNING FROM LABEL 
PROPORTIONS (DP-LLP)
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DP-LLP - DIFFERENTIAL PRIVACY

A randomised algorithm  with 
domain  and range  is -differentially 
private if for all  and for any 

 such that :

M : D → R
D R ϵ

S ⊆ R
D′￼, D′￼′￼ ∈ D | |D′￼− D′￼′￼| |1 ≤ 1

Pr [M (D′￼) ∈ S] ≤ eϵ Pr [M (D′￼′￼) ∈ S]

Definition: Differential Privacy Explanation

• with  a degree of deviation between 
the datasets  and  can be 
specified, wich is allowed

• : totally privacy compliant, no 
difference between the two datasets

• the higher  is chosen, the more 
noticeable the missing date is in the 
dataset

ϵ
D′￼ D′￼′￼

ϵ = 0

ϵ

[Dwork et al., 2014]
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DP-LLP - DIFFERENTIAL PRIVACY
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DP-LLP - DIFFERENTIAL PRIVACY

The -sensitivity of a function  
is:

l1 f : D → R

△ f = maxD′￼,D′￼′￼∈D, ||D′￼−D′￼′￼||1=1 | | f(D′￼) − f(D′￼′￼) | |1

Definition: Sensitivity Explanation

• sensitivity indicates the factor/value by 
which a single datum can influence the 
dataset in the worst-case scenario

• using sensitivity to regulate how much 
noise must be calculated on the data 
to be differentially private

[Dwork et al., 2014]
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DP-LLP - DIFFERENTIAL PRIVACY

With ,  as -sensitivity function 
given and  as real data points given:

ϵ △ f l1
D

Pr(R = x |D = trueworld) =
1
2σ

e
− |x − μ |

σ

=
ϵ

2 △ f
e− |x − f(D) |ϵ

△ f

Definition: Laplace Distribution Example

[Dwork et al., 2014]
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DP-LLP - DIFFERENTIAL PRIVACY

Proof

Pr[M(D′￼) ∈ S]
Pr[M(D′￼′￼) ∈ S]

≤ eϵ

ϵ
2 △ f

e− |x − f(D′￼) |ϵ
△ f

ϵ
2 △ f

e− |x − f(D′￼′￼) |ϵ
△ f

≤ eϵ

e− |x − f(D′￼) |ϵ
△ f

e− |x − f(D′￼′￼) |ϵ
△ f

≤ eϵ

e− |x − f(D′￼) |ϵ
△ f + |x − f(D′￼′￼) |ϵ

△ f ≤ eϵ

e
ϵ

△ f |f(D′￼)−f(D′￼′￼)| ≤ eϵ

distance between  and  cannot be 
higher than  

 

→ 

f(D′￼) f(D′￼′￼)
△ f

| f(D′￼) − f(D′￼′￼) |
△ f

≤ 1

triangle equation: |a | − |b | ≤ |a − b |
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But where can this noise be applied?

Now, we know, how we can add noise to prevent leakage of private data! 
And we also know, that we can prevent exploitation of private data to a 

specific degree!

28

DP-LLP - DIFFERENTIAL PRIVACY
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DP-LLP - ALGORITHM

Require: 
Ensure: 
  1: for  in  do
  2:   for  in  do
  3:     
  4:   end for
  5:   
  6:   for  in do

  7:     

  8:     clip  to bounds 
  9:   end for 
10:   normalize 
11: end for

B1, . . . , Bh, Y
Q( j)
i 1..h

j 1.. |Y |
Q( j)i,j ← sum(Bi = = Yi)

m ← sum(Q( j)i)
j 1.. |Y |

Q( j)i,j ← Q( j)i,j + lap(e = 0,s =
1
ϵ

)

Q( j)i,j [0.001,m]

Q( j)i

calculating upper clipping value

calculating noise for each aggregated value
+ adding to the private data

clipping to prevent negative values
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EVALUATION
PERFORMANCE STATISTICS

30
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• traffic volume data from Sydney Coordinated 
Adaptive Traffic System

• sensors at each traffic signal

• contains 5 minute averaged values of traffic flow

• data from January 2013

• continuous values, that are mapped to 5 class 

labels: [0,
1
52

,
6

52
,

16
52

,
30
52

,1]
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EVALUATION: DATASET

Overview of traffic flow sensors [McCann, 2014]
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• 57 parking sensors, which are located in 
Hamilton, Australia

• two labels (used=red, free=green)

• only value changes are stored  
→ preprocessing in timeframes is 
     necessary

• 391,444 entries between 2019 and 2021

32

EVALUATION: DATASET

Overview of parking sensors 
[Southern Grampians Shire Council, 2021]
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LLP - OVERVIEW

[Alaliyat, 2022]
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EVALUATION: SETUP

Steps General Information
• cross validation with 10 folds
• Evaluation on the two types of datasets

• vehicle flow
• parking sensors

• comparison with k-nearest neighbor

acc =
tp + tn

tp + fp + tn + fn
positiv negativ

positiv TP FN

negativ FP TN

predicted
actual

1. modification batch size 

2. modification cluster size 

3. modification 

4. comparison results between 
datasets

b

c

ϵ
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EVALUATION - BATCH-SIZE
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EVALUATION - CLUSTER-SIZE
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EVALUATION - CLUSTER-SIZE
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EVALUATION - ϵ
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EVALUATION - DATASETS

acc

peer j
0.2
0.4
0.6
0.8
1.0

1 2 3 4

acc

peer j
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1.0

1 2 3 4
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CONCLUSION

40
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• the DP-LLP algorithm reaches nearly the same 
performance as the LLP algorithm

• by choosing , companies can set the tradeoff 
between data privacy and accuracy

• most influence on the accuracy is achieved by 
varying the batch-size and 

• performance not as good as centralised approaches  
(but significantly less data is used)  

ϵ

ϵ
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CONCLUSION
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ra
cy

privacy
small data transfer

LLP
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FUTURE POSSIBILITIES

implementation 
of Online Learning

more 
complex 

ML-model inside the 
DP-LLPmerging 

typical 
Federated 

Learning (exchange of 
weights) with DP-LLP
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DISCUSSION

43
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