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Our Professorships’ topics

Robust L.
Sensor Fusion Navigation
Multi object Visual Place
Tracking Recognition
Localization Time Series
With GNSS Analysis
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My background

Worked in a joint research project ,interaction strategies for a shopping assistant robot”

Our tasks:

Environment representation
Localization
Navigation in dynamic environments
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My background

Worked in a joint research project ,interaction strategies for a shopping assistant robot”

Our tasks:

* Environment representation
» Localization
* Navigation in dynamic environments
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Current research

Exploring HDC/VSA for Applications in Computer Vision and Signal Processing

Comparison of VSAs Time Series Analysis Visual Place Recognition
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General Intro

Work on VSA / HDC and how it can be used in different tasks

Artificial Intelligence Review
https://doi.org/10.1007/510462-021-10110-3

Peer Neubert

HDC-MiniROCKET: Explicit Time Encoding in

A comparison of vector symbolic architectures

Kenny Schlegel'© - Peer Neubert'© - Peter Protzel'

©The Author(s) 2021

Abstract

Vector Symbolic Architectures combine a high-dimensional vector space with a set of care-
fully designed operators in order to perform symbolic computations with large numerical
vectors. Major goals are the exploitation of their representational power and al
with fuzziness and ambiguity. Over the past years, several VSA implementations have been
proposed. The available implementations differ in the underlying vector space and the par-

ty to deal

™ Time Series Classification with Hyperdimensional
Ly Computing

Kenny Schiegel, Peer Neubert and Peter Protzel
Chemnitz

Unive

sity of Technology
Chemnitz, Germany
{kenny.schlegel, peer.neubert, peter.protzel} @etit tu-chemnitz.de

on. of time series data is an importan "R simple 2-class time series classification problem:
n domains. One of the best existing ‘Gaussian noise with a sinole Sharp peak either nthe.
methods for this task, in terms of accuracy and computation frs haf (clss 1) or second R (class 2)of the sighal

provide better global temporal encodings using hyperdimensional
computing (HDC) mechanisms. HDC (also known as Vector
Symbolic Architectures, VSA) is a general method to explicitly
represent and process inform: high-dimensional vectors.
sly been used successfully in combination wit
al networks and other signal processing algorithms.

ROCKET is well suited to be complemented by the
algebra_of HDC. This leads to a more general formulation,
HDC-MiniROCKET, where the original algorithm is only a
spes ease. We will discuss and demonstrate that HDC-
MiniROCKET can systematically overcome catastrophic failures

Stefan Schubert

ticular implementations of the VSA operators. This paper pmvudes an overview of eleven

VSA impl i and di their and diff in the
underlying vector space and operators. We create a taxonomy of available binding opera-
tions and show an important ramification for non self-inverse binding operations using an
example from analogical reasoning. A main contribution is the experimental comparison
of the available implementations in order to evaluate (1) the capacity of bundles, (2) the
approximation quality of non-exact unbinding operations, (3) the influence of combining
binding and bundling operations on the query answering performance, and (4) the perfor-
mance on two example applications: visual place- and language-recognition. We expect
this comparison and systematization to be relevant for development of VSAs, and to sup-
port the selection of an appropriate VSA for a particular task. The implementations are
available.

of MiniROCKET on simple synthetic datasets. These results are
confirmed by experiments on the 128 datasets from the UCR
time series classification benchmark. The extension with HDC
can achieve considerably better results on datasets with high
temporal dependence at about the same computational effort for
inference.

Tnder Terms—time series clasification, HDC, VSA, hyperd-
mensional computi

1. INTRODUCTION

Time series classification has a wide range of applications
in robotics. autonemous driving, medical diagnostic, in the
financial sector, and so on. As elaborated in [1], classification
of time series differs from traditional classification problems
because the attributes are ordered. Hence, it is crucial to create
discriminative and meaningful features with respect to the
ific order in time. Over the past years, various methods

fcation of uni time series have

iROCKET is a fast state-of-the-art approach for
time series classification. However, it is easy to create simple
datasets where its performance is similar to random guessing.
“The proposed HDC-MiniROCKET uses explicit time encoding
to prevent this failure at almost the same computational costs.

size and (2) accumulation of filter responses over time based
on the Proportion of Positive Values (PPV), which is a special
Kind of averaging. However, the combination of these design

signals on a larger scale than the size of the convolution filters.
To address this, the authors of MinROCKET propose to use
dilated convolutions. A dilated convolution virtually increases
a filter kemel by adding sequences of zeros in between the
values of the original filter kernel [12] (e.g. [-1 2 1] becomes
1-1020 11 or -1 00200 11 and so onl

Robotics: Science and Systems 2021
Held Virtually, July 12-16, 2021

Vector Semantic Representations
Descriptors for Visual Place Recognition

Peer Neubert, Stefan Schuberi, Kenny Schlegel and Peter Proizel
Chemitz U iy of Technology. Genmany
{p . stefan schubert, kenny.schlegel, peter protzel} @ etit tu-chemnitz.de

Abstracs—Place recognition is the task of recognizing the
current scene from & database of known places, The currently

representation
dominant algorithmic parsdizm is to use doep kearning bascd)
et fatars Tosers 0 deserib sncs plnce i s recloc st
s fad matchings. We propose 4 navel ype of s s -
ot <

Vector Scmantic Representations (VSR),
semantic layout Trom a semanic segmen e
< mmplr 4096

- We
from the extublished cluss of Vector Symbolic Architectures In
combine symbolic (¢4 class Jabel] wnd numeris (e, feature
g response) information i 3 comumEn veClor representation.

led ivesiglion, e discs

i eriterion. Further,
pror is particularly
well suited for combinativn with existing appearance descriplors
indicating that semantics provide complementary information for
image matching

neir spara Iryou, und
mantic segmentation ean be used t creaie

m Vestcr Symbolic Amhilecuse (VSA)
gy .,m—m numesic. infarmatian in a single
far place recogaion.

1. INTRODUCTION

Visual place recognition is the task of malching a given  veseor that san serve s ces
aery mage 10 o potentially large database of known
important means for loop closire detecti
Jection for 61 puse
rticularly challenging w

hew 10 distinguish individual urban st
propartion of similarly szskm!_ Vi

condition changes due 1 ehanging il " images for place recognition
of th example is shown in Fig [} The key idea is  describe
v about the semantic content of shown street scene by the sem formation that there is
directions. On one hand a sidewalk right o the st s tersain 10 the left
which in tum is followed by another sidewalk and a fence.

andior when the
orge, Touiiely, infore
the image can help in
is largely invariant of appea

Peter Protzel

K- Kiinsliche [;melligen:
Bitpsidi.org /10,1005 1318018006202

TECHNICAL CONTRIBUTION )

An Introduction to Hyperdimensional Computing for Robotics
Peer Neubert! @ Stefan Schubert! - Peter Protzel’

Reteived: 15 Decembér 2015 /Actepted: 11 September 2019
o Infosrmatik e . and. of Spring 2019

Abstract

Hyperdimensional computing combincs very high-dimensional voctor spaces .2 10,000 dimensional) with u sct of carcfully
designed aperators to perform symbalic comput wectors. The gaal is 1 exploit their representa
tional power and noise Fobusiness for o broad range of computational tasks. Although there arc surprising and impressive
wesults in the literamre, the application w practical probl s of robeies is 50 fiar very limited. In this work, we aim
at providing an casy to aceess introduction to the underlying mathematical concepts and deseribe the existing computational
implementations in form of vector symbolic aschitectures (VSAs). This is aceor
tians of VA in the literature. To bridge the gap 10 practical upplications, we describe and experimentally demonstrate the
application of VSAs 10 three differ ic tasks: viewpoint invariant object recognition, plice recogmition and learning
of simple reactive behaviors. The paper closcs with a discussion of current limitations and apen questions

panied by references 10 existing applica

Keywords Hyperdimensional compating - Vector symbolic architectures - Robotics

1 Introduction

Humans typically gain an in %
and 3. Euclidean spaces very early in their lives, Higher  face (at least) e challenges [33]: {1 timited ot of

or vestor symbo
were also called high-dimensic
tor computing). They build upon a set of carcfully designed  better interpretable symbolic processing

etworks (ANN), Their recer
xuhpr\\h\em\ e.g.. for rabust per
obotic

ption.

2D

ng approaches
5 have some cou properties  iraining data, {2 there is prior knowledge that we
encralization of many algorithms from low as well as algorithms), and (3] we
nal spaces seless—a ph es (e

menon known

he
as curse of dimensionality. However, there is a whole class from one covironment (o .u\i)lhcr()l from simulation i(b real
of approaches that
approaches work in vector spaces with thousands of dimen-

properties. These  world). The later is p
awonomous cas. A re:

t exploiting 1

red 1o as hyperdimensional com
ic architecrures (VSAs) (previously they
mputing or hyperves

robustness of high-dimensional representations (for example

lesired by ANNs) with sample-efficient, programmiahle and
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Motivation from the view of Al

Symbolic (Traditional Al)

| Input |

B Ti\ij’i — < /f
v —
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Output

Sub-symbolic (Neural Networks)

Input

Prague - October 27, 2022 - Kenny Schlegel

10

www.tu-chemnitz.de/etit/proaut



B | HpC/VSA | Motivation

CHEMNITZ

Motivation from the view of Al

Symbolic (Traditional Al) Sub-symbolic (Neural Networks) HDC /VSA

Distributed Representation X \/ \/
Robust X ? \/
Learn from Data X \/ —

S

4

Symbolic computations

Interpretable \/ X \/
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Seminal Literature and Researcher

Tony Plate Pentti Kanerva Ross Gayler

[1] T. A. Plate, “Holographic Reduced Representations,” IEEE Trans. Neural Networks, 1995.

[2] P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional
random vectors,” Cognit. Comput., 2009.

[3] R. W. Gayler, “Vector Symbolic Architectures answer Jackendoff's challenges for cognitive neuroscience,” arXiv:cs/0412059 2004
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What is HDC/VSA?

@dimen@momputing (HDC)

Vector Symbolic Architectures combine a high-dimensional vector space with a set of carefully
designed operators in order to perform symbolic computations with large numerical vectors.

Symbolic Architecture (VSA)
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Robustness comes from HD space and distributed representations

e I e ™

High-dimensional Vector Space | | Distributed symbolic Representations

ety

1D 2D 3D 1000D

111111111 . 111111111

" Robustness

Noise has low influence on nearest neighbor queries with random vectors
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Highdimensionality - Going from 1D to 1000D

» Capacity of high-dimensional spaces grows exponentially
» For example bipolar vector space {-1, 1}:

1D 2D 3D

Capacity 2 4 8

e P

1000D/

~ 10300

Atoms in the
universe =
1 080
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High-dimensional (HD) Vectors

rate of similarities of 1000 random vectors with #Dim=9

Random High-dimensional vectors are 30 ' ' ' ' ' ' ' ' |
almost orthogonal: a0 | |
H,D -

» Generation of random vectors from a
high dimensional vector space 70

* These vectors are dissimilar in terms
of cosine angle (Euclidean distance
becomes meaningless in high-
dimensional space)

50 1

number of vectors

30

201

D i ] 1 [ 1 i
-1 08 06 04 0.2 0 0.2 0.4 0.6 0.8 1

cosine similarity
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High-dimensional (HD) Vectors

Random High-dimensional vectors are 10p _TAte of similarities of 1000 random vectors with #Dim=400
almost orthogonal:

80 5

» Generation of random vectors from a 80 |
high dimensional vector space ol

* These vectors are dissimilar in terms
of cosine angle (Euclidean distance
becomes meaningless in high-

dimensional space) a b )

number of vectors
n
[}
1
1

a0 r

20T

10 .

D i i i i i i i i
-1 0.8 0.6 04 0.2 o 0.2 0.4 0.6 0.8 1

cosine similarity
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High-dimensional (HD) Vectors

An example:

—_—) ) ) )
1 1 1
. -_— ) ) o ) ) e

Add noise (e.g., flipping the sign)

RS W I W W
-_— ) ) e
N\

Databasewith .

100,000 random Check if nearest neighbor in DB is the initial vector
Vectors (Can we recover the clean vector?)
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High-dimensional (HD) Vectors

Random flips at 1024 dimensional vector

flip-ratio = 0.01: Correct retrieval with cosine similarity of 0.98

1 1 1 1
. _—m) ) )

i
|
|
| \
\\
\
\
\
\
\
_ A A A A

Database with
100,000 random
Vectors
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High-dimensional (HD) Vectors

1 Random flips at 1024 dimensional vector
-1
1
—?I Hip-ratio = 0.12: Correct retrieval with cosine similarity of 0.77
1
-1
) .
/ i
1
/\ 1
1
\\J _'I
1

Database with
100,000 random
Vectors
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High-dimensional (HD) Vectors

1.2 | .

0.8} .

N
N 4

Database with
100,000 random

0.6 .

probability of correct retrieval

0.4 r 1
Vectors K

- ‘ i i
~ 777// 0.2 flip-ratio = 0.1
flip-ratio = 0.2
flip-ratio = 0.3

0 - _,-/ | 1 | |
0 50 100 150 200 250

# Dimensions
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Symbols as Distributed Representation to use the properties of HD space

Distributed representation means that each individual value has no specific meaning unlike local representations:

For example a local representation (as in standard computers) of the number
1027 is as follows...

1 0 0 O O O O o0 o0 1 1
T 111111111
210 99 98 o7 r*‘“ 25 94 93 92 91 90
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Symbols as Distributed Representation to use the properties of HD space

Distributed representation means that each individual value has no specific meaning unlike local representations:

For example a local representation (as in standard computers) of the number
1027 is as follows...
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Symbols as Distributed Representation to use the properties of HD space

Distributed representation means that each individual value has no specific meaning unlike local representations:

What if one bit is erroneously flipped?

)
iy
Qo

[ )
iy

N
o
I

—

o

N

~
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Symbols as Distributed Representation to use the properties of HD space

Distributed representation means that each individual value has no specific meaning unlike local representations:

Each local bit has a specific meaning!

1T 0 O 1 o 0 O O 0 1 1
29 28 26 25 24 23 22
>, 210 97 9l 920 = 1155 # 1027
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Symbols as Distributed Representation to use the properties of HD space

To overcome this local meaning HDC uses distributed representations

Information (e.g. a number) is encoded in very large random vectors (much
larger than would be required to just distinguish the symbols)

E.g. symbolic entity for the number 1027

Random Number

Generator:
b
/ \\ /\\
[i /\,\ 1-11-11-11111-1-111-11-1-1-1-1-11-1-11111111-111-1
é / \\ ‘N Random distributed representation of the symbol "1027"
e | v

Prague - October 27, 2022 - Kenny Schlegel 26 www.tu-chemnitz.de/etit/proaut
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Motivation and bigger Picture from the view of Al

Symbolic (Traditional Al) Sub-symbolic (Neural Networks) HDC /VSA

Distributed Representation

Robust

Learn from Data

Symbolic computations

Interpretable

X Vv Vv
X ? N

S
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What is HDC/VSA?

Hyperdimensiona w HDC)

Vector Symbolic Architectures combine a high-dimensional vector space with a set of carefully
designed operators in order to perform symbolic computations with large numerical vectors.

Vector@lic Architecture)(VSA)
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Operations for symbolic computation

Bundling -

Control Similarity

@

N, =

similar

e Qutput is similar to each input

A&

Algebra for
High-dimensional
vectors

_* Distributes over bundling

®

N, =

dissimilar

. Output is non-similar to each input E

* invertible (©)

4

Prague - October 27, 2022 - Kenny Schlegel
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Operations for symbolic computation

L -1 2
Bundling « Can be implemented as 1 1 0
simple element-wise addition 1 1 g
* Overlaying of vectors ] 1 0
(superposition) 1 -1 0
L -1 2
®| = .
1 1 0
L L 0
-1 L -2
. 1 1 0
similar | 1 |
g | -2
e QOutput is similar to each input £\ 0.05 0-68// _ Cosine
: : similarities
0.68 y
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Operations for symbolic computation

v v2 A v2
-1 -1 T -1 -1
1 1 1 1 1 « Binding can be implemented as Binding
. . 1 . A simple element-wise
1 1 1 1 1 multiplication
T T -1 T T * Binding is in that case self
1 1 L ol 1 inverse vi®v1 = |
« Associate vectors ® —
® | = o= ] * Unbinding is element-wise -
. : : : : multiplication too (recovering)
-1 T -1 -1 L
T -1 -1 T -1
-1 -1 T -1 -1
1 1 1 1 1 X S
-1 T -1 -1 L ——
y q ] . p dissimilar
N0.05 \\9'01// / _ Cosine similarities e QOutput is non-similar to each input
— / ~* invertible (@) |
0.01 1 - -

Prague - October 27, 2022 - Kenny Schlegel 31 www.tu-chemnitz.de/etit/proaut



@ HDC/VSA | Symbolic Computation

CHEMNITZ

Bundle multiple random vectors

-1
-1 -1 -1
-1 -1 1 -1
1)) L
1 1 -1 1
10011 -1
-1 1 -1 1
1 -1 : -1
Al ®
. . : —
P . . . .
/// X -1 1 -1 N
/\ A1 1 N
1|1 1 -1 Y,
\/ -1 1 1] -1 1
10 -1 1 -1
Database with [ B M A
100,000 random NN Check if k nearest neighbors in DB are the bundled vectors
Vectors ’ (Can we recover all vectors?)
,,///"
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Bundle multiple random vectors (1000D)

1 | '

=y
o 7
5,
b
09F :
T
s
PN 5 o08f .
\/ -15
O
S
: 0.7F -
Database with -
100,000 random 2 N
Vectors 306 o - < :
S
| = i
- — ,,777J,,,,/—/// 05k H\M
' Noise has low influence on nearest
neighbor queries with random vectors
04 | | 1 |
0 20 40 60 80 100

# bundled vectors
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Building Structures with HDC

A common structure for encoding information with VSA are Bupdled .
Role-Filler-Pairs
Combine a scene: An orange ball lies on the ground.
role filler role filler role filler

\\\

N

Scene Representation %) EWJ

Asking for the color...

V I' ® @M(—B Noise @ Noise

Prague - October 27, 2022 - Kenny Schlegel 34 www.tu-chemnitz.de/etit/proaut
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A more complex Example: What is the dollar of Mexico? [1]

| | role filler role filler role filler .
Repr. USA = [Country ® USA [ Capital ® WDC @ [Currency/@ Dollar 3
Repr. MEX = [Country ®| Mexico @ [ Capital :@ MXC @ [Currencyi@ Peso S

Analogies = Repr. MEX ® Repr. USA =

of similar
categories
Analogies = USA (& Mexico } @ WDC ®  MXC @ | Dollar ®| Peso

Noise LM@ ~ Peso

Analogies @ Dollar ]

“What is the dollar of Mexico?”

= Peso ]+Noise

Prague - October 27, 2022 - Kenny Schlegel 35 www.tu-chemnitz.de/etit/proaut
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Motivation and bigger Picture from the view of Al

Symbolic (Traditional Al) Sub-symbolic (Neural Networks) HDC /VSA

Distributed Representation X \/ \/
Robust X ? \/
Learn from Data X \/

S

4

Symbolic computations

Interpretable \/ X \/
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Learning from data

Hand-crafted Learning is possible
T r
1 K-nearest neighbors
-1 X
-1
-1
T - .
> | + Neural Networks
Systematically . L )
encoded input data : |
with VSA/HDC ]
] ) ~
T
-1 Regression
-1
_I A\ 4
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Motivation and bigger Picture from the view of Al

Symbolic (Traditional Al) Sub-symbolic (Neural Networks) HDC /VSA

Distributed Representation X \/ \/
Robust X ? \/
Learn from Data X \/ —

S

4

Symbolic computations

Interpretable \/ X \/
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Different Implementations

Name Elements X of Initialization of an Typical used sim. Bundling Binding Unbinding Ref.
vector space WV  atomic vector X; metric - — - —
Commutative Associative  Commutative Associative
/
Real
o
B I po I ar { MAP-B Xe{-1,1 }D X; ~ B(0.5) -2 — 1 Cosine sim. Elem. addition with Elem. multipl. Elem. multipl. Gayler and Levy
threshold v v v v (2009), Kleyko et al.
- (2018)

Binary <

N
Complex {
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Different Implementations

- —

| MATLAB Toolbox [1] TorchHD (Pytorch) [2]
% create the object of a specific WSA type
type = 'MAP B'; % available types: 'MAP C'; 'MAP B'; 'MAP I';
. . . VSA = vsa_env('vsa',type, 'dim',1024);
Inltlallzatlon % add vectors to i1tem memory (randomly chosen) application
VSA.add_vector('num',100);
1 bundle = .bundle(vl,vz);
Bundling bundle = vsA.bundlelvi,vz embeddings structures
. e _ datasets
Blndlng bound v = vsa.bindivl,v2); functional
Unblndlng r = vSA.unbind({vl,bound v}; | ST T-T-TTmFmTmEmmEmm/TmmmEmmoTmmomTTmmmTEETETITTT
torch
Slmllal'lty sim = VsSA.simlbundle, [vl vZ2 w31);
Clean-up T lamns mames 21 = Vo o b meareot (v, 1)
— Prototyping (is not a fast a possible but — GPU support and many predefined
L easy to use) N functionalities 4
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HDC/VSA is...

-1
.I
-1 Associate
g /N
-1
1 @ — ® — role : ﬁﬁer: : role : filler role filler
. r— - .® @j Object /@ Ball | @ Lucation/@ Gmund‘ :
E— v /
............ { Scene Representation ‘ @ [ Color W
-1 Overlay
-1
1 > W
P similar dissimilar
T
1

...based on HD Vectors... = | ...and well defined operators... .to systematically combine

\ VRN 4 \ information. /
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The talk is about...

N Example Applications )
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Use HDC in real applications

Most important step is converting data (information) into HD vectors

High-dimensional space
Random vectors for 9 P

unrelated concepts

Deep-learned or hand- 1000 D
crafted descriptors
(intermediate output
of a neural network)

Sensory data

Similarity preserving
> encoding

L Others like unrelated entities / N )
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1. Time Series Classification 2. Visual Place Recognition

N\
/ TN
AN [\ / \ / O\ /
\ V\ “
\ | "/ \ . '//\
\ | \ \
\U \/
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The Problem

4 ~ Case 1: Multivariate Time Series

Fo » Class 1
R > Class 2
> Class 3

J

J

]
N /

Autonomous
System

>

/ “/ N4
\\ / B
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The Problem
4 Case 2: Univariate Time Series N\
A » Class1
| . >[ Class 2 }
- » C(Class3
X - “Class3 |
A
Autonomous >
System 4
X
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The State-of-the-Art

One of the best perform algorithms in terms of accuracy and computing time is MiniROCKET [1]

A simple 2-class time series classification problem:
Gaussian noise with a single sharp peak either in the
first half (class 1) or second half (class 2) of the signal

examples

I ot o o

examples

class?2 gy W Il W«W Mw» MW MW

11111
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The State-of-the-Art

One of the best perform algorithms in terms of accuracy and computing time is MiniROCKET [1]

A simple 2-class time series classification problem:
Gaussian noise with a single sharp peak either in the " Classification
first half (class 1) or second half (class 2) of the signal Accuracy of

MiniROCKET:

S e s

Standard Case:
67 %

Challenging Case:
56.9 %
examples

Hase 2 WWWWMLNWMW WWMW‘W ko M‘WWWWWL\» U

[1] A. Dempster, D. F. Schmidt, and G. I. Webb, “MiniRocket: A Very Fast (Almost) Deterministic Transform for Time Series Classification,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 248-257, 2021.
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The State-of-the-Art - MiniROCKET
A

Signal

)time

Dilation 1
Dilation 2 [ ] o°

Dilation 3 00000
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The State-of-the-Art - MiniROCKET

A
g Approx. Cumulative
) / Distribution Function
/ * Uses thresholds for the bins
* Accumulate these over time
> time
Dilation 1 /
Dilation 2 O o /
Dilation 3 00000
J
Response 1 (JOOOO0O0000000G = .
response2. DOOQ0000O00O000G = |2
Response 3 (J OO O0O0O0O0O0O0O0O0O0OA = %
o™ Z,

[
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Intermediate Representation of MiniROCKET

respense 1 OOO000000000000 4| 1

Response 2. JOOOO0QOQQO00000 >l "y |+ o |=

Response 3 (JOOOOO0O0OCOOOCOOOOY-> I — — Accumulation loses information
B 1 about location in time

Response 1 EEEEEEEEEEBEEE ) | &

Response 2 (EEEEEEEEEEEEEER =

Response 3 (EEEEELELLBEELBEE N

Response 1 |E2EEHEEEEE® o E -

I . A A A ) ) ) ncode global time context

Before accumulation

P

9996 élim. \//ectors
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From MiniROCKET to HDC-MiniROCKET

Response 2. (JOO 00000000000 M=« |*y | |
Response 3 (JOOO000000000O Y-l f

N

response 1| [EEDEEEE0EEE0E2EE
%mm2%@@@@@@@@@@@@@
=)

mmm1oooooooooooooo€mr“.1
kl

(oo PP

o)

Response 3| [ EELEEELLEELEE

pr—  pmm—,  pm—  pm—  pm—  pm— —  —  —  — —  — p—

oo 10" 1"

Response 1

OOOOOOOCNHNONOONOONHADNOONDDHBHO)
(G O)
(G O)

[
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From MiniROCKET to HDC-MiniROCKET

Response 2. (JOOO0000000000E~>Hl | "y |«
Response 3 (JOOO0O00000000O Y-l *

N2

Response 1| @EEEEEEEEEEEEE
Response 2. EEEEEEEEEEEEE
Response 3 ©EELEEELLEELEE

Response 1) 228088680868 -

pr—  pmm—  pmm— pm— pm—  p—  —  —  —  — — —  p— p—

Response 1 C)C)C)C)C)C)C)C)C)C)C)C)C)C)e9 | ol .1
HI} [

(oo P

~

oo "I

Response ?2

OEOOOOOOOOEOOOOODOOO®OO®OOMO M)
OEoOOOOOOOEOOONODOOO®OO®OOMO M)
OEoOOOOOOOEOOOOODOOO®OO®OOMO M)
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From MiniROCKET to HDC-MiniROCKET

IN Q,E % E %
response 1 OOOO00000000000 A | JIE B . o
respense 2 OO000000000000 >l 'F " [ 1= 8 - :
Response 3 (J(OJOO000O000000O0O Y- Hl - - s ld B |a g
® & = & £ ® ]
. < J = © = B
- B — /§/§ % .g % £
Response 1 @@@@@@@@@@@@@ |=_/ % ~ % = % -
Response 2. EEEEEBEEEBEEEBEEK =1 e S e
Response 3. EEELBELEBLLEBLEE N = & &
responze 1| ©002E820008020 N | | ; : g g
\ -
e
Assign each feature Bundled
Vector with its position Role-Filler-Pairs
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From MiniROCKET to HDC-MiniROCKET

Practical Applications with VSAs | Time Series Classification

e e e
ulw (&) % % %
Response 1 (JOOOO0000000000 A=l ™y | . | g g g
response 2. OOO00000000000 -l 5" [ 1= : :
Response 3 (J(OJOO000O000000O0O Y- Hl - = S ld E e S e
o Sl 5 ol [E Sl |5
v S EOl © E0f oo 20
- = B " BE OHE
Response 1| B8EEEE8B06E8E8868E = g - g
Response 2. §EEEEEEBE6E8868E = g € g
Response 3 BELELBLLEBBE N c c c
e e e
responee 1| ©0EEE0E022E82228N |- : : -
Racecnonece 2 @ O/ @ -/ @ —/
w—(—os—)-»mon-gimilar]
The goal is graded similarity: nearby
timestamps should be similar and
more distant timestamps should be
dissimilar
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From MiniROCKET to HDC-MiniROCKET

Mechanism called fractional binding creates

graded similarity: BBl i
- ~ Different Graded Similarities for timestamp encoding
Euclidean distance 1 2 3 4 5 6
Of scalar values x RO
B .
2 08+
l EL: 0.6 - — 5=00
S — s=041
é — s=1.0
. . 5 0.4 - — 5=1.83
Cosine distance > — s=30
S —— s=4.66
Of vector | E 021 s=7.0
—0.2 A
L L LJ L L L LJ 6 2IO 4|0 6|0 8|O 160
timestamp difference as percent of total series length

\\‘,, //;
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Results of HDC-MiniROCKET on synthetic Dataset

A simple 2-class time series classification problem:
Gaussian noise with a single sharp peak either in the

first half (class 1) or second half (class 2) of the signal /(/:I —— N /CI —— N
, ~ Classification | assification |
examples Jw 5 Accuracy of Accuracy of
L | | ., fies . MiniROCKET: HDC-MiniROCKET:
LT R e
g Standard Case: Standard Case:
. , , 67 % 94 %
| E | i
i;asr:ges RTA T J{ P L1 _ bl 1 b ﬂL + Challenging Case: Challenging Case:
T W\WWW AN WWM”“WW‘M f 56.9 % 94 %
..... e time time \\ ///, \\ / /
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Results of HDC-MiniROCKET on Benchmark ensemble

« UCR Benchmark ensemble with 128 univariate datasets
« Since we have a hyperparameter s, we need to find the optimal s for each dataset
» Choosing the correct s is important because some datasets are getting worse with additional time encoding

Cross validation

Relative accuracy improvements compared to the original MiniROCKET
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHthiLJISLIeICtiLnIOfIS(Ior{lmle)II. 170f128datasets

[N simple data-driven selection of s .
B show improvements
|* Maximal 27%
improvement with
oracle and 12% with
| crossval.

Oracle (best case)

wW
o

N
(&)

n
o
I

relative Accuracy change [%]
=) o
[ [

:

2
21

—-rrr T T

A il el il ol ol = i il el ol ol el ol el
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HDC-MiniROCKET

More details in the recent paper [1]

HDC-MiniROCKET: Explicit Time Encoding in
Time Series Classification with Hyperdimensional
Computing

Kenny Schlegel, Peer Neubert and Peter Protzel
Chemnitz University of Technology
Chemnitz, Germany
{kenny.schlegel, peer.neubert, peter.protzel | @etit.tu-chemnitz.de

Abstract—Classification of fime series data is an important
task for many application domains, One of the best existing
methads for task, in terms of aceuraey and computation
time, is MiniROCKET. In this work, we extend this approach to
provide better global temporal encodings using hyperdimensional
computing (HDC) mechanisms. HDC (also known as Vector
Symbolic Architectures, VSA) is a general method to explicitly
represent and process information in high nsional vecto
It has previously been used successfully in com

A simple 2-class time series classification problem:
ih a single sharp peak either in the
or second hall (ciass 2} of the signal

Pl e b

deep neural networks and other signal processing

L 4404 AP A

‘We argue that (h! internal _high
af MiniROC! well suited o be complemented by the
algebra of HDC. n. leads to a more general formulation,
HDC ROCKET, where the original algorithm is only a
e. We will discuss and demonstrate that HDC-
ImiRﬂ(KLT can systematically overcome catastrophic failures
of MiniROCKET on simple synthetie datusets. These results are
confirmed by experiments on the 128 datasets from the UCR
time seri Imuﬁ ation benchmark. The extension with IIDL‘
can achieve considerably better results on datasets with high
temporal d:prndm« at about the same computational effort I‘ur
inference.

Index Terms—time series classification, HDC, VSA, hyperdi-
mensional computing

NTRODUCTION

Time series classification has a wide range of appli
in robotics, autonomous driving, medical diagnost
financial sector, and so on. As
of time series differs from traditional classification pmhlem\
because the attributes are ordered. Hence, it is crucial to create
discriminative and meaningful feawres with respect w the
specific order in time. Over the past years, various methods
ate and multivariate time series h
been proposed (for instance, [F}-{[[T]). Often. a high accuracy
of a method comes at the cost of a high computational
cffort, A very noticeable exception is MiniROCKET [8] which
r ROCKET [] and achieves state-of-the-
at very low computational complexity. Similar (o
a convolutional neural network (CNN | o MiniROCKET
dppuex a set of parallel convolutions to mc input signal. To

chieve a low runtime, two important design decisions of
MiniROCKET are (1) the usage of convolution filters of small

Denis Kleyko from the University of California, Berkebey.

We wan
for his contribution 1 the autematic selection of the scale parameter.

Classifica \acc_-a./ m
. _INCD
(propuses)
50% 57%
Fig. I: MiniROCKET is a fast state-of-the-art approach for
time series classification. However, it is casy to create simple
datasets where its performance is similar to random guessing.
The proposed HDC-MiniROCKET uses explicit time encoding
to prevent this failure at almost the same computational cosis.

size and (2) accumulation of filter responses over time based
on the Proportion of Positive Valwes (PPV), which is a special
kind of averaging, However, the combination of these desig
decisions can hamper the rumding of temporal variation of
signals on a larger scale than the size of the convolution filters.
To address this, the authors of MiniROCKET propose to usc
dilated convolurions, A dilated convolution virually increases
a filter kemel by adding sequences of zeros in between the
values of the original filter kernel [T3] (e.g. [-1 2 1] becomes
[-10201]or(-100200 1] and so an).

The first contribution of this paper is to demonstrate that
although the dilatated convolutions of MiniROCKET perform
well on a series of standard benchmark datasets like UCR
(T3], it is easy 0 create datasets where classification based on
MiniROCKET is not much better than random guessing. An
example is illustrated in Fig. [ There, the task is to distin
twer different classes of time series . Each consists of
Gaussian noise and a single sharp peak either in the first half
of the nal (for the first class) or in the second half of the
signal (for each sample from the second class), Since this is a
2-class problem, random guessing of the class of a query signal

Ongoing work:

Different similarity kernels for timestamps
Use HDC for recent variants of

MiniROCKET

Want to extend to multivariate domain with
channel combination with VSA

[1] K. Schlegel, P. Neubert, and P. Protzel, “HDC-MiniROCKET: Explicit Time Encoding in Time Series Classification with Hyperdimensional Computing,”
2022 International Joint Conference on Neural Networks (IJCNN), 2022, no. 1, pp. 1-8.
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Which place from the database is shown in the query image?

Database
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The role of descriptors

Database

33333

Is this the
same place?
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The role of descriptors

Database
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The role of descriptors

D

atabasen

e o MR £ B
5 yelr i o7l : 1 I
b i A
> o~ 3 Ly
S P =N
A

-
Image

comparison

Query m

Holistic Descriptors Local Descriptors
A single descriptor for the whole image A set of k local descriptors for each image
e.g. X/Y coordinate, semantic, ...

# descriptor Comparisons:m* n # descriptor Comparisons:m* n * K’
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The role of descriptors

Holistic Descriptors Local Descriptors
A single descriptor for the whole image A set of k local descriptors for each image
e.g. X/Y coordinate, semantic, ...

# descriptor Comparisons:m* n # descriptor Comparisons:m* n * k’

better recognition performance

not efficient
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Results on Benchmark

100 Average Precision on different Benchmark Datasets
I I I I I I I I I

I NetVLAD
u I NetVLAD + VSR |
2

mAP
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Publications of this approach

Hyperdimensional computing as a framework for systematic aggregation of
image descriptors

Peer Neubert and Stefan Schubert
Chemnitz University of Technology

firstname.lastname@etit.tu-chemnitz.de

Abstract

hnage and video descriptors are an amnipresent tool
in computer vision and its application fields like mobile
mhotics. Many hand-crafted and in particular learned im-
age descriptors are mumerical vectars with a potentially
{very) large number of dimensions. Practical considera-
tions like memary consumption ar time for comparisans call
Jor the creation of compact representations. In this papei;
we wse hyperdimensional computing (HDC) as an approach
1o systematically combine information from @ set of vec-
tors in a single vector of the same dimensionaliry. HDC
is a known technigue to perform symbolic processing with
distributed represemtations in nwmevical vectors with thou-
sands of dimensions. We present a HDC implementation
that is suitable for processing the autpur of existing and fu-
ture {deep learning based) image descriptors. We discuss
how this can be used as a framework to process descriptors
tagether with additional knowledge by simple and fast vec-

tor operations. A concreie outcome is a novel HDC-based
approach ta aggregate a set af local image descriptars ta-
gether with their image positions in a single holis
scriptor: The comparison to available holistic descriptors
and aggregation methods on a series of sandard mobile

de-

wbotics place recognition experiments shows a 20% im-
provement in average pevformance and = 2% better worst-
case performance campared to runner-up.

1. Introduction

Image descriptors are very useful tools for recognition
tasks in compuler vision. Many hand-crafted and in par-
ticular deep learning based descriplors are numerical vec-
tors with a potentially large number of dimensions. e.g.
NetVLAD [ 1] uses 4.096-D vectors (after PCA), DELF [14]
uses 1.024-D vectors (before PCA). Approaches like BoW
[56]. VLAD [? %], or ASMK [10] aggregate the information
from multiple vectors in a single holistic vector represen-
tation to reduce memory consumption and computational

efforts during comparison. For example, deciding whether
two images show the same place based on a set of local
landmarks from each image can then be done hy a single
distance measure between the two aggregated vectors. Al
though these techniques are able to combine large numbers
of descriptors in a compact vector, for certain tasks like
place recognition, it is beneficial to encode additional infor-
mation in the final vector representation, e.g.. information
about the image locations of aggregated vectors.,

The central idea of this paper is ta use binding and
bundling of vectors as a flexible framewaork to combine im-
age descriptors and additional information. The underly-
ing technique of binding and bundling vectors is taken from
a field known as hyperdimensional computing (HDC) or
vectar symbolic architectures (VSA). This is an established
class of approaches to solve symbolic computational prob-
lems using mathematical operations on large numerical vec-
tors with thousands of dimensions [25, 42]. The bundling
aperator & superposes information of a variable mimber of
vectars in a single vector: we can think of it as some form
of averaging. The hinding operatar @ can, for example, ex-
press role-filler or variahle-value pairs as required in sym-
bolic processing. An important property is that the output
of the operations are vectors from the same vector space.
This allows to chain HDC operations and enables versatile
encoding of structured data from aset of d-dimensional vec-
tors in a single d-dimensional vector.

We will present & HDC implementation that allows the
processing of existing and future (deep learning based) im-
age descriptors in Sec. 3. This section will also describe
how HDC can be used as a framework to aggregate holistic
or local image descriptors and to combine them with addi-
tional information. A concrete outcome is a novel approach
to create a holistic image descriptor from a set of local de-
scriptors with image position information in Sec. 3.2.2. For
example. we can create a holistic descriptor from three lo-
cal descriptors Ly, La, Ly with poses Py, Py, Pp as simple
as (L1 @ Py) @ (Lo @ Pa) @ (Ly ® Py). The poses serve
as “roles™ that are associated with landmarks as “fillers™,
‘When comparing two such holistic descriptors (e.g. hased

You can also contact Peer Neubert for more
detailed information in this field

Vector Semantic Representations
as Descriptors for Visual Place Recognition

Peer Neubert, Stefan Schubert, Kenny Schlegel and Peter Protzel

{peetneubert, stefan.schubert, kenny.schlegel, peter.protzel | @etit.u-chennitz.de

Abstract—Place recognition is the task of recognizing the
current scene from a database of known places. The currently
dominant algorithmic paradigm is to use (deep learning based)
holistic feature vectors to describe each place and use fast vector
query methods to find matchings. We propase a novel type of
image descriptor, Vector Semantic Representations (VSR), that
encodes the spatial semantic Layout from a semantic segmenta ion.
together with appearance properties in a, for example, 4,09
dimensional veetor for place recognition. We leverage operations
from the established class of Vector Symbolic Architectures to
combine symbolic (e.g. class label) and numeric {e.q. feature
map response) information in a common veelor representation,
We evaluate the proposed semantic descriptor on 13 standard
robotic place recognition datasels and compare fo six
rs from the literature. VSR is on par with the best
compared descriptor (NtVLAD) in terms of mean average
predsion and superior in terms of recall and worst-case average
precision. This makes the approach particularly interesting for
candidate selection. For a more detailed investigation, we discuss
and evaluate recall integrity as additional criterion. Further,
we demonstrate that the semantic deseriptor is particularly
well suited for combination with existing appearance descriptors
indicating ics provi i ion for
image matching.

I INTRODUCTION

Visual place recognition is the task of maiching a given
query image 1o a potentially large database of known places
It is an important means for loop closure detection in SLAM
and for candidate selection for 6-D pose estimation [56]. This
task becomes particularly challenging when the environmental
condition changes due to changing illumination, weather, or
season, and/or when the size of the datashase becomes very
large. Intuitively, information about the semantic content of
the image can help in both directions. On one hand, semantic
is largely invariant of appearance chances. A snow covered
tree is still a tree. Here, recent and future developments from
(deep) learned models to capture semantics can be leveraged.
On the other hand, 1o address a large-scale database, one can
use the semantic gist of a scene for a coarse calegorization
e.g. into urban or rural scenes (think of the seminal GIST
[28] paper). Afier such couse calegorizations, e.g. inte an
urban scene, one can conduct more fine grained semantic
calegorization using salient semantic landmarks (e.g the Eiffel
tower) or other semantic features like the architectonic style
of the buildings (think of the “Whai makes Paris look like
Paris™ paper [13]). However, an Lugely open question is
how can we further exploit semantics together with fine-
prained appearance properiies for fast image matching, e.p

Vst
semantic
representation

P [

 below <vegeticn
appesrance

p—

Fig. . A Vecior Semantic Represemation (VSR) is 3 single high-dimensional
vestor that g
appearance. We describe how a s
the entities and how operations
can be used o encode this mived symbolic
vestor at can serve @ descriplar for place secognition

mformation of s nuntic

how to distinguish individual urban street scenes with a high
proportion of similarly looking Victorian style buildings?

In this paper we propose a novel approach to encode the
spatial semantic layout of images for place recognition. An
example is shown in Rgm The key idea is to describe the
shown street scene by the semantic information that there is
a sidewalk right to the street and prass terrain to the left
which in wrn is followed by another sidewalk and a fence.
We use a deep learning based semantic segpmentation model
1o extract a list of semantic entities. This list includes objects
with well defined shape and boundary (“things™ [3]. e.g. a
sign), as well as amorphous background regions (“stuff” 3],
e.g. terrain), Each entity is described by its semantic class, o
coarse representation of its shape and location, and a list of
its spatial semantic relations, e.g. “lefi-of <sidewalk>". This
is complemented by an appearance descriptor based on salient
feature map responses

Given this listof entities, each with combined symbolic (e.p.
class) and numeric (e.g. feature map response) information, the
major challenge becomes to generate a descriptor that allows
fast matching of these image representations. We propose

[1] P. Neubert and S. Schubert, “Hyperdimensional computing as a framework for systematic aggregation of image descriptors,” Conference on Computer Vision and Pattern Recognition (CVPR), 2021
[2] P. Neubert, S. Schubert, K. Schlegel, and P. Protzel, “Vector Semantic Representations as Descriptors for Visual Place Recognition,” in Robotics: Science and Systems XVII, 2021.
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Using high-dimensional
Vectors for symbolic representation
increase robustness

Algebra of HDC for systematically
encoding is interpretable

HDC has potential of bridging
the gap between symbolic and
sub-symbolic Al

Real application can benefit from
systematically encoded explicit
Information (e.g. bundled role-filler-pairs)
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Limitations:

» Encoding of real data into HD-vectors can be
difficult

» Creating the encoding structure with HDC is still
hand-crafted (expert knowledge)

« HDC theory works best with unrelated entities
(random vectors) — real world problems are often
not like this

4  Bundling creates statistics in which frequently

occurring symbols can suppress rare symbols
(problem if rare events are the discriminative ones
for classification)

More information
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