
www.tu-chemnitz.de/etit/proautPrague  October 27, 2022  Kenny Schlegel∙ ∙

Machine Learning and Modelling Seminar
Charles University, Prague

 An Introduction to Hyperdimensional Computing and Its 
Applications

Kenny Schlegel 
Chemnitz University of Technology



www.tu-chemnitz.de/etit/proaut2Prague  October 27, 2022  Kenny Schlegel∙ ∙

General Intro

The talk is about…

1D 2D 3D 1000D

... ?

2.1. What?
So What?

Hyperdimensional Computing Example Applications
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General Intro

Our Professorships’ topics
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General Intro

Our Professorships’ topics

Robust
Sensor Fusion

Visual Place
Recognition

Multi object
Tracking

Time Series
Analysis

Localization 
With GNSS

Navigation
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General Intro

My background 

Worked in a joint research project „interaction strategies for a shopping assistant robot“

Our tasks:

● Environment representation 
● Localization 
● Navigation in dynamic environments 
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General Intro

Current research

Exploring HDC/VSA for Applications in Computer Vision and Signal Processing

Comparison of VSAs Time Series Analysis Visual Place Recognition

Mainly done by my colleagues 
Peer Neubert and Stefan Schubert
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General Intro

Work on VSA / HDC and how it can be used in different tasks

Peer Neubert Stefan Schubert Peter Protzel
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The talk is about…

1D 2D 3D 1000D

... ?

2.1. What?
So What?

Hyperdimensional Computing Example Applications
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Symbolic (Traditional AI) Sub-symbolic (Neural Networks)

Property 1 Property 2

and or

Property 3

and

Output Output

Motivation from the view of AI

Input Input

HDC/VSA | Motivation
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Symbolic (Traditional AI) Sub-symbolic (Neural Networks)

Robust

Learn from Data

Symbolic computations

Interpretable 

Distributed Representation X

X ?

X

X

X
Table based on the HDC-Course, 2021, UC Berkeley,  https://www.hd-computing.com/course-computing-with-high-dimensional-vectors

HDC/VSA | Motivation

HDC / VSA

__

Motivation from the view of AI
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HDC/VSA | Motivation

Seminal Literature and Researcher 

Tony Plate Pentti KanervaTony Plate Ross Gayler

[1] T. A. Plate, “Holographic Reduced Representations,” IEEE Trans. Neural Networks, 1995.
[2] P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional 
     random vectors,” Cognit. Comput., 2009.
[3] R. W. Gayler, “Vector Symbolic Architectures answer Jackendoff’s challenges for cognitive neuroscience,”  arXiv:cs/0412059 2004
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What is HDC/VSA?

Hyperdimensional Computing (HDC)

Vector Symbolic Architecture (VSA)

Vector Symbolic Architectures combine a high-dimensional vector space with a set of carefully 
designed operators in order to perform symbolic computations with large numerical vectors.

HDC/VSA 
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Robustness

High-dimensional Vector Space Distributed symbolic Representations

1D 2D 3D 1000D
...?

1 1 -1 -1 -1 1 -1 -1 1  …   1 1 -1 -1 -1 1 -1 1 1 

Entity

HDC/VSA | Robustness

Robustness comes from HD space and distributed representations

Noise has low influence on nearest neighbor queries with random vectors
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Highdimensionality - Going from 1D to 1000D

1D 2D 3D 1000D

... ?

● Capacity of high-dimensional spaces grows exponentially
● For example bipolar vector space {-1, 1}:

Capacity 2 4 8 ~ 10300

Atoms in the 
universe = 

1080

HDC/VSA | Robustness
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HDC/VSA | Robustness

High-dimensional (HD) Vectors

Random High-dimensional vectors are 
almost orthogonal:

● Generation of random vectors from a 
high dimensional vector space

● These vectors are dissimilar in terms 
of cosine angle (Euclidean distance 
becomes meaningless in high-
dimensional space)  
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Database with
100,000 random

Vectors

-1
-1
1
1

-1
1

-1
.
.
.
.

-1
1

-1
1

-1
1

Add noise (e.g., flipping the sign)

1
-1
1

-1
-1
1
1
.
.
.
.

1
-1
-1
1

-1
-1

Check if nearest neighbor in DB is the initial vector
(Can we recover the clean vector?)

HDC/VSA | Robustness

High-dimensional (HD) Vectors

An example:
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Database with
100,000 random

Vectors

-1
-1
1
1

-1
1

-1
.
.
.
.

-1
1

-1
1

-1
1

HDC/VSA | Robustness

Random flips  at 1024 dimensional vector

High-dimensional (HD) Vectors



www.tu-chemnitz.de/etit/proaut20Prague  October 27, 2022  Kenny Schlegel∙ ∙

Database with
100,000 random

Vectors

-1
-1
1
1

-1
1

-1
.
.
.
.

-1
1

-1
1

-1
1

HDC/VSA | Robustness

High-dimensional (HD) Vectors
Random flips  at 1024 dimensional vector
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High-dimensional (HD) Vectors

HDC/VSA | Robustness

Database with
100,000 random

Vectors
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HDC/VSA | Robustness

Symbols as Distributed Representation to use the properties of HD space 
Distributed representation means that each individual value has no specific meaning unlike local representations:
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HDC/VSA | Robustness

Distributed representation means that each individual value has no specific meaning unlike local representations:

Symbols as Distributed Representation to use the properties of HD space 
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HDC/VSA | Robustness

Distributed representation means that each individual value has no specific meaning unlike local representations:

Symbols as Distributed Representation to use the properties of HD space 
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HDC/VSA | Robustness

Symbols as Distributed Representation to use the properties of HD space 
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Motivation and bigger Picture from the view of AI

Robust

Learn from Data

Symbolic computations

Interpretable 

Distributed Representation X

X ?

X

X

X
Table based on the HDC-Course, 2021, UC Berkeley,  https://www.hd-computing.com/course-computing-with-high-dimensional-vectors

HDC/VSA 

Symbolic (Traditional AI) Sub-symbolic (Neural Networks) HDC / VSA
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What is HDC/VSA?

Hyperdimensional Computing (HDC)

Vector Symbolic Architecture (VSA)

Vector Symbolic Architectures combine a high-dimensional vector space with a set of carefully 
designed operators in order to perform symbolic computations with large numerical vectors.

HDC/VSA 
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Operations for symbolic computation

Algebra for 
High-dimensional 

vectors⊕ =

similar

⊗ =

dissimilar

Bundling Binding

● Output is similar to each input ● Output is non-similar to each input
● invertible ( )⊘
● Distributes over bundling

Control Similarity

HDC/VSA | Symbolic Computation
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Operations for symbolic computation

⊕ =

similar

Bundling

● Output is similar to each input

-1
-1
1
1

-1
1

-1
.
.
.
.

-1
1

-1
1

-1
-1

● Can be implemented as 
simple element-wise addition

● Overlaying of vectors 
(superposition) 

-1
1
1

-1
1

-1
-1

.

.

.

.
1

-1
-1
-1
1

-1

+

-2
0
2
0
0
0

-2
.
.
.
.

0
0

-2
0
0

-2

0.05 0.68

0.68

Cosine 
similarities

=

HDC/VSA | Symbolic Computation
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Operations for symbolic computation

⊗ =

dissimilar

Binding

● Output is non-similar to each input
● invertible ( )⊘

-1
-1
1
1

-1
1

-1
.
.
.
.

-1
1

-1
1

-1
-1

-1
1
1

-1
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-1
-1

.

.

.

.
1
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1

-1

⊗

1
-1
1

-1
-1
-1
1
.
.
.
.

-1
-1
1

-1
-1
1

0.05 0.01

0.01

Cosine similarities

=

● Binding can be implemented as 
simple element-wise 
multiplication

● Binding is in that case self 
inverse v1 v1 = I⊗

● Associate vectors 
● Unbinding is element-wise 

multiplication too (recovering)
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v1 v2 v1 v2

1

HDC/VSA | Symbolic Computation
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Bundle multiple random vectors 

HDC/VSA | Symbolic Computation

Database with
100,000 random

Vectors
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1
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… ⊕

-1
-1
1
1

-1
1

-1
.
.
.
.

-1
1

-1
1

-1
1

Check if k nearest neighbors in DB are the bundled vectors
(Can we recover all vectors?)

k
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Bundle multiple random vectors (1000D) 

HDC/VSA | Symbolic Computation

Noise has low influence on nearest 
neighbor queries with random vectors

Database with
100,000 random

Vectors
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Combine a scene:        An orange ball lies on the ground. 

ObjectColor LocationOrange Ball Ground

role filler filler fillerrole role

⊗ ⊗ ⊗⊕ ⊕
Scene Representation

Bundled 
Role-Filler-PairsA common structure for encoding information with VSA are

HDC/VSA | Symbolic Computation

Building Structures with HDC

⊘
Asking for the color...

Color Orange⊗

ObjectColor LocationOrange Ball Ground⊗ ⊗ ⊗⊕ ⊕Color Orange⊗

Color

⊘ Color ⊘ Color⊘ ColorNoise Noise
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HDC/VSA | Symbolic Computation

A more complex Example: What is the dollar of Mexico? [1]

CapitalCountry CurrencyUSA WDC Dollar⊗ ⊗ ⊗⊕ ⊕
CapitalCountry CurrencyMexico MXC Peso⊗ ⊗ ⊗⊕ ⊕

role filler filler fillerrole role
Repr. USA

Repr. MEX

=

=

Repr. MEX Repr. USA⊗Analogies =

Analogies Dollar⊗

= Country USA⊗ Country Mexico⊗⊗

= USA Mexico⊗

Currency Dollar⊗ Currency Peso⊗⊗
Country USA⊗ Capital MXC⊗⊗

⊕
⊕

...

⊕ WDC MXC⊗ ⊕ Dollar Peso⊗Noise

Analogies = USA Mexico⊗ ⊕ WDC MXC⊗ ⊕ Dollar Peso⊗

Noise

= Peso + Noise

Da
ta

ba
se

Mapping 
of similar 

categories

[1] P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional  random vectors,” Cognit. Comput., 2009.

“What is the dollar of Mexico?”

Noise
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Motivation and bigger Picture from the view of AI

Robust

Learn from Data

Symbolic computations

Interpretable 

Distributed Representation X

X ?

X

X

X
Table based on the HDC-Course, 2021, UC Berkeley,  https://www.hd-computing.com/course-computing-with-high-dimensional-vectors

HDC/VSA 

Symbolic (Traditional AI) Sub-symbolic (Neural Networks) HDC / VSA
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HDC/VSA | Learning

Learning from data

1
-1
1

-1
-1
-1
1
.
.
.
.

-1
-1
1

-1
-1
1

Systematically 
encoded input data 
with VSA/HDC

K-nearest neighbors

Neural Networks

Regression

...

Hand-crafted Learning is possible
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Motivation and bigger Picture from the view of AI

Robust

Learn from Data

Symbolic computations

Interpretable 

Distributed Representation X

X ?

X

X

X
Table based on the HDC-Course, 2021, UC Berkeley,  https://www.hd-computing.com/course-computing-with-high-dimensional-vectors

HDC/VSA 

__

Symbolic (Traditional AI) Sub-symbolic (Neural Networks) HDC / VSA
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HDC/VSA | Implementations

Different Implementations

Real

Binary

Bipolar

Complex
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HDC/VSA | Implementations

Different Implementations

MATLAB Toolbox [1]

Initialization

Bundling

Binding

Similarity

Clean-up

Unbinding

 → Prototyping (is not a fast a possible but 
easy to use)

[1] K. Schlegel, P. Neubert, and P. Protzel, “A comparison of vector symbolic architectures,” Artif. Intell. Rev., Dec. 2021.
[2] M. Heddes, I. Nunes, P. Vergés, D. Desai, T. Givargis, and A. Nicolau, Torchhd : An Open-Source Python Library to Support Hyperdimensional Torchhd : 
     An Open-Source Python Library to Support Hyperdimensional Computing Research, 1. Association for Computing Machinery, 2022.

TorchHD (Pytorch) [2]

 → GPU support and many predefined 
functionalities
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HDC/VSA | Summary

HDC/VSA is...

1
-1
1

-1
-1
-1
1
.
.
.
.

-1
-1
1

-1
-1
1

...based on HD Vectors... ...and well defined operators...

⊕ =

similar

⊗ =

dissimilar

...to systematically combine 
information.

Associate

Overlay
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The talk is about…

1D 2D 3D 1000D

... ?

2.1. What?
So What?

High-Dimensional Computing Example Applications
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Practical Applications with VSAs

Use HDC in real applications
Most important step is converting data (information) into HD vectors

Images

Sensory data

Others like unrelated entities

High-dimensional space
Random vectors for 
unrelated concepts

Deep-learned or hand-
crafted descriptors 
(intermediate output 
of a neural network)

Similarity preserving 
encoding

1000 D
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Practical Applications with VSAs

1. Time Series Classification 2. Visual Place Recognition
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The Problem

Practical Applications with VSAs | Time Series Classification

Autonomous 
System

Class 1

Class 2

Class 3

Case 1: Multivariate Time Series
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The Problem

Autonomous 
System

Class 1

Class 2

Class 3

Case 2: Univariate Time Series

Practical Applications with VSAs | Time Series Classification
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One of the best perform algorithms in terms of accuracy and computing time is MiniROCKET [1] 

[1] A. Dempster, D. F. Schmidt, and G. I. Webb, “MiniRocket: A Very Fast (Almost) Deterministic Transform for Time Series Classification,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 248–257, 2021.

The State-of-the-Art

Practical Applications with VSAs | Time Series Classification
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One of the best perform algorithms in terms of accuracy and computing time is MiniROCKET [1] 

[1] A. Dempster, D. F. Schmidt, and G. I. Webb, “MiniRocket: A Very Fast (Almost) Deterministic Transform for Time Series Classification,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 248–257, 2021.

Classification 
Accuracy of 
MiniROCKET:

Standard Case:
67 %

Challenging Case:
56.9 %

Random guess:
50%

The State-of-the-Art

Practical Applications with VSAs | Time Series Classification
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The State-of-the-Art - MiniROCKET

Practical Applications with VSAs | Time Series Classification
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The State-of-the-Art - MiniROCKET

Approx. Cumulative 
Distribution Function
● Uses thresholds for the bins
● Accumulate these over time

Practical Applications with VSAs | Time Series Classification
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Intermediate Representation of MiniROCKET

9996 dim. vectors

Accumulation loses information 
about location in time 

Encode global time context
Before accumulation

Practical Applications with VSAs | Time Series Classification
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From MiniROCKET to HDC-MiniROCKET

Practical Applications with VSAs | Time Series Classification
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From MiniROCKET to HDC-MiniROCKET

Practical Applications with VSAs | Time Series Classification
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From MiniROCKET to HDC-MiniROCKET

Bundled 
Role-Filler-Pairs

Practical Applications with VSAs | Time Series Classification

Assign each feature 
Vector with its position
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From MiniROCKET to HDC-MiniROCKET

The goal is graded similarity: nearby 
timestamps should be similar and 

more distant timestamps should be 
dissimilar 

Practical Applications with VSAs | Time Series Classification
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From MiniROCKET to HDC-MiniROCKET

Different Graded Similarities for timestamp encoding

Practical Applications with VSAs | Time Series Classification

Mechanism called fractional binding creates 
graded similarity:

1 2 3 4 5 6 Euclidean distance
Of scalar values x

Cosine distance 
Of vector 
representation

B
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Results of HDC-MiniROCKET on synthetic Dataset

Classification 
Accuracy of 
MiniROCKET:

Standard Case:
67 %

Challenging Case:
56.9 %

Classification 
Accuracy of 
HDC-MiniROCKET:

Standard Case:
94 %

Challenging Case:
94 %

Practical Applications with VSAs | Time Series Classification
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Results of HDC-MiniROCKET on Benchmark ensemble

1 2 3 4 7 8 12 13 14 17 18 19 20 21 24 26 28 29 31 32 35 36 37 38 39 40 44 46 47 48 50 51 55 58 59 63 64 66 67 69 70 71 72 73 74 75 76 77 78 79 81 83 84 90 92 93 94 95 96 97 98 99 10
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optimal selection of s (oracle)
simple data-driven selection of s

● UCR Benchmark ensemble with 128 univariate datasets
● Since we have a hyperparameter s, we need to find the optimal s for each dataset
● Choosing the correct s is important because some datasets are getting worse with additional time encoding

Oracle (best case) Cross validation

● 17 of 128 datasets 
show improvements 

● Maximal 27% 
improvement with 
oracle and 12% with 
cross val.

Relative accuracy improvements compared to the original MiniROCKET

Practical Applications with VSAs | Time Series Classification
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HDC-MiniROCKET 

More details in the recent paper [1]

[1] K. Schlegel, P. Neubert, and P. Protzel, “HDC-MiniROCKET: Explicit Time Encoding in Time Series Classification with Hyperdimensional Computing,” in 
    2022 International Joint Conference on Neural Networks (IJCNN), 2022, no. 1, pp. 1–8.

Ongoing work:
● Different similarity kernels for timestamps 
● Use HDC for recent variants of 

MiniROCKET 
● Want to extend to multivariate domain with  

channel combination with VSA

Practical Applications with VSAs | Time Series Classification
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Which place from the database is shown in the query image?

DatabaseQuery

Practical Applications with VSAs | Visual Place Recognition 
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The role of descriptors

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

...

Is this the
same place?

Database

Q
ue

ry

Practical Applications with VSAs | Visual Place Recognition 
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The role of descriptors
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The role of descriptors
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Publications of this approach

You can also contact Peer Neubert for more 
detailed information in this field 

Practical Applications with VSAs | Visual Place Recognition 

[1] P. Neubert and S. Schubert, “Hyperdimensional computing as a framework for systematic aggregation of image descriptors,” Conference on Computer Vision and Pattern Recognition (CVPR), 2021
[2] P. Neubert, S. Schubert, K. Schlegel, and P. Protzel, “Vector Semantic Representations as Descriptors for Visual Place Recognition,” in Robotics: Science and Systems XVII, 2021.
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Take home lessons

Using high-dimensional
Vectors for symbolic representation 

increase robustness

Algebra of HDC for systematically 
encoding is interpretable

Real application can benefit from 
systematically encoded explicit

Information (e.g. bundled role-filler-pairs)

Limitations: 
● Encoding of real data into HD-vectors can be 

difficult
● Creating the encoding structure with HDC is still 

hand-crafted (expert knowledge) 
● HDC theory works best with unrelated entities 

(random vectors)  real world problems are often →
not like this

● Bundling creates statistics in which frequently 
occurring symbols can suppress rare symbols 
(problem if rare events are the discriminative ones 
for classification)

More information 
about our work at:

tu-chemnitz.de/etit/
proaut/vsa
 

HDC has potential of bridging
the gap between symbolic and 

sub-symbolic AI
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