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Introduction

Frequent substructure mining

We have a database D of transactions t .
t can be an arbitrary object.
For example: itemsets (basket market), time sequences, graphs
Mining of frequent substructures has exponential complexity (in
the worst case)
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Frequent subsequence mining

Frequent subsequence mining

We denote the set of all items by I = {bi}. We impose some
ordering on the items in the set I, i.e., b1 < b2 < . . . < b|I|
We denote the set of all events by E = P(I)

Let αi ∈ E ,1 ≤ i ≤ n be an event.
A sequence is an ordered list: α1 → α2 → . . .→ αn, e.g.,
I = {A,B,C,D,E ,F}, A→ AB → BCD → E

Notation: a sequence ♣ contains events ♣i , i.e., ♣1 → ♣2 → . . .→ ♣n.
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Frequent subsequence mining

Subsequence

Definition (subseqence)
Let have two sequences α = α1 → . . .→ αn and
β = β1 → . . .→ βm,m ≤ n. We call β the subsequence of α, denoted
by β � α iff there exists one-to-one order preserving function f : α→ β
that maps events in β to events in α, that is:

1 αi ⊆ βl = f (αi)

2 if αi < αj then f (αi) < f (αj), i.e., βk = f (αi), βl = f (αj) such that
βk < βl

Some subsequences of A→ AB → BCD → E :
A→ A
A→ E
AB → B → E
AE
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Frequent subsequence mining

Problem formulation

Database D:
TID Transaction

1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
4 A→ E → BF
5 BCD → AF → ABF

we are searching for subsequence in the transactions t ∈ D that
occurs in at least min_support transactions.

for example, the sequence A→ A occurs in 3 transactions.
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Frequent subsequence mining

Prefix and suffix of a sequence

Let have three sequences: α = α1 → . . .→ αn,
β = β1 → . . .→ βm,m < n,
γ = γ1 → . . .→ γk , k ≤ n.

α1 . . . αm−1 αm αm+1 . . . αn
β1 . . . βm−1 βm ∪ γ1 γ2 . . . γk

Then β is the prefix and γ is the suffix of α.
Denoted by α = β.γ or γ = α \ β
Example, given a sequence AB → AF → BCD:

1 prefix A, suffix _B → AF → BCD.
2 prefix AB, suffix AF → BCD.
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Frequent subsequence mining

The hyperlattice

Part of the lattice of all sequences L:

AB → A B → AB

AB
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top > of the lattice L is > =∞.
bottom ⊥ of the lattice L is an empty sequence ∅
Let α, β be two sequences, then:

Meet of α, β is the set of minimal uppper bounds, denoted by α ∧ β.
Join of α, β is the set of all maximal lower bounds, denoted by α∨β.
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The Prefix-Based Equivalence Classes

• DFS algorithms partitions the hyperlattice into smaller

Definition
Let α be a sequence. The prefix-based equivalence class, denoted by
[α] is the set of all sequences having α as a prefix.

The prefix-based equivalence class is a sub-hyperlattice of L.
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Generating sequences

Generating sequences: let P be an arbitrary sequence and
a,b, c,d ∈ I. We can combine sequences P → a, P → b, Pc, Pd in
the following ways:

1 P → a→ b
2 P → b → a
3 P → ab
4 P → a→ a
5 Pcd
6 Pc → a
7 Pc → b
8 . . .
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Generating sequences

Generating sequences: let P be an arbitrary sequence and
a,b, c,d ∈ I. We can combine sequences P → a, P → b, Pc, Pd in
the following ways:

1 P → a→ b
2 P → b → a
3 P → ab
4 P → a→ a
5 Pcd
6 Pc → a
7 Pc → b
8 . . .

We must order the operations !!
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The monotonicity of support

Lemma (Monotonicity of support)

Let α be a sequence with support Supp(α,D) in database D. For
every superset β of α (α � β) holds: Supp(α,D) ≥ Supp(β,D).

A→ A
TID Transaction

1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
4 A→ E → BF
5 BCD → AF → ABF
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Frequent subsequence mining

The monotonicity of support

Lemma (Monotonicity of support)

Let α be a sequence with support Supp(α,D) in database D. For
every superset β of α (α � β) holds: Supp(α,D) ≥ Supp(β,D).

A→ ABF
TID Transaction

1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
4 A→ E → BF
5 BCD → AF → ABF
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Abstract substructure mining

A database D, a language L;
sentences ϕ,Φ ∈ L;
a frequency criterion q(ϕ) ∈ {true, false};
a monotone specialization/generalization relation: ϕ � Φ

q(Φ) = true⇒ q(ϕ) = true
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Abstract problem formulation

Generalization of the Apriori algorithm

1: C1 ← {ϕ ∈ L|there is no ϕ′ such that ϕ′ ≺ ϕ}
2: i ← 1
3: while Ci not empty do
4: Fi ← {ϕ ∈ Ci |q(ϕ) = true}
5: Ci+1 ← {ϕ ∈ L|∀ϕ′ ≺ ϕ we have ϕ′ ∈

⋃
j≤i Fj} \

⋃
j≤i Cj

6: i ← i + 1
7: end while
8: return F1 ∪ F2 ∪ . . . ∪ Fk−1
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Abstract problem formulation

Algorithms

• The GSP algorithm: an Apriory like algorithm
• The Spade algorithm: DFS algorithm that uses TID lists
• The PrefixSpan algorithm: DFS algorithm that uses projected

database
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The GSP algorithm

BFS algorithm.
Generate&test approach.
Let α be the longest sequence in D with length k , denoted by
|α| = k . The GSP algorithm can make k scans of D

A candidate sequence α, |α| = k :
Support of α is unknown.
all β � α, |β| = k − 1 are frequent, i.e., Supp(β) ≥ min_support .
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The GSP algorithm

The GSP algorithm contd.

GSP(In: Database D,In: Integer min_supp, In/Out: Set F )
1: F1 ← {frequent 1-sequences}
2: for k ← 2; Fk−1 6= 0; k ← k + 1 do
3: Fk ← ∅
4: Ck ← candidates created from Fk−1
5: for all β ∈ Ck do
6: β.support ← support of β in D
7: if β.support ≥ min_supp then
8: Fk ← Fk

⋃
β

9: end if
10: end for
11: F ← F

⋃
Fk

12: end for
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The Spade algorithm

The Spade algorithm

1 DFS algorithm.
2 Uses TID lists.
3 Similar algorithm as the Eclat algorithm.
4 Created by the author of the Eclat algorithm (M.J. Zaki).

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 17 / 30



Department of Computer Science

The Spade algorithm

TID lists

TID Transaction
1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
4 A→ E → BF
5 BCD → AF → ABF

TID EID Event

1 1 A
1 2 AB
1 3 BCD
1 4 E

2 1 CE
2 2 AB
2 3 F
2 4 CDE

3 1 BE
3 2 B
3 3 AF
3 4 ACE

4 1 A
4 2 E
4 3 BF

5 1 BCD
5 2 AF
5 3 ABF
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The Spade algorithm

TID lists contd.

TID Transaction
1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
4 A→ E → BF
5 BCD → AF → ABF

A’s TID list
TID EID Event
1 1 A
1 2 AB
2 2 AB
3 3 AF
3 4 ACE
4 1 A
5 2 AF
5 3 ABF
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The Spade algorithm

TID lists contd.

TID Transaction
1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
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TID EID Event
1 3 BCD
2 4 CDE
5 1 BCD

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 19 / 30



Department of Computer Science

The Spade algorithm

TID lists contd.

TID Transaction
1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
4 A→ E → BF
5 BCD → AF → ABF

E’s TID list
TID EID Event
1 4 E
2 1 CE
2 4 CDE
3 1 BE
3 4 ACE
4 2 E
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The Spade algorithm

TID lists contd.

TID Transaction
1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
4 A→ E → BF
5 BCD → AF → ABF

F’s TID list
TID EID Event
2 3 F
3 3 AF
4 3 BF
5 2 AF
5 3 ABF
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The Spade algorithm

The hyperlattice

AB → A AB → B

AB
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The Spade algorithm

Temporal TID list join

Example:
A’s TID list B’s TID list A→ B’ TID list

1 1 A
1 2 AB
2 2 AB
3 3 AF
3 4 ACE
4 1 A
5 2 AF
5 3 ABF

1 2 AB
1 3 BCD
2 2 AB
3 1 BE
3 2 B
4 3 BF
5 1 BCD
5 3 ABF

1 2 AB
1 3 BCD
4 3 BF
5 3 ABF
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The Spade algorithm

Temporal TID list join

Example:
A’s TID list B’s TID list B → A’s TID list

1 1 A
1 2 AB
2 2 AB
3 3 AF
3 4 ACE
4 1 A
5 2 AF
5 3 ABF

1 2 AB
1 3 BCD
2 2 AB
3 1 BE
3 2 B
4 3 BF
5 1 BCD
5 3 ABF

3 3 AF
3 4 ACE
5 2 AF
5 3 ABF

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 21 / 30



Department of Computer Science

The Spade algorithm

Temporal TID list join

Example:
A’s TID list B’s TID list AB’s TID list

1 1 A
1 2 AB
2 2 AB
3 3 AF
3 4 ACE
4 1 A
5 2 AF
5 3 ABF

1 2 AB
1 3 BCD
2 2 AB
3 1 BE
3 2 B
4 3 BF
5 1 BCD
5 3 ABF

1 2 AB
2 2 AB
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The Spade algorithm

The Spade algorithm

SPADE(In: AtomSet ε,In: Integer min_supp, In/Out: Set F)
1: for all atoms Ai ∈ ε do
2: Ti ← {}
3: for all atoms Aj ∈ ε, j ≥ i and all combinations α of Ai ,Aj do
4: L(α) = temporal TID list join of L(Ai) with L(Aj)
5: if Supp(α) ≥ min_supp then
6: Ti ← Ti

⋃
{α}

7: F = F
⋃
α

8: end if
9: end for

10: Spade(Ti , min_supp, F)
11: end for
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The PrefixSpan algorithm

The PrefixSpan algorithm

1 DFS algorithm.
2 Uses database projection.
3 Pattern-growth algorithm
4 Reduced candidate generation.
5 Created by the author of the FPGrowth algorithm (J. Han).
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The PrefixSpan algorithm

Database Projection

Collecting of suffixes projected from sequences by following a given
prefix.

Definition (Sequence projection)
Let α, β, γ be three sequences. We say that γ is α-projected sequence
in β iff α.γ is a maximal subsequence of β, denoted by β|α.

β = (A→ B → A→ B → AC → D)
α = (A→ B)
α-projected sequence in β, i.e., β|α, is γ = (A→ B → AC → D).
β = (A→ BC → B → AC)⇒ β|α = (_C → B → AC)
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The PrefixSpan algorithm

Database Projection example

D - a database we project from
TID Transaction

1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
4 A→ E → BF
5 BCD → AF → ABF

α=(AB)
=⇒

D|α - α-projected database
TID Transaction

1 BCD → E
2 F → CDE

5 _F

⇒ Support of C ?
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The PrefixSpan algorithm

Database Projection example

D - a database we project from
TID Transaction

1 A→ AB → BCD → E
2 CE → AB → F → CDE
3 BE → B → AF → ACE
4 A→ E → BF
5 BCD → AF → ABF

α=(AB)
=⇒

D|α - α-projected database
TID Transaction

1 BCD → E
2 F → CDE

5 _F

⇒ Support Supp(AB → C,D) = Supp(C,D|α)
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The PrefixSpan algorithm

Prefixspan Pseudocode
PREFIXSPAN-RECURSIVE(In: Database Dα, In: Sequence α, In:
Integer min_supp, In/Out: Set F)

1: F1 ←{frequent items in Dα}
2: for all items bi ∈ F1 do
3: β = (α1 → · · · → (αn

⋃
{bi}))

4: γ = (α1 → · · · → αn → (bi))
5: if Supp(β,Dα) ≥min_supp then
6: F ← F

⋃
{β}

7: D′ ← (Dα)|β
8: Prefixspan-Recursive(D′, β, min_supp, F)
9: end if

10: if Supp(γ,Dα) ≥min_supp then
11: F ← F

⋃
{γ}

12: D′ ← (Dα)|γ
13: Prefixspan-Recursive(D′, γ, min_supp, F)
14: end if
15: end for

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 26 / 30



Department of Computer Science

The PrefixSpan algorithm

Mining sequential patterns with constraints

Event time – let T : I → R, the function t assignes timestamp to
each event in the sequence.
For each sequence α it holds that T (αi) < T (αj), i < j .

Let α, β, be two sequences such that α is subsequence of β. A
constraint C is:

Anti-monotonic: iff C(β) implies C(α)

Monotonic: iff C(α) implies C(β)
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The PrefixSpan algorithm

Timing constraints – the maxspan/minspan

Maxspan/Minspan: the maximum/minimum allowed time difference
between the latest and earliest occurances of events in α in the
transaction t :

t = A→ AB → BCD → E

maxspan=2, supports: A→ A, A→ B, A→ BC.
maxspan=2, does not supports: A→ E .
minspan=2, does not supports: A→ A, A→ B, A→ BC.
minspan=2, supports: A→ E .
the maxspan is anti-monotonic.
the minspan is monotonic.
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The PrefixSpan algorithm

Mingap/Maxgap

Mingap/Maxgap: is the minimum/maximum time difference of
occurences of events from α in a transaction t .

t = A→ AB → BCD → E

mingap=2, t supports: A→ E .
mingap=2, t does not supports: A→ A.
maxgap=1, t supports: A→ C.
maxgap=1, t does not supports: A→ E .
mingap/maxgap is anti-monotnic.
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The PrefixSpan algorithm

Regular expressions

Regular expression: each regular expression R can be
represented by a finite state automaton.
Each event in the sequence α must contain exactly one item.
A frequent sequence α is valid if it matches a state of the finite
state automaton representing R.
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