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Introduction

Frequent substructure mining

@ We have a database D of transactions t.
@ t can be an arbitrary object.
@ For example: itemsets (basket market), time sequences, graphs

@ Mining of frequent substructures has exponential complexity (in
the worst case)
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Frequent subsequence mining
Frequent subsequence mining

@ We denote the set of all items by Z = {b;}. We impose some
ordering on the items in the set 7, i.e., by < b < ... < bg

@ We denote the set of all events by £ = P(7)

@ Leta; € £,1 <i< nbeanevent.

@ A sequence is an ordered list: oy — ap — ... — ap, €.9.,
7={ABCDEF},A— AB— BCD— E

Notation: a sequence & contains events &, i.e., &1 — do — ... — .
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Frequent subsequence mining
Subsequence

Definition (subsegence)

Let have two sequences a = a1 — ... — ap and

6=01—...— Bm,m<n. We call g the subsequence of «, denoted
by 8 < « iff there exists one-to-one order preserving function f : o — 3
that maps events in § to events in «, that is:

Q o C G ="Fflo)
9 if ap < then f(a,-) < f(Oéj), i.e., Bk = f(a;),ﬂ/ = f(Oéj) such that
Bk < B |
Some subsequences of A— AB — BCD — E:
A A
e A—E
e AB—-B—E
0 AE .
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Frequent subsequence mining
Problem formulation

Database D:

D Transaction
A— AB— BCD — E
CE - AB— F — CDE
BE — B — AF — ACE
A— E — BF
BCD — AF — ABF

O1 D W N = H

@ we are searching for subsequence in the transactions t € D that
occurs in at least min_support transactions.
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Frequent subsequence mining
Problem formulation

Database D:

TID Transaction

1 A—- AB— BCD — E

3 BE — B— AF — ACE

5 BCD — AF — ABF

@ we are searching for subsequence in the transactions t € D that
occurs in at least min_support transactions.

e for example, the sequence A — A occurs in 3 transactions.
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Frequent subsequence mining
Prefix and suffix of a sequence

Let have three sequences: =a1— ... > Qp

«
B=p5 — . = Bmm<n,
Y=o ok k <.

Bi oo Bmt BmUm 2 o %
Then g is the prefix and + is the suffix of «.

Denoted by o = .yorv=a\
Example, given a sequence AB — AF — BCD:

@ prefix A, suffix B — AF — BCD.
Q@ prefix AB, suffix AF — BCD.
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Frequent subsequence mining
The hyperlattice

Part of the lattice of all sequences L:

AB_)AMBN
A B C D E

@ top T of the lattice Lis T = oc.
@ bottom L of the lattice L is an empty sequence ()
@ Let «a, 0 be two sequences, then:

o Meet of «, 3 is the set of minimal uppper bounds, denoted by a A 3.
e Join of «, 3 is the set of all maximal lower bounds, denoted by a V (w
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Frequent subsequence mining
The Prefix-Based Equivalence Classes

e DFS algorithms partitions the hyperlattice into smaller

Definition

Let « be a sequence. The prefix-based equivalence class, denoted by
[] is the set of all sequences having « as a prefix.

The prefix-based equivalence class is a sub-hyperlattice of L.
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Frequent subsequence mining
Generating sequences

Generating sequences: let P be an arbitrary sequence and
a,b,c,d € I. We can combine sequences P — a, P — b, Pc, Pd in
the following ways:

Q@QP—-a—b

Q@P—-b—a

Q@ P—ab

QP—-a—a

@ Pcd

Q Pc—a

@ Pc—0b

Q...
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Frequent subsequence mining
Generating sequences

Generating sequences: let P be an arbitrary sequence and
a,b,c,d € 7. We can combine sequences P — a, P — b, Pc, Pd in
the following ways:

QP—-a—b

Q@ P—-b—a

Q@ P—-ab

QP—-a—a

Q Pcd

Q Pc— a

@ Pc—b

Q..

We must order the operations !!
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Frequent subsequence mining
The monotonicity of support

Lemma (Monotonicity of support)

Let o be a sequence with support Supp(«, D) in database D. For
every superset (3 of a (o < 3) holds: Supp(«, D) > Supp(3, D).

A—-A
TID Transaction

1 A— AB— BCD — E

3 BE — B— AF — ACE

5 BCD — AF — ABF
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Frequent subsequence mining
The monotonicity of support

Lemma (Monotonicity of support)

Let o be a sequence with support Supp(«, D) in database D. For
every superset (3 of a (o < 3) holds: Supp(«, D) > Supp(3, D).

A— AB

TID Transaction

1 A— AB— BCD — E

5 BCD — AF — ABF
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Frequent subsequence mining
The monotonicity of support

Lemma (Monotonicity of support)

Let o be a sequence with support Supp(«, D) in database D. For
every superset (3 of a (o < 3) holds: Supp(«, D) > Supp(3, D).

A — ABF

TID Transaction

5 BCD — AF — ABF
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Abstract problem formulation

Abstract substructure mining

@ A database D, a language L;

@ sentences p,d € £;

@ a frequency criterion g(y) € {true, false};

@ a monotone specialization/generalization relation: ¢ < ¢
@ g(®) = true = q(p) = true
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Abstract problem formulation

Generalization of the Apriori algorithm

N RN 2

Ci «— {p € L]|there is no ¢’ such that ¢’ < ¢}

j—1

while C; not empty do
Fi — {¢ € Cilq(¢) = true}
Cir1 — {p € LIVY' < pwe have ¢’ € U;; Fi} \Uj<; G
jf—i+1

end while

return FLU R U. ..U Fk_1

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010



Abstract problem formulation
Algorithms

e The GSP algorithm: an Apriory like algorithm
e The Spade algorithm: DFS algorithm that uses TID lists

e The PrefixSpan algorithm: DFS algorithm that uses projected
database
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The GSP algorithm

@ BFS algorithm.
@ Generate&test approach.
@ Let « be the longest sequence in D with length k, denoted by
|| = k. The GSP algorithm can make k scans of D
A candidate sequence «, |a| = k:
@ Support of « is unknown.
@ all 3 < «,|8] = k — 1 are frequent, i.e., Supp(3) > min_support.

15
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The GSP algorithm contd.

GSP(In: Database D,In: Integer min_supp, In/Out: Set F)
1: F1 « {frequent 1-sequences}
2. fork — 2; F_1#0;k— k+1do
3 Fx—0

4:  Cy « candidates created from Fj_1
5. forall 3 € Cx do
6: B.support — support of 5 in D
7 if 5.support > min_supp then
8: Fk — FxUB
9: end if
10:  end for
11:  F«— FUFx
12: end for

15
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The Spade algorithm

@ DFS algorithm.

@ Uses TID lists.

© Similar algorithm as the Eclat algorithm.

© Created by the author of the Eclat algorithm (M.J. Zaki).
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The Spade algorithm

TID lists

[ TID T EID ][ Event |

A
AB
BCD
E

CE
AB
F
CDE

BE
B
AF
ACE

A
E
BF
BCD
AF
ABF

-

D Transaction
A—-AB—-BCD — E
CE - AB— F — CDE
BE — B— AF — ACE
A— E — BF
BCD — AF — ABF

O1 B W N = H

QO O | & BB | | W] | W[N] P N N | = = =] =
QOO = | QO PO =+ | B[ QO PO| =+ | 5| O NOf = | [ O N
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The Spade algorithm
TID lists contd.

A's TID list
[TID [ EID [[ Event |

TID Transaction 1 1 A
A A AB

AB
AF
ACE
A
AF
ABF

>
OO~ W W N =
W=D

15
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The Spade algorithm
TID lists contd.

B’s TID list
[TID [ EID [[ Event |
TID Transaction 1 2 AB
B B 1 3 BCD
B 2 2 AB
B B 3 1 BE
B 3| 2 B
B B 4 3 | BF
5 1 BCD
5 3 ABF

15
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The Spade algorithm
TID lists contd.

C’s TID list
TID Transaction ’ TID ‘ EID H Event ‘
- C . 1 | 3 || BCD
C 2 1 CE
2 4 CDE
C 3 4 ACE
5 1 BCD
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The Spade algorithm
TID lists contd.

TID Transaction D’s TID list
D [ TID [ EID || Event |
D 1] 3 | BCD
2 | 4 || CDE
5 5 | 1 || BCD
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The Spade algorithm
TID lists contd.

E’s TID list
TID Transaction ’ TID ‘ EID H Event ‘
E 1 4 E
E E 2 1 CE
E E 2 4 CDE
E 3 | 1 BE
3 4 ACE
4 2 E

15
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The Spade algorithm
TID lists contd.

F’s TID list
TID Transaction [ TID [ EID || Event |
2 3 F
F

E 3 3 AF

- 4 [ 3 | BF

o 5 | 2 || AF
5 3 ABF
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The Spade algorithm

The hyperlattice

AB — A AB — B
AB A A A— B B— A

15
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The Spade algorithm
Temporal TID list join

Example:

A’s TID list B's TID list A — B TID list
111 A 12| AB

112 AB 1|3 | BCD

22| AB 22| AB 12| AB
3|3 AF 3|1 BE 1|3 | BCD
3|4 | ACE 3|2 B 4|1 3| BF
4|1 A 4|1 3| BF 5|3 | ABF
52| AF 51| BCD

53| ABF 5|3 | ABF
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The Spade algorithm
Temporal TID list join

Example:

A’s TID list B's TID list B — As TID list
111 A 12| AB

112 AB 1|3 | BCD

22| AB 22| AB 33| AF
3|3 AF 3|1 BE 34| ACE
3|4 | ACE 3|2 B 5|2]| AF
4|1 A 4|1 3| BF 513 | ABF
52| AF 51| BCD

53| ABF 5|3 | ABF
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The Spade algorithm
Temporal TID list join

Example:

A’s TID list B's TID list AB’s TID list
111 A 12| AB

112 AB 1|3 | BCD

22| AB 22| AB

3|3 AF 3|1 BE 1|12 | AB
3|4 | ACE 3|2 B 22| AB
4|1 A 4|1 3| BF

52| AF 51| BCD

53| ABF 5|3 | ABF
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The Spade algorithm

SPADE(In: AtomSet ¢,In: Integer min_supp, In/Out: Set F)

1: for all atoms A; € e do
Ti —{}
for all atoms A; € ¢,/ > i and all combinations « of A;, A; do
L(c) = temporal TID list join of L(A;) with L(A))
if Supp(a) > min_supp then
Ti — TiU{e}
F=FUa
end if
9: end for
10:  Spade(T;, min_supp, F)
11: end for

15
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The PrefixSpan algorithm
The PrefixSpan algorithm

@ DFS algorithm.

© Uses database projection.

© Pattern-growth algorithm

© Reduced candidate generation.

© Created by the author of the FPGrowth algorithm (J. Han).
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The PrefixSpan algorithm
Database Projection

Collecting of suffixes projected from sequences by following a given
prefix.

Definition (Sequence projection)

Let «, 3,y be three sequences. We say that v is a-projected sequence
in ¢ iff a.y is @ maximal subsequence of 3, denoted by 3|,

f=(A—-B—A—B—AC— D)

a=(A— B)

a-projected sequence in 3, i.e., B|a, isy = (A— B — AC — D).
B=(A—BC—B— AC)= flo=(C— B— AC)

15
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The PrefixSpan algorithm
Database Projection example

D - a database we project from

D|. - a-projected database

TID Transaction TID | Transaction
1 A— AB—- BCD — E 1 BCD — E
2 CE — AB— F— CDE a=(AB)[ 2 F — CDE
3 | BE > B— AF — ACE =
4 A— E — BF
5 BCD — AF — ABF 5 _F

= Support of C ?

15
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The PrefixSpan algorithm
Database Projection example

D - a database we project from

D|. - a-projected database

TID Transaction TID | Transaction
1 A— AB - BCD — E 1 BCD — E
2 CE - AB— F— CDE a=(AB)[ 2 F — CDE
3 | BE > B — AF — ACE =
4 A— E — BF
5 BCD — AF — ABF 5 _F

= Support Supp(AB — C,D) = Supp(C,D|.)

15
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The PrefixSpan algorithm
Prefixspan Pseudocode

PREFIXSPAN-RECURSIVE(In: Database D,, In: Sequence «, In:
Integer min_supp, In/Out: Set F)
1: Fy «{frequent items in D,}
2: for all items b; € 7y do
3 B=(ar— - —(anU{b}))
y= (vt = — an— (b))
if Supp(53,D,) >min_supp then
F— FU{B}
D' — (Da)ls
Prefixspan-Recursive(D’, 3, min_supp, F)
9: endif
10:  if Supp(vy,D,) >min_supp then

11: F—FU{}
12: D' — (Da)ly

o N gk

13: Prefixspan-Recursive(D’, v, min_supp, F)
14:  endif .
15: end for
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The PrefixSpan algorithm

Mining sequential patterns with constraints

@ Eventtime—let T : 7 — R, the function t assignes timestamp to
each event in the sequence.

@ For each sequence « it holds that T(a;) < T(oy), i < J.

Let a, 8, be two sequences such that « is subsequence of 5. A
constraint C is:

@ Anti-monotonic: iff C(3) implies C(«)
@ Monotonic: iff C(«) implies C(5)
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The PrefixSpan algorithm

Timing constraints — the maxspan/minspan

Maxspan/Minspan: the maximum/minimum allowed time difference
between the latest and earliest occurances of events in « in the
transaction t:

t=A— AB— BCD — E

maxspan=2, supports: A— A, A— B, A— BC.
maxspan=2, does not supports: A — E.
minspan=2, does not supports: A— A, A— B, A— BC.

°
°

°

@ minspan=2, supports: A — E.
@ the maxspan is anti-monotonic.
°

the minspan is monotonic.
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The PrefixSpan algorithm
Mingap/Maxgap

Mingap/Maxgap: is the minimum/maximum time difference of
occurences of events from « in a transaction .

t=A— AB— BCD — E

mingap=2, t supports: A — E.
mingap=2, t does not supports: A — A.
maxgap=1, t supports: A — C.
maxgap=1, t does not supports: A — E.
mingap/maxgap is anti-monotnic.

15
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The PrefixSpan algorithm
Regular expressions

@ Regular expression: each regular expression R can be
represented by a finite state automaton.

@ Each event in the sequence o must contain exactly one item.

@ A frequent sequence « is valid if it matches a state of the finite
state automaton representing R.
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