Frequent subsequence mining

Robert Kessl

SuUl, 18. March 2010

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 1/30

Q Introduction

e Frequent subsequence mining
e Abstract problem formulation
e The GSP algorithm

e The Spade algorithm

e The PrefixSpan algorithm

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 2/30

Introduction

Frequent substructure mining

@ We have a database D of transactions t.
@ t can be an arbitrary object.
@ For example: itemsets (basket market), time sequences, graphs

@ Mining of frequent substructures has exponential complexity (in
the worst case)

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 3/30

Frequent subsequence mining
Frequent subsequence mining

@ We denote the set of all items by Z = {b;}. We impose some
ordering on the items in the set 7, i.e., by < b < ... < bg

@ We denote the set of all events by £ = P(7)

@ Leta; € £,1 <i< nbeanevent.

@ A sequence is an ordered list: oy — ap — ... — ap, €.9.,
7={ABCDEF},A— AB— BCD— E

Notation: a sequence & contains events &, i.e., &1 — do — ... — .

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 4/30

Frequent subsequence mining
Subsequence

Definition (subsegence)

Let have two sequences a = a1 — ... — ap and

6=01—...— Bm,m<n. We call g the subsequence of «, denoted
by 8 < « iff there exists one-to-one order preserving function f : o — 3
that maps events in § to events in «, that is:

Q o C G ="Fflo)
9 if ap < then f(a,-) < f(Oéj), i.e., Bk = f(a;),ﬂ/ = f(Oéj) such that
Bk < B |
Some subsequences of A— AB — BCD — E:
A A
e A—E
e AB—-B—E
0 AE .

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 5/30

Frequent subsequence mining
Problem formulation

Database D:

D Transaction
A— AB— BCD — E
CE - AB— F — CDE
BE — B — AF — ACE
A— E — BF
BCD — AF — ABF

O1 D W N = H

@ we are searching for subsequence in the transactions t € D that
occurs in at least min_support transactions.

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 6/30

Frequent subsequence mining
Problem formulation

Database D:

TID Transaction

1 A—- AB— BCD — E

3 BE — B— AF — ACE

5 BCD — AF — ABF

@ we are searching for subsequence in the transactions t € D that
occurs in at least min_support transactions.

e for example, the sequence A — A occurs in 3 transactions.

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 6/30

Frequent subsequence mining
Prefix and suffix of a sequence

Let have three sequences: =a1— ... > Qp

«
B=p5 — . = Bmm<n,
Y=o ok k <.

Bi oo Bmt BmUm 2 o %
Then g is the prefix and + is the suffix of «.

Denoted by o = .yorv=a\
Example, given a sequence AB — AF — BCD:

@ prefix A, suffix B — AF — BCD.
Q@ prefix AB, suffix AF — BCD.

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010

Frequent subsequence mining
The hyperlattice

Part of the lattice of all sequences L:

AB_)AMBN
A B C D E

@ top T of the lattice Lis T = oc.
@ bottom L of the lattice L is an empty sequence ()
@ Let «a, 0 be two sequences, then:

o Meet of «, 3 is the set of minimal uppper bounds, denoted by a A 3.
e Join of «, 3 is the set of all maximal lower bounds, denoted by a V (w

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 8/30

Frequent subsequence mining
The Prefix-Based Equivalence Classes

e DFS algorithms partitions the hyperlattice into smaller

Definition

Let « be a sequence. The prefix-based equivalence class, denoted by
[] is the set of all sequences having « as a prefix.

The prefix-based equivalence class is a sub-hyperlattice of L.

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 9/30

Frequent subsequence mining
Generating sequences

Generating sequences: let P be an arbitrary sequence and
a,b,c,d € I. We can combine sequences P — a, P — b, Pc, Pd in
the following ways:

Q@QP—-a—b

Q@P—-b—a

Q@ P—ab

QP—-a—a

@ Pcd

Q Pc—a

@ Pc—0b

Q...

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 10/30

Frequent subsequence mining
Generating sequences

Generating sequences: let P be an arbitrary sequence and
a,b,c,d € 7. We can combine sequences P — a, P — b, Pc, Pd in
the following ways:

QP—-a—b

Q@ P—-b—a

Q@ P—-ab

QP—-a—a

Q Pcd

Q Pc— a

@ Pc—b

Q..

We must order the operations !!

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 10/30

Frequent subsequence mining
The monotonicity of support

Lemma (Monotonicity of support)

Let o be a sequence with support Supp(«, D) in database D. For
every superset (3 of a (o < 3) holds: Supp(«, D) > Supp(3, D).

A—-A
TID Transaction

1 A— AB— BCD — E

3 BE — B— AF — ACE

5 BCD — AF — ABF

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 11/30

Frequent subsequence mining
The monotonicity of support

Lemma (Monotonicity of support)

Let o be a sequence with support Supp(«, D) in database D. For
every superset (3 of a (o < 3) holds: Supp(«, D) > Supp(3, D).

A— AB

TID Transaction

1 A— AB— BCD — E

5 BCD — AF — ABF

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 11/30

Frequent subsequence mining
The monotonicity of support

Lemma (Monotonicity of support)

Let o be a sequence with support Supp(«, D) in database D. For
every superset (3 of a (o < 3) holds: Supp(«, D) > Supp(3, D).

A — ABF

TID Transaction

5 BCD — AF — ABF

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 11/30

Abstract problem formulation

Abstract substructure mining

@ A database D, a language L;

@ sentences p,d € £;

@ a frequency criterion g(y) € {true, false};

@ a monotone specialization/generalization relation: ¢ < ¢
@ g(®) = true = q(p) = true

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010

Abstract problem formulation

Generalization of the Apriori algorithm

N RN 2

Ci «— {p € L]|there is no ¢’ such that ¢’ < ¢}

j—1

while C; not empty do
Fi — {¢ € Cilq(¢) = true}
Cir1 — {p € LIVY' < pwe have ¢’ € U;; Fi} \Uj<; G
jf—i+1

end while

return FLU R U. ..U Fk_1

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010

Abstract problem formulation
Algorithms

e The GSP algorithm: an Apriory like algorithm
e The Spade algorithm: DFS algorithm that uses TID lists

e The PrefixSpan algorithm: DFS algorithm that uses projected
database

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 14/30

The GSP algorithm

@ BFS algorithm.
@ Generate&test approach.
@ Let « be the longest sequence in D with length k, denoted by
|| = k. The GSP algorithm can make k scans of D
A candidate sequence «, |a| = k:
@ Support of « is unknown.
@ all 3 < «,|8] = k — 1 are frequent, i.e., Supp(3) > min_support.

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 15/30

The GSP algorithm contd.

GSP(In: Database D,In: Integer min_supp, In/Out: Set F)
1: F1 « {frequent 1-sequences}
2. fork — 2; F_1#0;k— k+1do
3 Fx—0

4: Cy « candidates created from Fj_1
5. forall 3 € Cx do
6: B.support — support of 5 in D
7 if 5.support > min_supp then
8: Fk — FxUB
9: end if
10: end for
11: F«— FUFx
12: end for

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 16/30

The Spade algorithm

@ DFS algorithm.

@ Uses TID lists.

© Similar algorithm as the Eclat algorithm.

© Created by the author of the Eclat algorithm (M.J. Zaki).

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 17/30

The Spade algorithm

TID lists

[TID T EID][Event |

A
AB
BCD
E

CE
AB
F
CDE

BE
B
AF
ACE

A
E
BF
BCD
AF
ABF

-

D Transaction
A—-AB—-BCD — E
CE - AB— F — CDE
BE — B— AF — ACE
A— E — BF
BCD — AF — ABF

O1 B W N = H

QO O | & BB | | W] | W[N] P N N | = = =] =
QOO = | QO PO =+ | B[QO PO| =+ | 5| O NOf = | [O N

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 18/30

The Spade algorithm
TID lists contd.

A's TID list
[TID [EID [[Event |

TID Transaction 1 1 A
A A AB

AB
AF
ACE
A
AF
ABF

>
OO~ W W N =
W=D

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 19/30

The Spade algorithm
TID lists contd.

B’s TID list
[TID [EID [[Event |
TID Transaction 1 2 AB
B B 1 3 BCD
B 2 2 AB
B B 3 1 BE
B 3| 2 B
B B 4 3 | BF
5 1 BCD
5 3 ABF

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 19/30

The Spade algorithm
TID lists contd.

C’s TID list
TID Transaction ’ TID ‘ EID H Event ‘
- C . 1 | 3 || BCD
C 2 1 CE
2 4 CDE
C 3 4 ACE
5 1 BCD

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 19/30

The Spade algorithm
TID lists contd.

TID Transaction D’s TID list
D [TID [EID || Event |
D 1] 3 | BCD
2 | 4 || CDE
5 5 | 1 || BCD

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 19/30

The Spade algorithm
TID lists contd.

E’s TID list
TID Transaction ’ TID ‘ EID H Event ‘
E 1 4 E
E E 2 1 CE
E E 2 4 CDE
E 3 | 1 BE
3 4 ACE
4 2 E

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 19/30

The Spade algorithm
TID lists contd.

F’s TID list
TID Transaction [TID [EID || Event |
2 3 F
F

E 3 3 AF

- 4 [3 | BF

o 5 | 2 || AF
5 3 ABF

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 19/30

The Spade algorithm

The hyperlattice

AB — A AB — B
AB A A A— B B— A

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 20/30

The Spade algorithm
Temporal TID list join

Example:

A’s TID list B's TID list A — B TID list
111 A 12| AB

112 AB 1|3 | BCD

22| AB 22| AB 12| AB
3|3 AF 3|1 BE 1|3 | BCD
3|4 | ACE 3|2 B 4|1 3| BF
4|1 A 4|1 3| BF 5|3 | ABF
52| AF 51| BCD

53| ABF 5|3 | ABF

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 21/30

The Spade algorithm
Temporal TID list join

Example:

A’s TID list B's TID list B — As TID list
111 A 12| AB

112 AB 1|3 | BCD

22| AB 22| AB 33| AF
3|3 AF 3|1 BE 34| ACE
3|4 | ACE 3|2 B 5|2]| AF
4|1 A 4|1 3| BF 513 | ABF
52| AF 51| BCD

53| ABF 5|3 | ABF

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 21/30

The Spade algorithm
Temporal TID list join

Example:

A’s TID list B's TID list AB’s TID list
111 A 12| AB

112 AB 1|3 | BCD

22| AB 22| AB

3|3 AF 3|1 BE 1|12 | AB
3|4 | ACE 3|2 B 22| AB
4|1 A 4|1 3| BF

52| AF 51| BCD

53| ABF 5|3 | ABF

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 21/30

The Spade algorithm

SPADE(In: AtomSet ¢,In: Integer min_supp, In/Out: Set F)

1: for all atoms A; € e do
Ti —{}
for all atoms A; € ¢,/ > i and all combinations « of A;, A; do
L(c) = temporal TID list join of L(A;) with L(A))
if Supp(a) > min_supp then
Ti — TiU{e}
F=FUa
end if
9: end for
10: Spade(T;, min_supp, F)
11: end for

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 22/30

The PrefixSpan algorithm
The PrefixSpan algorithm

@ DFS algorithm.

© Uses database projection.

© Pattern-growth algorithm

© Reduced candidate generation.

© Created by the author of the FPGrowth algorithm (J. Han).

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010

The PrefixSpan algorithm
Database Projection

Collecting of suffixes projected from sequences by following a given
prefix.

Definition (Sequence projection)

Let «, 3,y be three sequences. We say that v is a-projected sequence
in ¢ iff a.y is @ maximal subsequence of 3, denoted by 3|,

f=(A—-B—A—B—AC— D)

a=(A— B)

a-projected sequence in 3, i.e., B|a, isy = (A— B — AC — D).
B=(A—BC—B— AC)= flo=(C— B— AC)

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 24 /30

The PrefixSpan algorithm
Database Projection example

D - a database we project from

D|. - a-projected database

TID Transaction TID | Transaction
1 A— AB—- BCD — E 1 BCD — E
2 CE — AB— F— CDE a=(AB)[2 F — CDE
3 | BE > B— AF — ACE =
4 A— E — BF
5 BCD — AF — ABF 5 _F

= Support of C ?

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 25/30

The PrefixSpan algorithm
Database Projection example

D - a database we project from

D|. - a-projected database

TID Transaction TID | Transaction
1 A— AB - BCD — E 1 BCD — E
2 CE - AB— F— CDE a=(AB)[2 F — CDE
3 | BE > B — AF — ACE =
4 A— E — BF
5 BCD — AF — ABF 5 _F

= Support Supp(AB — C,D) = Supp(C,D|.)

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 25/30

The PrefixSpan algorithm
Prefixspan Pseudocode

PREFIXSPAN-RECURSIVE(In: Database D,, In: Sequence «, In:
Integer min_supp, In/Out: Set F)
1: Fy «{frequent items in D,}
2: for all items b; € 7y do
3 B=(ar— - —(anU{b}))
y= (vt = — an— (b))
if Supp(53,D,) >min_supp then
F— FU{B}
D' — (Da)ls
Prefixspan-Recursive(D’, 3, min_supp, F)
9: endif
10: if Supp(vy,D,) >min_supp then

11: F—FU{}
12: D' — (Da)ly

o N gk

13: Prefixspan-Recursive(D’, v, min_supp, F)
14: endif .
15: end for

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 26/30

The PrefixSpan algorithm

Mining sequential patterns with constraints

@ Eventtime—let T : 7 — R, the function t assignes timestamp to
each event in the sequence.

@ For each sequence « it holds that T(a;) < T(oy), i < J.

Let a, 8, be two sequences such that « is subsequence of 5. A
constraint C is:

@ Anti-monotonic: iff C(3) implies C(«)
@ Monotonic: iff C(«) implies C(5)

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 27 /30

The PrefixSpan algorithm

Timing constraints — the maxspan/minspan

Maxspan/Minspan: the maximum/minimum allowed time difference
between the latest and earliest occurances of events in « in the
transaction t:

t=A— AB— BCD — E

maxspan=2, supports: A— A, A— B, A— BC.
maxspan=2, does not supports: A — E.
minspan=2, does not supports: A— A, A— B, A— BC.

°
°

°

@ minspan=2, supports: A — E.
@ the maxspan is anti-monotonic.
°

the minspan is monotonic.

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010

15

28/30

The PrefixSpan algorithm
Mingap/Maxgap

Mingap/Maxgap: is the minimum/maximum time difference of
occurences of events from « in a transaction .

t=A— AB— BCD — E

mingap=2, t supports: A — E.
mingap=2, t does not supports: A — A.
maxgap=1, t supports: A — C.
maxgap=1, t does not supports: A — E.
mingap/maxgap is anti-monotnic.

15

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 29/30

The PrefixSpan algorithm
Regular expressions

@ Regular expression: each regular expression R can be
represented by a finite state automaton.

@ Each event in the sequence o must contain exactly one item.

@ A frequent sequence « is valid if it matches a state of the finite
state automaton representing R.

Robert Kessl (CS CAS) Frequent subsequence mining 18. March 2010 30/30

	Introduction
	Frequent subsequence mining
	Abstract problem formulation
	The GSP algorithm
	The Spade algorithm
	The PrefixSpan algorithm

